Determinants of Longitudinal Changes in Exercise Blood Pressure in a Population of Young Athletes: The Role of BMI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Assessments
2.2. Statistical Analyses
3. Results
4. Discussion
Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SBPrest | Systolic blood pressure at rest |
SBP3min | Systolic blood pressure at 3rd minute of exercise |
SBPpeak | Systolic blood pressure at exercise peak |
BMI | Body mass index |
ESC | European Society of Cardiology |
BP | Blood pressure |
CV | Cardiovascular |
RPE | Rate of perceived exertion |
METs | Metabolic equivalents |
EACPR | European Association of Cardiovascular Prevention and Rehabilitation |
ROC | Receiver operating characteristic |
References
- Danaei, G.; Lu, Y.; Singh, G.M.; Carnahan, E.; Stevens, G.A.; Cowan, M.J.; Farzadfar, F.; Lin, J.K.; Finucane, M.M.; Rao, M.; et al. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar] [CrossRef]
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European society of cardiology: Cardiovascular disease statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef]
- Manolio, T.A.; Burke, G.L.; Savage, P.J.; Sidney, S.; Gardin, J.M.; Oberman, A. Exercise Blood Pressure Response and 5-Year Risk of Elevated Blood Pressure in a Cohort of Young Adults: The CARDIA Study. Am. J. Hypertens. 1994, 7, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Larson, M.G.; Manolio, T.A.; O’Donnell, C.J.; Lauer, M.; Evans, J.C.; Levy, D. Blood Pressure Response During Treadmill Testing as a Risk Factor for new onset Hypertension The Framingham Heart Study. Circulation 1999, 99, 1831–1836. [Google Scholar] [CrossRef]
- Tsumura, K.; Hayashi, T.; Hamada, C.; Endo, G.; Fujii, S.; Okada, K. Blood pressure response after two-step exercise as a powerful predictor of hypertension: The Osaka Health Survey. J. Hypertens. 2002, 20, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Picone, D.S.; Nikolic, S.B.; Williams, A.D.; Sharman, J.E. Exaggerated blood pressure response to early stages of exercise stress testing and presence of hypertension. J. Sci. Med. Sport 2016, 19, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.G.; Cordeiro, M.A.S.; Miller, T.D.; Daida, H.; Squires, R.W.; Gau, G.T. Prognostic significance of exercise-induced systemic hypertension in healthy subjects. Am. J. Cardiol. 1999, 83, 371–375. [Google Scholar] [CrossRef]
- Hedman, K.; Cauwenberghs, N.; Christle, J.W.; Kuznetsova, T.; Haddad, F.; Myers, J. Workload-indexed blood pressure response is superior to peak systolic blood pressure in predicting all-cause mortality. Eur. J. Prev. Cardiol. 2020, 27, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Thanassoulis, G.; Lyass, A.; Benjamin, E.J.; Larson, M.G.; Vita, J.A.; Levy, D.; Hamburg, N.M.; Widlansky, M.E.; O’Donnell, C.J.; Mitchell, G.F.; et al. Relations of exercise blood pressure response to cardiovascular risk factors and vascular function in the Framingham Heart Study. Circulation 2012, 125, 2836–2843. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Otahal, P.; Cleland, V.J.; Blizzard, L.; Marwick, T.H.; Sharman, J.E. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: A systematic review and meta-analysis. Am. J. Hypertens. 2013, 26, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Otahal, P.; Picone, D.S.; Sharman, J.E. Clinical relevance of exaggerated exercise blood pressure. J. Am. Coll. Cardiol. 2015, 66, 1843–1845. [Google Scholar] [CrossRef]
- Schultz, M.G.; Hare, J.L.; Marwick, T.H.; Stowasser, M.; Sharman, J.E. Masked hypertension is “unmasked” by low-intensity exercise blood pressure. Blood Press 2011, 20, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.J.; Sung, J.; Silber, H.A.; Fleg, J.L.; Kelemen, M.D.; Turner, K.L.; Bacher, A.C.; Dobrosielski, D.A.; DeRegis, J.R.; Shapiro, E.P.; et al. Exaggerated exercise blood pressure is related to impaired endothelial vasodilator function. Am. J. Hypertens. 2004, 17, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Tzemos, N.; Lim, P.O.; Mackenzie, I.S.; Macdonald, T.M. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease. J. Clin. Hypertens. 2015, 17, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.; Pittaras, A.; Narayan, P.; Faselis, C.; Singh, S.; Manolis, A. Exercise capacity and blood pressure associations with left ventricular mass in prehypertensive individuals. Hypertension 2007, 49, 55–61. [Google Scholar] [CrossRef]
- Lim, P.O.; Donnan, P.T.; Mac Donald, T.M. Blood pressure determinants of left ventricular wall thickness and mass index in hypertension: Comparing office, ambulatory and exercise blood pressures. J. Hum. Hypertens. 2001, 15, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Le, V.-V.; Mitiku, T.; Sungar, G.; Myers, J.; Froelicher, V. The Blood Pressure Response to Dynamic Exercise Testing: A Systematic Review. Prog. Cardiovasc. Dis. 2008, 51, 135–160. [Google Scholar] [CrossRef]
- Scott, J.A.; Coombes, J.S.; Prins, J.B.; Leano, R.L.; Marwick, T.H.; Sharman, J.E. Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: Relation to left ventricular relative wall thickness. Am. J. Hypertens. 2008, 21, 715–721. [Google Scholar] [CrossRef]
- Oh, M.S.; Cho, S.J.; Sung, J.; Hong, K.P. Higher blood pressure during light exercise is associated with increased left ventricular mass index in normotensive subjects. Hypertens. Res. 2018, 41, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Spartano, N.L.; Lyass, A.; Larson, M.G.; Lewis, G.D.; Vasan, R.S. Submaximal exercise systolic blood pressure and heart rate at 20 years of follow-up: Correlates in the Framingham heart study. J. Am. Heart Assoc. 2016, 5, e002821. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.; Geserick, M.; Gausche, R.; Beger, C.; Poulain, T.; Meigen, C.; Körner, A.; Keller, E.; Kiess, W.; Pfäffle, R. Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int. J. Obes. 2022, 46, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Palermi, S.; Vecchiato, M.; Pennella, S.; Marasca, A.; Spinelli, A.; De Luca, M.; De Martino, L.; Fernando, F.; Sirico, F.; Biffi, A. The Impact of the COVID-19 Pandemic on Childhood Obesity and Lifestyle-A Report from Italy. Pediatr. Rep. 2022, 14, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Vecchiato, M.; Neunhaeuserer, D.; Fabris, M.; Aghi, A.; Quinto, G.; Battista, F.; Palermi, S.; Gasperetti, A.; Ermolao, A. The impact of the COVID-19 pandemic on functional capacity in a population of young athletes: Should we expect long-time consequences? J. Sports Med. Phys. Fit. 2023, 63, 828–834. [Google Scholar] [CrossRef]
- Bezerra, A.; Boppre, G.; Freitas, L.; Battista, F.; Duregon, F.; Faggian, S.; Busetto, L.; Ermolao, A.; Fonseca, H. Body Composition Changes in Adolescents Who Underwent Bariatric Surgery: A Systematic Review and Meta-analysis. Curr. Obes. Rep. 2024, 13, 107–120. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Vecchiato, M.; Quinto, G.; Borasio, N.; Palermi, S.; Berton, G.; Battista, F.; Gasperetti, A.; Ermolao, A.; Neunhaeuserer, D. The Fragmented QRS Complex in Lead V1: Time for an Update of the Athlete’s ECG? J. Cardiovasc. Transl. Res. 2024, 17, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Vecchiato, M.; Baioccato, V.; Adami, P.E.; Quinto, G.; Foccardi, G.; Slanzi, G.; Battista, F.; Neunhaeuserer, D.; Ermolao, A. Early Repolarization in Adolescent Athletes: A Gender Comparison of ECG and Echocardio-graphic Characteristics. Scand. J. Med. Sci. Sports 2022, 32, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.M.; Haskell, W.L. Physical activity and the prevention of coronary heart disease. Bull. N. Y. Acad. Med. 1968, 44, 950–967. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Crowe, A.J.; Daines, E.; Dumit, M.; Green, M.A.; Lettau, S.; Thompson, N.N.; Weymier, J. Predicting functional capacity during treadmill testing independent of exercise protocol. Med. Sci. Sports Exerc. 1996, 28, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society ofHypertension guidelines for themanagement of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Obesity: Preventing and Managing the Global Epidemic. In Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; Volume 894:i–xii, pp. 1–253.
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [PubMed]
- Bond, V.; Millis, R.M.; Campbell, A.; Harrell, J.; Goring, K.L.; Reeves, I.; Johnson, S.M.; Adams, R.G. Exaggerated vasopressor response to exercise and cerebral blood flow velocity. Clin. Exp. Hypertens. 2012, 34, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Hay, J.; MacMillan, F.; Wittmeier, K.; Wicklow, B.; MacIntosh, A.; McGavock, J. The Blood Pressure Response to Exercise in Youth with Impaired Glucose Tolerance and Type 2 Diabetes. Pediatr. Exerc. Sci. 2015, 27, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Torrance, B.; McGuire, K.A.; Lewanczuk, R.; McGavock, J. Overweight, physical activity and high blood pressure in children: A review of the literature. Vasc. Health Risk Manag. 2007, 3, 139–149. [Google Scholar]
- Silva, G.; Aires, L.; Martins, C.; Mota, J.; Oliveira, J.; Ribeiro, J. Cardiorespiratory Fitness Associates with Metabolic Risk Independent of Central Adiposity. Int. J. Sports Med. 2013, 34, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shim, J.; Kim, J.-B.; Ko, Y.-G.; Choi, D.; Ha, J.-W.; Rim, S.-J.; Jang, Y.; Chung, N. Insulin resistance is associated with hypertensive response to exercise in non-diabetic hypertensive patients. Diabetes Res. Clin. Pract. 2006, 73, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Saladini, F.; Mos, L.; Vriz, O.; Ermolao, A.; Battista, F.; Mazzer, A.; Canevari, M.; Rattazzi, M. Instability of Healthy Overweight and Obesity Phenotypes over the Long Term in Young Participants in the HARVEST Study: Influence of Sex. J. Cardiovasc. Dev. Dis. 2024, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, H.O.; Chaker, H.; Leaming, R.; Johnson, A.; Brechtel, G.; Baron, A.D. Obesity/insulin resistance is associated with endothelial dysfunction: Implications for the syndrome of insulin resistance. J. Clin. Investig. 1996, 97, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Neunhäuserer, D.; Gasperetti, A.; Ortolan, S.; Battista, F.; Pettenella, P.; Zaccaria, M.; Bergamin, M.; Ermolao, A. Inter-arm Systolic Blood Pressure Difference in Physically Active, Adult Subjects. High Blood Press. Cardiovasc. Prev. 2018, 25, 303–307. [Google Scholar] [CrossRef]
- Munir, S.; Jiang, B.; Guilcher, A.; Brett, S.; Redwood, S.; Marber, M.; Chowienczyk, P. Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1645–H1650. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Sharman, J.E. Exercise Hypertension. Pulse 2013, 1, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Rocchini, A.P.; Key, J.; Bondie, D.; Chico, R.; Moorehead, C.; Katch, V.; Martin, M. The Effect of Weight Loss on the Sensitivity of Blood Pressure to Sodium in Obese Adolescents. N. Engl. J. Med. 1989, 321, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Kimball, T.R.; Khoury, P.; Witt, S.; Morrison, J.A. Correlates of the hemodynamic determinants of blood pressure. Hypertension 1996, 28, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.E.; Beske, S.D.; Ballard, T.P.; Davy, K.P. Sympathetic neural activation in visceral obesity. Circulation 2002, 106, 2533–2536. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.F.; Andreas, P.E.; Coutoulakis, E.; Colleran, J.A.; Narayan, P.; Dotson, C.O.; Choucair, W.; Farmer, C.; Fernhall, B. Determinants of exercise blood pressure response in normotensive and hypertensive women: Role of cardiorespiratory fitness. J. Cardiopulm. Rehabil. 2002, 22, 178–183. [Google Scholar] [CrossRef]
- Palermi, S.; Vecchiato, M.; Saglietto, A.; Niederseer, D.; Oxborough, D.; Ortega-Martorell, S.; Olier, I.; Castelletti, S.; Baggish, A.; Maffessanti, F.; et al. Unlocking the potential of artificial intelligence in sports cardiology: Does it have a role in evaluating athlete’s heart? Eur. J. Prev. Cardiol. 2024, 31, 470–482. [Google Scholar] [CrossRef]
Visit 1 | Visit 2 | Mean Change | p | |
---|---|---|---|---|
Age (years) | 13 (±2) | 16.9 (±3) | +3.5 (±2.2) | |
Height (cm) | 162.5 (±12.1) | 170.4 (±10.3) | +7.9 (±9.2) | <0.0001 |
Weight (Kg) | 54.2 (±13.9) | 63.8 (±12.7) | +9.5 (±9.1) | <0.0001 |
BMI (Kg/m2) | 20.2 (±3.1) | 21.7 (±3.1) | +1.5 (±1.8) | <0.0001 |
BMI percentiles * | 54.1 (±26.3) | 53.1 (±25.4) | −1.0 (15.4) | 0.217 |
SBP at rest (mmHg) | 103 (±14) | 110 (±14) | +7 (±17.4) | <0.0001 |
DBP at rest (mmHg) | 55 (±11) | 61 (±11) | +5.2 (±13) | <0.0001 |
SBP at 3 min exercise (mmHg) | 124 (±18) | 129 (±18) | 4.8 (±11) | <0.0001 |
SBP at peak (mmHg) | 154 (±23) | 166 (±21) | 11.7 (±24) | <0.0001 |
HR at rest (bpm) | 68 (±11) | 69 (±13) | 0.4 (±11) | <0.0001 |
Peak exercise HR (bpm) | 190 (±8) | 187 (±8) | −3.6 (±7.4) | <0.0001 |
% predicted maximum HR for age | 92.3 (±4) | 91.7 (±3.9) | n.s. | |
Maximal workload (METs) | 18.6 (±2.9) | 18.7 (±3.1) | n.s. |
r | p | |
---|---|---|
Male sex | 0.30 | <0.01 |
Number of practiced sports | 0.11 | <0.05 |
BMI at baseline (visit 1) | 0.24 | <0.01 |
BMI variation between-visit | 0.18 | <0.01 |
Classification of hypertension | n.s. |
R | p | |
---|---|---|
Male sex | 0.38 | <0.01 |
Baseline resting HR | −0.19 | <0.01 |
BMI at baseline (visit 1) | 0.13 | <0.05 |
BMI variation between-visit | 0.21 | <0.01 |
Classification of hypertension | n.s. |
ΔSBP3min | ||
ΔBMI | p < 0.001 | |
ΔSBPpeak | ||
Male sex | p < 0.001 | |
ΔBMI | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battista, F.; Vecchiato, M.; Chernis, K.; Faggian, S.; Duregon, F.; Borasio, N.; Ortolan, S.; Pucci, G.; Ermolao, A.; Neunhaeuserer, D. Determinants of Longitudinal Changes in Exercise Blood Pressure in a Population of Young Athletes: The Role of BMI. J. Cardiovasc. Dev. Dis. 2025, 12, 74. https://doi.org/10.3390/jcdd12020074
Battista F, Vecchiato M, Chernis K, Faggian S, Duregon F, Borasio N, Ortolan S, Pucci G, Ermolao A, Neunhaeuserer D. Determinants of Longitudinal Changes in Exercise Blood Pressure in a Population of Young Athletes: The Role of BMI. Journal of Cardiovascular Development and Disease. 2025; 12(2):74. https://doi.org/10.3390/jcdd12020074
Chicago/Turabian StyleBattista, Francesca, Marco Vecchiato, Kiril Chernis, Sara Faggian, Federica Duregon, Nicola Borasio, Sara Ortolan, Giacomo Pucci, Andrea Ermolao, and Daniel Neunhaeuserer. 2025. "Determinants of Longitudinal Changes in Exercise Blood Pressure in a Population of Young Athletes: The Role of BMI" Journal of Cardiovascular Development and Disease 12, no. 2: 74. https://doi.org/10.3390/jcdd12020074
APA StyleBattista, F., Vecchiato, M., Chernis, K., Faggian, S., Duregon, F., Borasio, N., Ortolan, S., Pucci, G., Ermolao, A., & Neunhaeuserer, D. (2025). Determinants of Longitudinal Changes in Exercise Blood Pressure in a Population of Young Athletes: The Role of BMI. Journal of Cardiovascular Development and Disease, 12(2), 74. https://doi.org/10.3390/jcdd12020074