Iron Deficiency in Heart Failure: Cellular Mechanisms and Therapeutic Implications
Abstract
1. Introduction
2. Anemia in Heart Failure: It Is Not Just Iron Deficiency
3. Cellular Role of Iron in Cardiomyocytes
4. Iron Deficiency in Heart Failure and the Role of Intravenous Ferrum Treatment
4.1. Defining and Detecting Iron Deficiency in Heart Failure
4.2. Clinical Trial Evidence
4.3. Meta-Analyses and Pooled Analyses
4.4. Guideline Recommendations
4.5. Dosing Strategies and Formulations
4.6. Special Populations
4.6.1. Heart Failure with Preserved Ejection Fraction
4.6.2. Chronic Kidney Disease
4.6.3. LVAD
4.7. Sex-Related Outcome Differences
4.8. Safety Profile
4.9. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of Heart Failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Global Epidemiology and Future Trends of Heart Failure. AME Med. J. 2020, 5, 15. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation 2021, 143, 1. [Google Scholar] [CrossRef] [PubMed]
- Ebner, N.; Jankowska, E.A.; Ponikowski, P.; Lainscak, M.; Elsner, S.; Sliziuk, V.; Steinbeck, L.; Kube, J.; Bekfani, T.; Scherbakov, N.; et al. The Impact of Iron Deficiency and Anaemia on Exercise Capacity and Outcomes in Patients with Chronic Heart Failure. Results from the Studies Investigating Co-Morbidities Aggravating Heart Failure. Int. J. Cardiol. 2016, 205, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.T.; Manz, D.H.; Torti, F.M.; Torti, S.V. Mitochondria and Iron: Current Questions. Expert. Rev. Hematol. 2017, 10, 65–79. [Google Scholar] [CrossRef]
- Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac Metabolism in Heart Failure: Implications Beyond ATP Production. Circ. Res. 2013, 113, 709–724. [Google Scholar] [CrossRef]
- Hoes, M.F.; Grote Beverborg, N.; Kijlstra, J.D.; Kuipers, J.; Swinkels, D.W.; Giepmans, B.N.G.; Rodenburg, R.J.; Van Veldhuisen, D.J.; De Boer, R.A.; Van Der Meer, P. Iron Deficiency Impairs Contractility of Human Cardiomyocytes through Decreased Mitochondrial Function. Eur. J. Heart Fail. 2018, 20, 910–919. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Comin-Colet, J.; De Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron Deficiency across Chronic Inflammatory Conditions: International Expert Opinion on Definition, Diagnosis, and Management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef]
- Grote Beverborg, N.; Klip, I.T.; Meijers, W.C.; Voors, A.A.; Vegter, E.L.; Van Der Wal, H.H.; Swinkels, D.W.; Van Pelt, J.; Mulder, A.B.; Bulstra, S.K.; et al. Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients. Circ Heart Fail. 2018, 11, e004519. [Google Scholar] [CrossRef]
- Martens, P.; Ives, L.; Nguyen, C.; Kwon, D.; Hanna, M.; Tang, W.H.W. The Impact of Iron Deficiency on Disease Severity and Myocardial Function in Cardiac Amyloidosis. Am. J. Med. Open 2024, 11, 100063. [Google Scholar] [CrossRef]
- Von Haehling, S.; Ebner, N.; Evertz, R.; Ponikowski, P.; Anker, S.D. Iron Deficiency in Heart Failure. JACC Heart Fail. 2019, 7, 36–46. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Kasztura, M.; Sokolski, M.; Bronisz, M.; Nawrocka, S.; Ole kowska-Florek, W.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Banasiak, W.; et al. Iron Deficiency Defined as Depleted Iron Stores Accompanied by Unmet Cellular Iron Requirements Identifies Patients at the Highest Risk of Death after an Episode of Acute Heart Failure. Eur. Heart J. 2014, 35, 2468–2476. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Von Haehling, S.; Anker, S.D.; Macdougall, I.C.; Ponikowski, P. Iron Deficiency and Heart Failure: Diagnostic Dilemmas and Therapeutic Perspectives. Eur. Heart J. 2013, 34, 816–829. [Google Scholar] [CrossRef] [PubMed]
- Lakhal-Littleton, S.; Wolna, M.; Carr, C.A.; Miller, J.J.J.; Christian, H.C.; Ball, V.; Santos, A.; Diaz, R.; Biggs, D.; Stillion, R.; et al. Cardiac Ferroportin Regulates Cellular Iron Homeostasis and Is Important for Cardiac Function. Proc. Natl. Acad. Sci. USA 2015, 112, 3164–3169. [Google Scholar] [CrossRef]
- Alnuwaysir, R.; Hoes, M.; Van Veldhuisen, D.; Van Der Meer, P.; Grote Beverborg, N. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef]
- Damman, K.; Valente, M.A.E.; Voors, A.A.; O’Connor, C.M.; Van Veldhuisen, D.J.; Hillege, H.L. Renal Impairment, Worsening Renal Function, and Outcome in Patients with Heart Failure: An Updated Meta-Analysis. Eur. Heart J. 2014, 35, 455–469. [Google Scholar] [CrossRef]
- Witte, K.K.A.; Desilva, R.; Chattopadhyay, S.; Ghosh, J.; Cleland, J.G.F.; Clark, A.L. Are Hematinic Deficiencies the Cause of Anemia in Chronic Heart Failure? Am. Heart J. 2004, 147, 924–930. [Google Scholar] [CrossRef]
- Hullon, D.; Taherifard, E.; Al-Saraireh, T.H. The Effect of the Four Pharmacological Pillars of Heart Failure on Haemoglobin Level. Ann. Med. Surg. 2024, 86, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wal, H.H.; Comin-Colet, J.; Klip, I.T.; Enjuanes, C.; Beverborg, N.G.; Voors, A.A.; Banasiak, W.; Van Veldhuisen, D.J.; Bruguera, J.; Ponikowski, P.; et al. Vitamin B12 and Folate Deficiency in Chronic Heart Failure. Heart 2015, 101, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Barrientos, T.; Mao, L.; Rockman, H.A.; Sauve, A.A.; Andrews, N.C. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015, 13, 533–545. [Google Scholar] [CrossRef]
- Gammella, E.; Buratti, P.; Cairo, G.; Recalcati, S. The Transferrin Receptor: The Cellular Iron Gate. Metallomics 2017, 9, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Gulec, S.; Anderson, G.J.; Collins, J.F. Mechanistic and Regulatory Aspects of Intestinal Iron Absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G397–G409. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Systemic Iron Homeostasis. Physiol. Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef]
- Melenovsky, V.; Petrak, J.; Mracek, T.; Benes, J.; Borlaug, B.A.; Nuskova, H.; Pluhacek, T.; Spatenka, J.; Kovalcikova, J.; Drahota, Z.; et al. Myocardial Iron Content and Mitochondrial Function in Human Heart Failure: A Direct Tissue Analysis. Eur. J. Heart Fail. 2017, 19, 522–530. [Google Scholar] [CrossRef]
- Lakhal-Littleton, S.; Wolna, M.; Chung, Y.J.; Christian, H.C.; Heather, L.C.; Brescia, M.; Ball, V.; Diaz, R.; Santos, A.; Biggs, D.; et al. An Essential Cell-Autonomous Role for Hepcidin in Cardiac Iron Homeostasis. eLife 2016, 5, e19804. [Google Scholar] [CrossRef]
- Lakhal-Littleton, S. Cardiomyocyte Hepcidin: From Intracellular Iron Homeostasis to Physiological Function. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2019; Volume 110, pp. 189–200. ISBN 978-0-12-817842-3. [Google Scholar]
- Haddad, S.; Wang, Y.; Galy, B.; Korf-Klingebiel, M.; Hirsch, V.; Baru, A.M.; Rostami, F.; Reboll, M.R.; Heineke, J.; Flögel, U.; et al. Iron-Regulatory Proteins Secure Iron Availability in Cardiomyocytes to Prevent Heart Failure. Eur. Heart J. 2017, 38, 362–372. [Google Scholar] [CrossRef]
- Mancias, J.D.; Wang, X.; Gygi, S.P.; Harper, J.W.; Kimmelman, A.C. Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature 2014, 509, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Santana-Codina, N.; Mancias, J.D. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals 2018, 11, 114. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; et al. Ferroptosis as a Target for Protection against Cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680. [Google Scholar] [CrossRef]
- Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: Mechanisms and Links with Diseases. Sig Transduct. Target. Ther. 2021, 6, 49. [Google Scholar] [CrossRef]
- Cheema, B.; Chokshi, A.; Orimoloye, O.; Ardehali, H. Intravenous Iron Repletion for Patients With Heart Failure and Iron Deficiency: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 83, 2674–2689. [Google Scholar] [CrossRef]
- Grote Beverborg, N.; Alnuwaysir, R.I.S.; Markousis-Mavrogenis, G.; Hoes, M.F.; van der Wal, H.H.; Romaine, S.P.R.; Nath, M.; Koekoemoer, A.; Cleland, J.G.F.; Lang, C.C.; et al. The Transcriptional Profile of Iron Deficiency in Patients with Heart Failure: Heme-Sparing and Reduced Immune Processes. Eur. J. Heart Fail. 2024. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial Effects of Long-Term Intravenous Iron Therapy with Ferric Carboxymaltose in Patients with Symptomatic Heart Failure and Iron Deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Malhotra, R.; Hernandez, A.F.; McNulty, S.E.; Smith, A.; Felker, G.M.; Tang, W.H.W.; LaRue, S.J.; Redfield, M.M.; Semigran, M.J.; et al. Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA 2017, 317, 1958. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Kirwan, B.-A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric Carboxymaltose for Iron Deficiency at Discharge after Acute Heart Failure: A Multicentre, Double-Blind, Randomised, Controlled Trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef]
- Kalra, P.R.; Cleland, J.G.F.; Petrie, M.C.; Thomson, E.A.; Kalra, P.A.; Squire, I.B.; Ahmed, F.Z.; Al-Mohammad, A.; Cowburn, P.J.; Foley, P.W.X.; et al. Intravenous Ferric Derisomaltose in Patients with Heart Failure and Iron Deficiency in the UK (IRONMAN): An Investigator-Initiated, Prospective, Randomised, Open-Label, Blinded-Endpoint Trial. Lancet 2022, 400, 2199–2209. [Google Scholar] [CrossRef]
- Mentz, R.J.; Garg, J.; Rockhold, F.W.; Butler, J.; De Pasquale, C.G.; Ezekowitz, J.A.; Lewis, G.D.; O’Meara, E.; Ponikowski, P.; Troughton, R.W.; et al. Ferric Carboxymaltose in Heart Failure with Iron Deficiency. N. Engl. J. Med. 2023, 389, 975–986. [Google Scholar] [CrossRef]
- Anker, S.D.; Friede, T.; Butler, J.; Talha, K.M.; Placzek, M.; Diek, M.; Nosko, A.; Stas, A.; Kluge, S.; Jarczak, D.; et al. Intravenous Ferric Carboxymaltose in Heart Failure With Iron Deficiency: The FAIR-HF2 DZHK05 Randomized Clinical Trial. JAMA 2025, 333, 1965. [Google Scholar] [CrossRef]
- Mhanna, M.; Sauer, M.C.; Al-Abdouh, A.; Jabri, A.; Beran, A.; Barbarawi, M.; Mansour, S.; Hanna, E.B. Intravenous Iron Therapy for Patients with Iron Deficiency and Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bayl. Univ. Med. Cent. Proc. 2024, 37, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Karakas, M.; Mentz, R.J.; Ponikowski, P.; Butler, J.; Khan, M.S.; Talha, K.M.; Kalra, P.R.; Hernandez, A.F.; Mulder, H.; et al. Systematic Review and Meta-Analysis of Intravenous Iron Therapy for Patients with Heart Failure and Iron Deficiency. Nat. Med. 2025, 31, 2640–2646. [Google Scholar] [CrossRef]
- Anker, S.D.; Kirwan, B.; Van Veldhuisen, D.J.; Filippatos, G.; Comin-Colet, J.; Ruschitzka, F.; Lüscher, T.F.; Arutyunov, G.P.; Motro, M.; Mori, C.; et al. Effects of Ferric Carboxymaltose on Hospitalisations and Mortality Rates in Iron-deficient Heart Failure Patients: An Individual Patient Data Meta-analysis. Eur. J. Heart Fail. 2018, 20, 125–133. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC)Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Beavers, C.J.; Ambrosy, A.P.; Butler, J.; Davidson, B.T.; Gale, S.E.; Piña, I.L.; Mastoris, I.; Reza, N.; Mentz, R.J.; Lewis, G.D. Iron Deficiency in Heart Failure: A Scientific Statement from the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Pereira, D.I.A.; Chappell, H.F.; Drakesmith, H. Intravenous Irons: From Basic Science to Clinical Practice. Pharmaceuticals 2018, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Evstatiev, R.; Marteau, P.; Iqbal, T.; Khalif, I.L.; Stein, J.; Bokemeyer, B.; Chopey, I.V.; Gutzwiller, F.S.; Riopel, L.; Gasche, C. FERGIcor, a Randomized Controlled Trial on Ferric Carboxymaltose for Iron Deficiency Anemia in Inflammatory Bowel Disease. Gastroenterology 2011, 141, 846–853.e2. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Dosing of Iron Supplementation for Iron-deficient Patients with Heart Failure: Should We Prefer More Intensive or Less Intensive Repletion Targets? Eur. J. Heart Fail. 2023, 25, 454–456. [Google Scholar] [CrossRef]
- Beale, A.L.; Warren, J.L.; Roberts, N.; Meyer, P.; Townsend, N.P.; Kaye, D. Iron Deficiency in Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Open Heart 2019, 6, e001012. [Google Scholar] [CrossRef]
- Shabeer, H.; Samore, N.; Ahsan, S.; Gondal, M.U.R.; Shah, B.U.D.; Ashraf, A.; Faraz, M.; Malik, J. Safety and Efficacy of Ferric Carboxymaltose in Heart Failure With Preserved Ejection Fraction and Iron Deficiency. Curr. Probl. Cardiol. 2024, 49, 102125. [Google Scholar] [CrossRef]
- Von Haehling, S.; Doehner, W.; Evertz, R.; Garfias-Veitl, T.; Derad, C.; Diek, M.; Karakas, M.; Birkemeyer, R.; Fillippatos, G.; Lainscak, M.; et al. Ferric Carboxymaltose and Exercise Capacity in Heart Failure with Preserved Ejection Fraction and Iron Deficiency: The FAIR-HFpEF Trial. Eur. Heart J. 2024, 45, 3789–3800. [Google Scholar] [CrossRef]
- D’Amario, D.; Migliaro, S.; Borovac, J.A.; Restivo, A.; Vergallo, R.; Galli, M.; Leone, A.M.; Montone, R.A.; Niccoli, G.; Aspromonte, N.; et al. Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Front. Physiol. 2019, 10, 1347. [Google Scholar] [CrossRef] [PubMed]
- Peh, Z.H.; Dihoum, A.; Hutton, D.; Arthur, J.S.C.; Rena, G.; Khan, F.; Lang, C.C.; Mordi, I.R. Inflammation as a Therapeutic Target in Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2023, 10, 1125687. [Google Scholar] [CrossRef]
- Greenwood, S.A.; Oliveira, B.A.; Asgari, E.; Ayis, S.; Baker, L.A.; Beckley-Hoelscher, N.; Goubar, A.; Banerjee, D.; Bhandari, S.; Chilcot, J.; et al. A Randomized Trial of Intravenous Iron Supplementation and Exercise on Exercise Capacity in Iron-Deficient Nonanemic Patients With CKD. Kidney Int. Rep. 2023, 8, 1496–1505. [Google Scholar] [CrossRef]
- Peters, C.J.; Hanff, T.C.; Genuardi, M.V.; Zhang, R.; Domenico, C.; Atluri, P.; Mazurek, J.A.; Urgo, K.; Wald, J.; Tanna, M.S.; et al. Safety and Effectiveness of Intravenous Iron Therapy in Patients Supported by Durable Left Ventricular Assist Devices. J. Clin. Med. 2022, 11, 3900. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wal, H.H.; Grote Beverborg, N.; Dickstein, K.; Anker, S.D.; Lang, C.C.; Ng, L.L.; Van Veldhuisen, D.J.; Voors, A.A.; Van Der Meer, P. Iron Deficiency in Worsening Heart Failure Is Associated with Reduced Estimated Protein Intake, Fluid Retention, Inflammation, and Antiplatelet Use. Eur. Heart J. 2019, 40, 3616–3625. [Google Scholar] [CrossRef] [PubMed]
- Karakas, M.; Friede, T.; Butler, J.; Talha, K.M.; Placzek, M.; Asendorf, T.; Diek, M.; Nosko, A.; Stas, A.; Kluge, S.; et al. Intravenous Ferric Carboxymaltose in Heart Failure with Iron Deficiency (FAIR-HF2 DZHK05 Trial): Sex-specific Outcomes. Eur. J. Heart Fail. 2025. [Google Scholar] [CrossRef] [PubMed]
- Hamad, M.; Bajbouj, K.; Taneera, J. The Case for an Estrogen-Iron Axis in Health and Disease. Exp. Clin. Endocrinol. Diabetes 2020, 128, 270–277. [Google Scholar] [CrossRef]
- Yang, Q.; Jian, J.; Katz, S.; Abramson, S.B.; Huang, X. 17β-Estradiol Inhibits Iron Hormone Hepcidin Through an Estrogen Responsive Element Half-Site. Endocrinology 2012, 153, 3170–3178. [Google Scholar] [CrossRef]
- Vera-Aviles, M.; Kabir, S.N.; Shah, A.; Polzella, P.; Lim, D.Y.; Buckley, P.; Ball, C.; Swinkels, D.; Matlung, H.; Blans, C.; et al. Intravenous Iron Therapy Results in Rapid and Sustained Rise in Myocardial Iron Content through a Novel Pathway. Eur. Heart J. 2024, 45, 4497–4508. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Achebe, M.M.; Biggar, P.; Pöhlmann, J.; Pollock, R.F. A Systematic Literature Review and Meta-Analysis of the Incidence of Serious or Severe Hypersensitivity Reactions after Administration of Ferric Derisomaltose or Ferric Carboxymaltose. Int. J. Clin. Pharm. 2023, 45, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.; Sattar, Y.; Manasrah, N.; Patel, N.N.; Rashdi, A.; Khanal, R.; Naveed, H.; Zafar, M.; Khan, A.M.; Alharbi, A.; et al. Meta-Analysis of Efficacy and Safety of Intravenous Iron in Patients With Iron Deficiency and Heart Failure With Reduced Ejection Fraction. Am. J. Cardiol. 2023, 202, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Antoine, E.; Mehedintu, C.; Mitran, M.; Diculescu, D. Sucrosomial® Iron Effectiveness in Recovering from Mild and Moderate Iron-Deficiency Anemia in the Postpartum Period. BMC Pregnancy Childbirth 2023, 23, 360. [Google Scholar] [CrossRef]
- Gómez-Ramírez, S.; Brilli, E.; Tarantino, G.; Muñoz, M. Sucrosomial® Iron: A New Generation Iron for Improving Oral Supplementation. Pharmaceuticals 2018, 11, 97. [Google Scholar] [CrossRef]
- Karavidas, A.; Troganis, E.; Lazaros, G.; Balta, D.; Karavidas, I.; Polyzogopoulou, E.; Parissis, J.; Farmakis, D. Oral Sucrosomial Iron Improves Exercise Capacity and Quality of Life in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: A Non-randomized, Open-label, Proof-of-concept Study. Eur. J. Heart Fail. 2021, 23, 593–597. [Google Scholar] [CrossRef] [PubMed]

| Trial | Year | Sample Size | Iron Formulation | Population | Primary Endpoint | Outcome |
|---|---|---|---|---|---|---|
| FERRIC-HF | 2008 | 35 | Iron sucrose | Symptomatic CHF (NYHA II–III), with or without anemia | Peak VO2 | Improved peak VO2, NYHA class, and QoL; benefits independent of hemoglobin change |
| FAIR-HF | 2009 | 459 | Ferric carboxymaltose | Ambulatory HFrEF with iron deficiency | Patient Global Assessment, NYHA class | Enhanced symptoms, QoL, and 6 min walk distance |
| CONFIRM-HF | 2015 | 304 | Ferric carboxymaltose | Ambulatory HFrEF, 52-week follow-up | 6MWD at 24 weeks | Increased 6MWD and reduced HF hospitalizations |
| AFFIRM-AHF | 2020 | 1132 | Ferric carboxymaltose | Post-acute HFrEF | Composite: HF hospitalizations + CV death | Fewer HF hospitalizations; no significant difference in CV mortality |
| IRONMAN | 2023 | 1137 | Ferric derisomaltose | Stable ambulatory HFrEF | Composite: recurrent HF hospitalizations + CV death | Numerical reduction in events; did not reach statistical significance |
| HEART-FID | 2023 | 3065 | Ferric carboxymaltose | HFrEF, largest trial to date | Time to first HF hospitalization or CV death | No significant difference observed in primary outcome |
| FAIR-HF2 | 2025 | 1105 | Ferric carboxymaltose | Ambulatory HFrEF, LVEF ≤45% | CV death or first HF hospitalization, total HF hospitalizations, CV death or first HF hospitalization in subgroup of patients with TSAT < 20% | Relative reduction in primary outcome (HR 0.79); predefined statistical threshold not achieved; QoL significantly improved |
| FAIR-HFpEF | 2024 | 39 (terminated early) | Ferric carboxymaltose | HFpEF | 6MWD | Increased 6MWD and reduced adverse events |
| RESAFE-HF | 2024 | 96 | Ferric carboxymaltose | Ambulatory HFrEF with iron deficiency, all with CIEDs | Arrhythmic burden (nsVTs, device therapies, Holter markers) | Reduced arrhythmias; improved LV function, QoL, exercise capacity, and iron indices; no FCM-related safety issues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsarouchas, A.; Vassilikos, V.P.; Mouselimis, D.; Papadopoulos, C.E.; Tachmatzidis, D.; Vassilikou, A.; Bakogiannis, C. Iron Deficiency in Heart Failure: Cellular Mechanisms and Therapeutic Implications. J. Cardiovasc. Dev. Dis. 2025, 12, 415. https://doi.org/10.3390/jcdd12110415
Tsarouchas A, Vassilikos VP, Mouselimis D, Papadopoulos CE, Tachmatzidis D, Vassilikou A, Bakogiannis C. Iron Deficiency in Heart Failure: Cellular Mechanisms and Therapeutic Implications. Journal of Cardiovascular Development and Disease. 2025; 12(11):415. https://doi.org/10.3390/jcdd12110415
Chicago/Turabian StyleTsarouchas, Anastasios, Vassilios P. Vassilikos, Dimitrios Mouselimis, Christodoulos E. Papadopoulos, Dimitrios Tachmatzidis, Aikaterini Vassilikou, and Constantinos Bakogiannis. 2025. "Iron Deficiency in Heart Failure: Cellular Mechanisms and Therapeutic Implications" Journal of Cardiovascular Development and Disease 12, no. 11: 415. https://doi.org/10.3390/jcdd12110415
APA StyleTsarouchas, A., Vassilikos, V. P., Mouselimis, D., Papadopoulos, C. E., Tachmatzidis, D., Vassilikou, A., & Bakogiannis, C. (2025). Iron Deficiency in Heart Failure: Cellular Mechanisms and Therapeutic Implications. Journal of Cardiovascular Development and Disease, 12(11), 415. https://doi.org/10.3390/jcdd12110415

