Predictors and Prognostic Impact of Perioperative Hypotension During Transcatheter Aortic Valve Implantation: The Role of Diabetes Mellitus and Left Ventricular Dysfunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Outcome Definition
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Moat, N.E.; Ludman, P.; De Belder, M.A.; Bridgewater, B.; Cunningham, A.D.; Young, C.P.; Thomas, M.; Kovac, J.; Spyt, T.; MacCarthy, P.A.; et al. Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis: The UK TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry. J. Am. Coll. Cardiol. 2011, 58, 2130–2138. [Google Scholar] [CrossRef] [PubMed]
- Chakos, A.; Wilson-Smith, A.; Arora, S.; Nguyen, T.C.; Dhoble, A.; Tarantini, G.; Thielmann, M.; Vavalle, J.P.; Wendt, D.; Yan, T.D.; et al. Long term outcomes of transcatheter aortic valve implantation (TAVI): A systematic review of 5-year survival and beyond. Ann. Cardiothorac. Surg. 2017, 6, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Kiramijyan, S.; Koifman, E.; Magalhaes, M.A.; Ben-Dor, I.; Didier, R.; Jerusalem, Z.D.; Kumar, S.; Tavil-Shatelyan, A.; Rogers, T.; Steinvil, A.; et al. Intraprocedural invasive hemodynamic parameters as predictors of short- and long-term outcomes in patients undergoing transcatheter aortic valve replacement. Cardiovasc. Revascularization Med. 2018, 19, 257–262. [Google Scholar] [CrossRef]
- Kameyama, A.; Ito, H.; Hibi, D.; Matsui, S.; Kawakami, M.; Ueno, H.; Fukahara, K.; Yamazaki, M. Relationships Between Intraoperative Hemodynamic Parameters and Delayed Hemodynamic Recovery After Valve Deployment in Transcatheter Aortic Valve Replacement. J. Cardiothorac. Vasc. Anesth. 2019, 33, 920–926. [Google Scholar] [CrossRef]
- Wesselink, E.M.; Abawi, M.; Kooistra, N.H.M.; Kappen, T.H.; Agostoni, P.; Emmelot-Vonk, M.; Pasma, W.; van Klei, W.A.; van Jaarsveld, R.C.; van Dongen, C.S.; et al. Intraoperative hypotension and delirium among older adults undergoing transcatheter aortic valve replacement. J. Am. Geriatr. Soc. 2021, 69, 3177–3185. [Google Scholar] [CrossRef]
- Ni, T.T.; Yao, Y.Y.; Zhou, X.X.; Lv, T.; Zou, J.-C.; Luo, G.; Yang, J.-T.; Sun, D.-W.; Gao, Q.; Wang, T.-T.; et al. Postinduction Hypotension and Adverse Outcomes in Older Adults Undergoing Transcatheter Aortic Valve Replacement: A Retrospective Cohort Study. Clin. Interv. Aging. 2024, 19, 1919–1938. [Google Scholar] [CrossRef]
- Südfeld, S.; Brechnitz, S.; Wagner, J.Y.; Reese, P.C.; Pinnschmidt, H.O.; Reuter, D.A.; Saugel, B. Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia. Br. J. Anaesth. 2017, 119, 57–64. [Google Scholar] [CrossRef] [PubMed]
- El-Gamel, A. Cardiovascular Collapse During Transcatheter Aortic Valve Replacement: Diagnosis and Treatment of the “Perilous Pentad”. AORTA 2013, 1, 276–282. [Google Scholar] [CrossRef]
- Barone, J.E.; Bull, M.B.; Cussatti, E.H.; Miller, K.D.; Tucker, J.B. Review of a Large Clinical Series: Perioperative Myocardial Infarction in Low-Risk Patients Undergoing Noncardiac Surgery Is Associated with Intraoperative Hypotension. J. Intensiv. Care Med. 2002, 17, 250–255. [Google Scholar] [CrossRef]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. Eur. Heart J. 2012, 33, 2403–2418. [Google Scholar] [CrossRef]
- Généreux, P.; Head, S.J.; Van Mieghem, N.M.; Kodali, S.; Kirtane, A.J.; Xu, K.; Smith, C.; Serruys, P.W.; Kappetein, A.P.; Leon, M.B. Clinical Outcomes After Transcatheter Aortic Valve Replacement Using Valve Academic Research Consortium Definitions. J. Am. Coll. Cardiol. 2012, 59, 2317–2326. [Google Scholar] [CrossRef]
- Fefer, P.; Bogdan, A.; Grossman, Y.; Berkovitch, A.; Brodov, Y.; Kuperstein, R.; Segev, A.; Guetta, V.; Barbash, I.M. Impact of Rapid Ventricular Pacing on Outcome After Transcatheter Aortic Valve Replacement. J. Am. Heart Assoc. 2018, 7, e009038. [Google Scholar] [CrossRef]
- Gerfer, S.; Großmann, C.; Gablac, H.; Elderia, A.; Wienemann, H.; Krasivskyi, I.; Mader, N.; Lee, S.; Mauri, V.; Djordjevic, I.; et al. Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation. Life 2024, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Butala, A.; Sehgal, K.; Stub, D.; Palmer, S.; Noaman, S.; Haji, K.; Htun, N.; Johnston, R.; Reid, J.; Gardner, E.; et al. The Impact of Preprocedural Blood Pressure on Outcomes Following Transcatheter Aortic Valve Implantation. Heart Lung Circ. 2024, 33, S593. [Google Scholar] [CrossRef]
- Lindman, B.R.; Goel, K.; Bermejo, J.; Beckman, J.; O’LEary, J.; Barker, C.M.; Kaiser, C.; Cavalcante, J.L.; Elmariah, S.; Huang, J.; et al. Lower Blood Pressure After Transcatheter or Surgical Aortic Valve Replacement is Associated with Increased Mortality. J. Am. Heart Assoc. 2019, 8, e014020. [Google Scholar] [CrossRef]
- Oakley, I.; Emond, L. Diabetic cardiac autonomic neuropathy and anesthetic management: Review of the literature. AANA J. 2011, 79, 473–479. [Google Scholar] [PubMed]
- Burgos, L.G.; Ebert, T.J.; Asiddao, C.; Turner, L.A.; Pattison, C.Z.; Wang-Cheng, R.; Kampine, J.P. Increased Intraoperative Cardiovascular Morbidity in Diabetics with Autonomic Neuropathy. Surv. Anesthesiol. 1989, 33, 353. [Google Scholar] [CrossRef]
- Dimitropoulos, G. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J. Diabetes 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Ziegler, D. Diabetic Cardiovascular Autonomic Neuropathy. Circulation 2007, 115, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Moningi, S.; Nikhar, S.; Ramachandran, G. Autonomic disturbances in diabetes: Assessment and anaesthetic implications. Indian J. Anaesth. 2018, 62, 575. [Google Scholar] [CrossRef]
- Singh, S.; Pershad, A. White paper on mitigating risk factors for acute kidney injury in TAVR: A protocol to decrease TAVR-associated AKI. Indian Heart J. 2023, 75, 213–216. [Google Scholar] [CrossRef]
- Kizilay, D.; Dal, D.; Saracoglu, K.T.; Eti, Z.; Gogus, F.Y. Comparison of neostigmine and sugammadex for hemodynamic parameters in cardiac patients undergoing noncardiac surgery. J. Clin. Anesth. 2016, 28, 30–35. [Google Scholar] [CrossRef]
- Teng, I.C.; Chang, Y.J.; Lin, Y.T.; Chu, C.C.; Chen, J.Y.; Wu, Z.F. Sugammadex induced bradycardia and hypotension: A case report and literature review. Medicine 2021, 100, e26796. [Google Scholar] [CrossRef]
- Mirza, K.; Landoski, K.; Thakar, D.; Heir-Singh, J.; Jackson, T.; Kassab, C. Sugammadex-Associated Hypotension, Bradycardia, Asystole, and Death. Case Rep. Anesthesiol. 2020, 2020, 8767195. [Google Scholar] [CrossRef]
Variable | Hypotension (−) n = 53 (43.1%) | Hypotension (+) n = 70 (56.9%) | Total n = 123 (100%) | p |
---|---|---|---|---|
Sex | 0.676 | |||
female | 27 (50.9%) | 33 (47.1%) | 60 (48.8%) | |
male | 26 (49.1%) | 37 (50.2%) | 63 (51.2%) | |
Age (year) | 80 (51–95) | 81 (57–94) | 80 (51–95) | 0.458 |
BMI (kg/m2) | 28.6 (20.4–33.6) | 27.3 (20.8–34.6) | 27.4 ± 3.4 | 0.251 |
Comorbidities | ||||
CAD | 33 (63.5%) | 41 (60.3%) | 74 (61.7%) | 0.724 |
Hypertension | 43 (82.7%) | 48 (70.6%) | 91 (75.8%) | 0.125 |
Diabetes | 14 (26.9%) | 29 (44.6%) | 43 (36.8%) | 0.049 |
CKD | 6 (11.3%) | 5 (7.2%) | 11 (9.0%) | 0.530 * |
Stroke | 2 (3.8%) | 3 (4.3%) | 5 (4.1%) | 1.000 * |
Obesity | 22 (41.5%) | 29 (41.4%) | 51 (41.5%) | 0.993 |
Smoking history | 6 (11.3%) | 8 (11.4%) | 14 (11.4%) | 0.985 |
EF (%) | 55 (35–65) | 50 (20–65) | 55 (20–65) | 0.001 |
Low EF | 16 (31.4) | 42 (61.8) | 58 (48.7) | 0.001 |
Logistic EuroScore | 23.0 ± 13.4 | 23.5 ± 13.6 | 24.9 ±13.2 | 0.514 |
Medication History | ||||
Beta-blockers | 38 (71.7%) | 50 (71.4%) | 88 (71.5%) | 0.974 |
ACE-İ/ARBs | 37 (69.8%) | 47 (68.1%) | 84 (68.9%) | 0.841 |
NOAC | 29 (54.7%) | 42 (60.0%) | 71 (57.7%) | 0.557 |
Warfarin | 4 (7.5%) | 4 (5.7%) | 8 (6.5%) | 0.725 * |
ADP blocker | 6 (11.3%) | 6 (8.6%) | 12 (9.8%) | 0.611 |
Statins | 16 (30.8%) | 19 (27.1%) | 35 (28.7%) | 0.661 |
Loop diuretics | 34 (64.2%) | 40 (57.1%) | 74 (60.2%) | 0.432 |
MRAs | 3 (5.8%) | 7 (10.1%) | 10 (8.3%) | 0.513 * |
Hypotension (−) | Hypotension (+) | Total | p | |
---|---|---|---|---|
Preoperative SBP (mmHg) | 150 (108–200) | 129 (93–220) | 141.2 ± 28.9 | <0.001 |
Preoperative DBP (mmHg) | 66.3 ± 8.8 | 58.3 ± 12.5 | 60.0 ± 12.1 | <0.001 |
Preoperative HR (/dk) | 76 ± 8.3 | 76 ± 8.4 | 78 (52–110) | 0.826 |
General anesthesia | 20 (37.7%) | 18 (24.6%) | 38 (30.9%) | 0.109 |
Mean NIRS (%) | 63.5 (29–73) | 64 (35–92) | 64 (29–92) | 0.339 |
Body Temperature (°C) | 37.0 (36.1–38.0) | 37.0 (35.9–37.3) | 37.0 (35.9–38.0) | 0.262 |
Procedure time (min) | 60 (35–120) | 70 (50–120) | 65 (35–120) | 0.005 |
Total anesthetic time (min) | 75 (45–140) | 80 (55–130) | 80 (45–140) | 0.032 |
OUTCOME (VARC-2) | ||||
Device success | 1 (1.9%) | 9 (12.9%) | 10 (8.1%) | 0.027 |
Life-threatening/disabling bleeding | 0 (0%) | 0 (0%) | 0 (0.0%) | 1.000 |
Bleeding (mL) * | 200 (100–350) | 250 (150–350) | 200 (100–350) | 0.037 |
Major vascular complication | 1 (1.9%) | 11 (15.7%) | 12 (9.8%) | 0.010 |
Stage 1–3 AKI | 0 (0%) | 3 (4.3%) | 3 (2.4%) | 0.258 |
30-day stroke/TIA | 0 (0%) | 2 (2.9%) | 2 (1.6%) | 0.322 |
Myocardial infarction | 1 (0%) | 1 (0%) | 2 (1.6%) | 0.678 |
Arrythmia * | 19 (35.8%) | 25 (35.7%) | 44 (35.8%) | 0.988 |
New permanent pacemaker | 15 (28.3%) | 24 (34.3%) | 39 (31.7%) | 0.306 |
Length of ICU stay (days) * | 1 (1–2) | 1 (1–31) | 1 (1–31) | 0.032 |
30-day or in-hospital mortality | 1 (1.9%) | 9 (12.9%) | 10 (8.1%) | 0.027 |
Laboratory Data | Hypotension (−) | Hypotension (+) | Total | p |
---|---|---|---|---|
Albumin (g/dL) | 3.6 ± 0.3 | 3.6 ± 0.4 | 3.6 (2.0–4.5) | 0.547 |
Total cholesterol (mg/dL) | 160 ± 41.4 | 158 ± 48.8 | 158 (39–309) | 0.691 |
HDL (mg/dL) | 38 (20–69) | 38.5 (21–125) | 39 (20–125) | 0.941 |
LDL (mg/dL) | 101 (39–171) | 94.5 (19–224) | 100.5 (19–224) | 0.307 |
TG (mg/dL) | 87 (37–320) | 116 (31–300) | 106 (37–320) | 0.016 |
Hgb (g/dL) | 10.9 ± 1.39 | 10.9 ± 1.68 | 11.2 ±1.71 | 0.844 |
Hct (%) | 33.4 ± 3.79 | 33.6 ± 4.82 | 34.3 ± 4.94 | 0.834 |
Plt (109/L) | 217 (123–393) | 204 (111–622) | 214 (111–622) | 0.994 |
ALT (U/L) | 11 (6–142) | 16.5 (6–362) | 15 (6–362) | 0.064 |
AST (U/L) | 17 (4–84) | 21.5 (11–114) | 19 (4–114) | 0.147 |
GGT (U/L) | 17 (3–175) | 23.5 (9–360) | 21.5 (3–360) | 0.336 |
Total bilirubine (mg/dL) | 0.59 (0.27–3.41) | 0.67 (0.17–7.4) | 0.65 (0.17–7.4) | 0.095 |
Anesthetics | Hypotension (−) | Hypotension (+) | Total | p |
---|---|---|---|---|
Midazolam | 0.050 | |||
1–2 mg | 40 (75.5%) | 62 (88.6%) | 102 (82.9%) | |
3–4 mg | 13 (24.5%) | 8 (11.4%) | 21 (17.1%) | |
Dexmedetomidine (mcg) | 1.18 (0.6–2.0) | 1.16 (0.6–2.0) | 1.17 (0.6–2.0) | 0.312 |
Remifentanil | 15 (28.3%) | 18 (25.7%) | 33 (26.8%) | 0.748 |
Rocuronium | 19 (35.8%) | 16 (22.9%) | 35 (28.5%) | 0.114 |
Sugammadex | 17 (32.1%) | 8 (11.4%) | 25 (20.3%) | 0.005 |
Propofol | 53 (100%) | 70 (100%) | 123 (100%) | N/A |
Univariate Analysis | Multivariate Analysis | Bootstrap Analysis | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Hypertension | 0.502 (0.207–1.221) | 0.129 | ||||
Diabetes | 2.187 (0.998–4.789) | 0.050 | 2.787 (1.027–7.561) | 0.044 | 2.63 (1.09–7.99) | 0.036 |
Low EF | 3.534 (1.640–7.613) | 0.001 | 2.870 (1.126–7.313) | 0.027 | 3.03 (1.19–7.87) | 0.016 |
Preoperative SBP (mmHg) | 0.977 (0.963–0.991) | 0.001 | ||||
Preoperative DBP (mmHg) | 0.934 (0.900–0.968) | <0.001 | 0.935 (0.893–0.978) | 0.004 | 0.94 (0.87–0.97) | 0.002 |
Vascular Injury | 9.695 (1.210–77.664) | 0.032 | ||||
Procedure time (min) | 1.029 (1.001–1.058) | 0.045 | 1.038 (1.001–1.076) | 0.044 | 1.03 (0.99–1.09) | 0.114 |
TG (mg/dL) | 1.007 (0.999–1.015) | 0.094 | ||||
ALT (U/L) | 1.006 (0.992–1.021) | 0.371 | ||||
Total bilirubine (mg/dL) | 1.257 (0.724–2.183) | 0.417 | ||||
Midazolam (1–2 mg = 1, 3–4 mg = 0) | 2.519 (0.958–6.620) | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirbaş, Z.E.; Yılmaz, Ş.; Can, F.; Zeren, G.; Karabay, C.Y. Predictors and Prognostic Impact of Perioperative Hypotension During Transcatheter Aortic Valve Implantation: The Role of Diabetes Mellitus and Left Ventricular Dysfunction. J. Cardiovasc. Dev. Dis. 2025, 12, 398. https://doi.org/10.3390/jcdd12100398
Demirbaş ZE, Yılmaz Ş, Can F, Zeren G, Karabay CY. Predictors and Prognostic Impact of Perioperative Hypotension During Transcatheter Aortic Valve Implantation: The Role of Diabetes Mellitus and Left Ventricular Dysfunction. Journal of Cardiovascular Development and Disease. 2025; 12(10):398. https://doi.org/10.3390/jcdd12100398
Chicago/Turabian StyleDemirbaş, Zeynep Ece, Şahin Yılmaz, Fatma Can, Gönül Zeren, and Can Yücel Karabay. 2025. "Predictors and Prognostic Impact of Perioperative Hypotension During Transcatheter Aortic Valve Implantation: The Role of Diabetes Mellitus and Left Ventricular Dysfunction" Journal of Cardiovascular Development and Disease 12, no. 10: 398. https://doi.org/10.3390/jcdd12100398
APA StyleDemirbaş, Z. E., Yılmaz, Ş., Can, F., Zeren, G., & Karabay, C. Y. (2025). Predictors and Prognostic Impact of Perioperative Hypotension During Transcatheter Aortic Valve Implantation: The Role of Diabetes Mellitus and Left Ventricular Dysfunction. Journal of Cardiovascular Development and Disease, 12(10), 398. https://doi.org/10.3390/jcdd12100398