Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turetz, M.; Sideris, A.; Friedman, O.; Triphathi, N.; Horowitz, J. Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism. Semin. Interv. Radiol. 2018, 35, 92–98. [Google Scholar] [CrossRef]
- Alikhan, R. Fatal pulmonary embolism in hospitalised patients: A necropsy review. J. Clin. Pathol. 2004, 57, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z. Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy. J. Thromb. Haemost. 2009, 7, 322–327. [Google Scholar] [CrossRef]
- Pasha, A.K.; Siddiqui, M.U.; Siddiqui, M.D.; Ahmed, A.; Abdullah, A.; Riaz, I.; Murad, M.H.; Bjarnason, H.; Wysokinski, W.E.; McBane, R.D. Catheter directed compared to systemically delivered thrombolysis for pulmonary embolism: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2022, 53, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Siordia, J.A.; Kaur, A. Catheter-directed Thrombolysis versus Systemic Anticoagulation for SubmassivePulmonary Embolism: A Meta-Analysis. CCR 2022, 18, e030621193818. [Google Scholar] [CrossRef]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef]
- Rawal, A.; Ardeshna, D.; Hesterberg, K.; Cave, B.; Ibebuogu, U.N.; Khouzam, R.N. Is there an optimal “door to cath time” in the treatment of acute pulmonary embolism with catheter-directed thrombolysis? Ann. Transl. Med. 2019, 7, 419. [Google Scholar] [CrossRef]
- Lehr, A.; Guichet, P.; Garimella, B.; Krolikowski, K.; Amoroso, N.; Sista, A.; Brosnahan, S.B. Impact of Time to Intervention on Catheter-Directed Therapy for Pulmonary Embolism. Crit. Care Explor. 2023, 5, e0828. [Google Scholar] [CrossRef]
- Gacutan, K. Healthcare Cost and Utilization Project—HCUP. Available online: https://www.ahrq.gov/data/hcup/index.html (accessed on 1 January 2024).
- Jang, S.-J.; Kim, L.K.; Sobti, N.K.; Yeo, I.; Cheung, J.W.; Feldman, D.N.; Amin, N.P.; Narotsky, D.L.; Goyal, P.; McCullough, S.A. Mortality of patients with ST-segment-elevation myocardial infarction without standard modifiable risk factors among patients without known coronary artery disease: Age-stratified and sex-related analysis from nationwide readmissions database 2010-2014. Am. J. Prev. Cardiol. 2023, 14, 100474. [Google Scholar]
- Jang, S.-J.; Yeo, I.; Jonas, C.; Goyal, P.; Cheung, J.W.; Feldman, D.N.; McCullough, S.A.; Krishnan, U.; Narotsky, D.L.; Singh, H.S. Thirty-Day Readmission Rates after Takotsubo Syndrome with or without Malignancy: A Nationwide Readmissions Database Analysis. J. Clin. Med. 2021, 10, 3701. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-J.; Yeo, I.; Feldman, D.N.; Cheung, J.W.; Minutello, R.M.; Singh, H.S.; Bergman, G.; Wong, S.C.; Kim, L.K. Associations between hospital length of stay, 30-day readmission, and costs in ST-segment–elevation myocardial infarction after primary percutaneous coronary intervention: A Nationwide Readmissions Database analysis. J. Am. Heart Assoc. 2020, 9, e015503. [Google Scholar]
- Chao, T.H.; Tsai, L.M.; Teng, J.K.; Li, Y.H.; Tsai, W.C.; Lin, L.J.; Chen, J.H. Successful delayed thrombolytic therapy in a patient with massive pulmonary embolism. J. Formos. Med. Assoc. Taiwan yi zhi 1998, 97, 638–641. [Google Scholar]
- Goldhaber, S.Z.; Kessler, C.M.; Heit, J.A.; Elliott, C.G.; Friedenberg, W.R.; Heiselman, D.E.; Wilson, D.B.; Parker, J.A.; Bennett, D.; Feldstein, M.L.; et al. Recombinant tissue-type plasminogen activator versus a novel dosing regimen of urokinase in acute pulmonary embolism: A randomized controlled multicenter trial. J. Am. Coll. Cardiol. 1992, 20, 24–30. [Google Scholar] [CrossRef]
- Patel, N.; Patel, N.J.; Agnihotri, K.; Panaich, S.S.; Thakkar, B.; Patel, A.; Savani, C.; Patel, N.; Arora, S.; Deshmukh, A.; et al. Utilization of catheter-directed thrombolysis in pulmonary embolism and outcome difference between systemic thrombolysis and catheter-directed thrombolysis. Catheter. Cardiovasc. Interv. 2015, 86, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Panaich, S.S.; Ainani, N.; Kumar, V.; Patel, N.J.; Tripathi, B.; Shah, P.; Patel, N.; Lahewala, S.; Deshmukh, A.; et al. Comparison of In-Hospital Outcomes and Readmission Rates in Acute Pulmonary Embolism Between Systemic and Catheter-Directed Thrombolysis (from the National Readmission Database). Am. J. Cardiol. 2017, 120, 1653–1661. [Google Scholar] [CrossRef]
- Aujesky, D.; Mor, M.K.; Geng, M.; Stone, R.A.; Fine, M.J.; Ibrahim, S.A. Predictors of Early Hospital Readmission After Acute Pulmonary Embolism. Arch. Intern. Med. 2009, 169, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kamran, H.; Hariri, E.H.; Iskandar, J.; Sahai, A.; Haddadin, I.; Harb, S.C.; Campbell, J.; Tefera, L.; Delehanty, J.M.; Heresi, G.A.; et al. Simultaneous Pulmonary Artery Pressure and Left Ventricle Stroke Volume Assessment Predicts Adverse Events in Patients With Pulmonary Embolism. JAHA 2021, 10, e019849. [Google Scholar] [CrossRef]
- Casazza, F.; Becattini, C.; Bongarzoni, A.; Cuccia, C.; Roncon, L.; Favretto, G.; Zonzin, P.; Pignataro, L.; Agnelli, G. Clinical features and short term outcomes of patients with acute pulmonary embolism. The Italian Pulmonary Embolism Registry (IPER). Thromb. Res. 2012, 130, 847–852. [Google Scholar]
- Furlan, A.; Aghayev, A.; Chang, C.-C.H.; Patil, A.; Jeon, K.N.; Park, B.; Fetzer, D.T.; Saul, M.; Roberts, M.S.; Bae, K.T. Short-term mortality in acute pulmonary embolism: Clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology 2012, 265, 283–293. [Google Scholar]
- Shen, C.; Yu, N.; Wen, L.; Zhou, S.; Dong, F.; Liu, M.; Guo, Y. Risk stratification of acute pulmonary embolism based on the clot volume and right ventricular dysfunction on CT pulmonary angiography. Clin. Respir. J. 2019, 13, 674–682. [Google Scholar] [PubMed]
- Edla, S.; Rosman, H.; Neupane, S.; Boshara, A.; Szpunar, S.; Daher, E.; Rodriguez, D.; LaLonde, T.; Yamasaki, H.; Mehta, R.H.; et al. Early versus delayed use of ultrasound-assisted catheter-directed thrombolysis in patients with acute submassive pulmonary embolism. J. Invasive Cardiol. 2018, 30, 157–162. [Google Scholar] [PubMed]
Characteristics | Overall | Day 0 | Day 1 | Day ≥2 | p Value |
---|---|---|---|---|---|
Number of patients, n (%) * | 23,564 | 12,310 (52.2) | 7856 (33.3) | 3398 (14.4) | |
Patient characteristics | |||||
Age, mean (SE), y | 60.3 (0.2) | 59.9 (0.2) | 60.6 (0.3) | 61.5 (0.4) | <0.001 † |
Gender | 0.014 ‡ | ||||
Male | 12,528 (53.2) | 6678 (54.3) | 4148 (52.8) | 1702 (50.1) | |
Female | 11,034 (46.8) | 5631 (45.7) | 3708 (47.2) | 1695 (49.9) | |
Smoking | 6080 (25.8) | 3142 (25.5) | 2073 (26.4) | 865 (25.5) | 0.636 |
Hypertension | 12,632 (53.6) | 6467 (52.5) | 4310 (54.9) | 1855 (54.6) | 0.069 |
Diabetes mellitus | 6391 (27.1) | 3227 (26.2) | 2132 (27.1) | 1031 (30.4) | 0.009 |
Dyslipidemia | 7551 (32.0) | 3765 (30.6) | 2636 (33.6) | 1150 (33.9) | 0.004 |
Family history of coronary artery disease | 1989 (8.4) | 956 (7.8) | 762 (9.7) | 271 (8.0) | 0.006 |
Congestive heart failure | 1095 (4.6) | 524 (4.3) | 344 (4.4) | 227 (6.7) | <0.001 |
Coronary artery disease | 2750 (11.7) | 1365 (11.1) | 909 (11.6) | 476 (14.0) | 0.010 |
Peripheral vascular disease | 1114 (4.7) | 546 (4.4) | 361 (4.6) | 207 (6.1) | 0.038 |
Previous myocardial infarction | 805 (3.4) | 413 (3.4) | 230 (2.9) | 162 (4.8) | 0.013 |
Previous stroke | 907 (3.8) | 444 (3.6) | 324 (4.1) | 139 (4.1) | 0.489 |
Previous CABG | 500 (2.1) | 283 (2.3) | 155 (2.0) | 62 (1.8) | 0.350 |
Previous PCI | 711 (3.0) | 331 (2.7) | 280 (3.6) | 100 (2.9) | 0.070 |
Chronic pulmonary disease | 4535 (19.2) | 2182 (17.7) | 1536 (19.5) | 817 (24.1) | <0.001 |
Pulmonary hypertension | 6218 (26.4) | 2976 (24.2) | 2084 (26.5) | 1158 (34.1) | <0.001 |
Pulmonary circulatory disorder | 6497 (27.6) | 3109 (25.3) | 2175 (27.7) | 1213 (35.7) | <0.001 |
Chronic kidney disease | 2295 (9.7) | 1019 (8.3) | 807 (10.3) | 469 (13.8) | <0.001 |
Liver disease | 947 (4.0) | 440 (3.6) | 332 (4.2) | 175 (5.2) | 0.012 |
Anemia | 3950 (16.8) | 1973 (16.0) | 1279 (16.3) | 698 (20.5) | <0.001 |
Atrial fibrillation | 2231 (9.5) | 1160 (9.4) | 713 (9.1) | 358 (10.5) | 0.271 |
Valvular heart disease | 1908 (8.1) | 936 (7.6) | 583 (7.4) | 389 (11.5) | <0.001 |
Coagulopathy | 3251 (13.8) | 1671 (13.6) | 1072 (13.6) | 508 (15.0) | 0.364 |
Autoimmune disease | 822 (3.5) | 401 (3.3) | 294 (3.7) | 127 (3.7) | 0.431 |
AIDS | 88 (0.4) | 54 (0.4) | 18 (0.2) | 16 (0.5) | 0.199 |
Alcohol use disorder | 864 (3.7) | 429 (3.5) | 297 (3.8) | 138 (4.1) | 0.527 |
Drug abuse | 466 (2.0) | 219 (1.8) | 177 (2.3) | 70 (2.1) | 0.273 |
Obesity | 9761 (41.4) | 5005 (40.7) | 3200 (40.7) | 1556 (45.8) | 0.002 |
Hypothyroidism | 2852 (12.1) | 1370 (11.1) | 1033 (13.1) | 449 (13.2) | 0.004 |
Movement disorder | 534 (2.3) | 279 (2.3) | 184 (2.3) | 71 (2.1) | 0.862 |
Seizure disorder | 603 (2.6) | 302 (2.5) | 2011 (2.7) | 90 (2.6) | 0.755 |
Dementia | 578 (2.5) | 269 (2.2) | 222 (2.8) | 87 (2.6) | 0.121 |
Depression | 2800 (11.9) | 1339 (10.9) | 9,24 (11.8) | 537 (15.8) | <0.001 |
Cancer | 1699 (7.2) | 852 (6.9) | 591 (7.5) | 256 (7.5) | 0.495 |
Median household income | 0.477 | ||||
First quartile | 6932 (29.4) | 3609 (29.3) | 2248 (28.6) | 1075 (31.7) | |
Second quartile | 6749 (28.6) | 3500 (28.4) | 2280 (29.0) | 969 (28.5) | |
Third quartile | 5,91 (25.3) | 3115 (25.3) | 2023 (25.7) | 823 (24.2) | |
Fourth quartile | 3920 (16.6) | 2085 (16.9) | 1306 (16.6) | 529 (15.6) | |
Primary payer | <0.001 | ||||
Medicare | 10,723 (45.5) | 5399 (43.9) | 3646 (46.4) | 1678 (49.4) | |
Medicaid | 1903 (8.1) | 986 (8.0) | 579 (7.4) | 338 (9.9) | |
Private including HMO | 8876 (37.7) | 4804 (39.0) | 2929 (37.3) | 1143 (33.6) | |
Self-pay/no charge/other | 2062 (8.8) | 1121 (9.1) | 703 (8.9) | 238 (7.0) | |
Weekend admission | 5493 (23.3) | 2597 (21.1) | 1882 (24.0) | 1014 (29.8) | <0.001 |
Cardiogenic shock | 603 (2.6) | 369 (3.0) | 168 (2.1) | 66 (1.9) | 0.007 |
Cardiac arrest | 180 (0.8) | 106 (0.9) | 60 (0.8) | 14 (0.4) | 0.214 |
Length of hospital stay, d (IQR) | 4 (3–6) | 4 (4–5) | 4 (4–5) | 6 (6–7) | <0.001 |
Hospital characteristics | |||||
Hospital teaching status | 0.015 | ||||
Teaching | 17,755 (75.3) | 9452 (76.8) | 5797 (73.8) | 2506 (73.8) | |
Nonteaching | 5809 (24.7) | 2858 (23.2) | 2060 (26.2) | 891 (26.2) | |
Hospital location | 0.002 | ||||
Rural | 11,785 (50.0) | 6408 (52.1) | 3807 (48.5) | 1570 (46.2) | |
Urban | 11,777 (50.0) | 5901 (47.9) | 4049 (51.5) | 1827 (53.8) | |
Hospital bed size | 0.558 | ||||
Small | 2499 (10.6) | 1273 (10.3) | 899 (11.4) | 327 (9.6) | |
Medium | 6236 (26.5) | 3277 (26.6) | 2062 (26.2) | 897 (26.4) | |
Large | 14,828 (62.9) | 7760 (63.0) | 4895 (62.3) | 2173 (64.0) | |
Disposition | <0.001 | ||||
Home | 17,527 (74.4) | 9411 (76.5) | 5857 (74.6) | 2259 (66.5) | |
Facility ‖ | 5979 (25.4) | 2867 (23.3) | 1982 (25.2) | 1130 (33.3) | |
AMA/unknown | 56 (0.2) | 31 (0.3) | 17 (0.2) | 8 (0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nketiah Sarpong, K.S.; Jang, S.-J.; Quien, M.; Muralidharan, K.; Aggarwal, A.; Yeo, I.; Gopalratnam, K. Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. J. Cardiovasc. Dev. Dis. 2025, 12, 118. https://doi.org/10.3390/jcdd12040118
Nketiah Sarpong KS, Jang S-J, Quien M, Muralidharan K, Aggarwal A, Yeo I, Gopalratnam K. Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. Journal of Cardiovascular Development and Disease. 2025; 12(4):118. https://doi.org/10.3390/jcdd12040118
Chicago/Turabian StyleNketiah Sarpong, Kwabena Sefah, Sun-Joo Jang, Mary Quien, Karthik Muralidharan, Abhinav Aggarwal, Ilhwan Yeo, and Kavitha Gopalratnam. 2025. "Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States" Journal of Cardiovascular Development and Disease 12, no. 4: 118. https://doi.org/10.3390/jcdd12040118
APA StyleNketiah Sarpong, K. S., Jang, S.-J., Quien, M., Muralidharan, K., Aggarwal, A., Yeo, I., & Gopalratnam, K. (2025). Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. Journal of Cardiovascular Development and Disease, 12(4), 118. https://doi.org/10.3390/jcdd12040118