Beyond the Obesity Paradox: Analysis of New Prognostic Factors in Transcatheter Aortic Valve Implantation Procedure
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | computed tomography |
BMI | body mass index |
TAVI | transcatheter aortic valve implantation |
VAT | visceral adipose tissue |
SAT | subcutaneous adipose tissue |
HU | Hounsfield units |
PPM | permanent pacemaker |
MRI | magnetic resonance imaging |
References
- Chiocchi, M.; Ricci, F.; Pasqualetto, M.; D’errico, F.; Benelli, L.; Pugliese, L.; Cavallo, A.U.; Forcina, M.; Presicce, M.; De Stasio, V.; et al. Role of computed tomography in transcatheter aortic valve implantation and valve-in-valve implantation: Complete review of preprocedural and postprocedural imaging. J. Cardiovasc. Med. 2020, 21, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, L.; Ricci, F.; Luciano, A.; De Stasio, V.; Presicce, M.; Spiritigliozzi, L.; Di Tosto, F.; Di Donna, C.; D’errico, F.; Benelli, L.; et al. Role of computed tomography in transcatheter replacement of ‘other valves’: A comprehensive review of preprocedural imaging. J. Cardiovasc. Med. 2022, 23, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Chiocchi, M.; Pugliese, L.; D’errico, F.; Di Tosto, F.; Cerimele, C.; Pasqualetto, M.; De Stasio, V.; Presicce, M.; Spiritigliozzi, L.; Di Donna, C.; et al. Transcatheter aortic valve implantation in patients with unruptured aortic root pseudoaneurysm: An observational study. J. Cardiovasc. Med. 2022, 23, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, H.A.; Mahabadi, A.A.; Totzeck, M.; Jánosi, R.A.; Lind, A.Y.; Rassaf, T.; Kahlert, P. Imaging for planning of transcatheter aortic valve implantation. Herz 2017, 42, 554, Erratum in Herz 2017, 42, 564. [Google Scholar] [CrossRef]
- Blanke, P.; Weir-McCall, J.R.; Achenbach, S.; Delgado, V.; Hausleiter, J.; Jilaihawi, H.; Marwan, M.; Nørgaard, B.L.; Piazza, N.; Schoenhagen, P.; et al. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR): An Expert Consensus Document of the Society of Cardiovascular Computed Tomography. JACC Cardiovasc. Imaging 2019, 12, 1–24. [Google Scholar] [CrossRef]
- Holroyd, E.W.; Sirker, A.; Kwok, C.S. British Cardiovascular Intervention Society and National Institute of Cardiovascular Outcomes Research. The Relationship of Body Mass Index to Percutaneous Coronary Intervention Outcomes: Does the Obesity Paradox Exist in Contemporary Percutaneous Coronary Intervention Cohorts? Insights From the British Cardiovascular Intervention Society Registry. JACC Cardiovasc. Interv. 2017, 10, 1283–1292. [Google Scholar]
- Gruberg, L.; Weissman, N.J.; Waksman, R.; Fuchs, S.; Deible, R.; Pinnow, E.E.; Ahmed, L.M.; Kent, K.M.; Pichard, A.D.; Suddath, W.O.; et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: The obesity paradox? J. Am. Coll. Cardiol. 2002, 39, 578–584. [Google Scholar] [CrossRef]
- Foldyna, B.; Troschel, F.M.; Addison, D.; Fintelmann, F.J.; Elmariah, S.; Furman, D.; Eslami, P.; Ghoshhajra, B.; Lu, M.T.; Murthy, V.L.; et al. Computed tomography-based fat and muscle characteristics are associated with mortality after transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2018, 12, 223–228. [Google Scholar] [CrossRef]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Shah, N.; Goyal, A.; Khan, S.S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association Between Obesity and Cardiovascular Outcomes: A Systematic Review and Meta-analysis of Mendelian Randomization Studies. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef]
- Konigstein, M.; Havakuk, O.; Arbel, Y.; Finkelstein, A.; Ben-Assa, E.; Rubinow, E.L.; Abramowitz, Y.; Keren, G.; Banai, S. The obesity paradox in patients undergoing transcatheter aortic valve implantation. Clin. Cardiol. 2015, 38, 76–81. [Google Scholar] [CrossRef]
- Abawi, M.; Rozemeijer, R.; Agostoni, P.; van Jaarsveld, R.C.; van Dongen, C.S.; Voskuil, M.; Kraaijeveld, A.O.; Doevendans, P.A.F.M.; Stella, P.R. Effect of body mass index on clinical outcome and all-cause mortality in patients undergoing transcatheter aortic valve implantation. Neth. Heart J. 2017, 25, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Mouillet, G.; Oguri, A.; Gilard, M.; Laskar, M.; Eltchaninoff, H.; Fajadet, J.; Iung, B.; Donzeau-Gouge, P.; Leprince, P.; et al. Effect of body mass index on 30- and 365-day complication and survival rates of transcatheter aortic valve implantation (from the FRench Aortic National CoreValve and Edwards 2 [FRANCE 2] registry). Am. J. Cardiol. 2013, 112, 1932–1937. [Google Scholar] [CrossRef] [PubMed]
- Sannino, A.; Schiattarella, G.G.; Toscano, E.; Gargiulo, G.; Giugliano, G.; Galderisi, M.; Losi, M.-A.; Stabile, E.; Cirillo, P.; Imbriaco, M.; et al. Meta-Analysis of Effect of Body Mass Index on Outcomes After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2017, 119, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Li, S.; Liao, Y.; Zhao, Z.; Che, G.; Chen, M.; Feng, Y. The ‘obesity paradox’ does exist in patients undergoing transcatheter aortic valve implantation for aortic stenosis: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 633–642. [Google Scholar] [CrossRef]
- Bachmann, R.; Leonard, D.; Nachit, M.; Remue, C.; Orabi, N.A.; Desmet, L.; Faber, B.; Danse, E.; Trefois, P.; Kartheuser, A. Comparison between abdominal fat measured by CT and anthropometric indices as prediction factors for mortality and morbidity after colorectal surgery. Acta Gastroenterol. Belg. 2018, 81, 477–483. [Google Scholar]
- De Santo, L.S.; Moscariello, C.; Zebele, C. Implications of obesity in cardiac surgery: Pattern of referral, physiopathology, complications, prognosis. J. Thorac. Dis. 2018, 10, 4532–4539. [Google Scholar] [CrossRef]
- Johnson, A.P.; Parlow, J.L.; Whitehead, M.; Xu, J.; Rohland, S.; Milne, B. Body Mass Index, Outcomes, and Mortality Following Cardiac Surgery in Ontario, Canada. J. Am. Hear. Assoc. 2015, 4, e002140, Erratum in J. Am. Heart Assoc. 2015, 4, e001977. [Google Scholar] [CrossRef]
- Friedman, J.; Lussiez, A.; Sullivan, J.; Wang, S.; Englesbe, M. Implications of sarcopenia in major surgery. Nutr. Clin. Pr. 2015, 30, 175–179. [Google Scholar] [CrossRef]
- Shibata, K.; Yamamoto, M.; Yamada, S.; Kobayashi, T.; Morita, S.; Kagase, A.; Tokuda, T.; Shimura, T.; Tsunaki, T.; Tada, N.; et al. Clinical Outcomes of Subcutaneous and Visceral Adipose Tissue Characteristics Assessed in Patients Underwent Transcatheter Aortic Valve Replacement. CJC Open 2020, 3, 142–151. [Google Scholar] [CrossRef]
- Goldenberg, L.; Saliba, W.; Hayeq, H.; Hasadia, R.; Zeina, A.-R. The impact of abdominal fat on abdominal aorta calcification measured on non-enhanced CT. Medicine 2018, 97, e13233. [Google Scholar] [CrossRef]
- Kashihara, H.; Lee, J.S.; Kawakubo, K.; Tamura, M.; Akabayashi, A. Criteria of waist circumference according to computed tomography-measured visceral fat area and the clustering of cardiovascular risk factors. Circ. J. 2009, 73, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Yoshizumi, T.; Nakamura, T.; Yamane, M.; Islam, A.H.M.W.; Menju, M.; Yamasaki, K.; Arai, T.; Kotani, K.; Funahashi, T.; Yamashita, S.; et al. Abdominal fat: Standardized technique for measurement at CT. Radiology 1999, 211, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Aibiki, T.; Okudaira, T.; Toshimori, A.; Kawamura, T.; Nakahara, H.; Suga, Y.; Azemoto, N.; Miyata, H.; Miyamoto, Y.; et al. Muscle atrophy as pre-sarcopenia in Japanese patients with chronic liver disease: Computed tomography is useful for evaluation. J. Gastroenterol. 2015, 50, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Park, S.; Han, S.; Ahn, J.H.; Kim, S.; Sinn, D.H.; Jeong, W.K.; Ko, J.S.; Gwak, M.S.; Kim, G.S. Sarcopenia as a predictor of post-transplant tumor recurrence after living donor liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Sci. Rep. 2018, 8, 7157. [Google Scholar] [CrossRef]
- Mok, M.; Allende, R.; Leipsic, J.; Altisent, O.A.-J.; del Trigo, M.; Campelo-Parada, F.; DeLarochellière, R.; Dumont, E.; Doyle, D.; Côté, M.; et al. Prognostic Value of Fat Mass and Skeletal Muscle Mass Determined by Computed Tomography in Patients Who Underwent Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2016, 117, 828–833. [Google Scholar] [CrossRef]
- Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 2012, 85, 1–10. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Leinhard, O.D. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef]
- Li, X.-T.; Tang, L.; Chen, Y.; Li, Y.-L.; Zhang, X.-P.; Sun, Y.-S. Visceral and subcutaneous fat as new independent predictive factors of survival in locally advanced gastric carcinoma patients treated with neo-adjuvant chemotherapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1237–1247. [Google Scholar] [CrossRef]
- Frostberg, E.; Pedersen, M.R.; Manhoobi, Y.; Rahr, H.B.; Rafaelsen, S.R. Three different computed tomography obesity indices, two standard methods, and one novel measurement, and their association with outcomes after colorectal cancer surgery. Acta Radiol. 2021, 62, 182–189. [Google Scholar] [CrossRef]
- Murphy, R.A.; Register, T.C.; Shively, C.A.; Carr, J.J.; Ge, Y.; Heilbrun, M.E.; Cummings, S.R.; Koster, A.; Nevitt, M.C.; Satterfield, S.; et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 69, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Kord-Varkaneh, H.; Fatahi, S.; Alizadeh, S.; Ghaedi, E.; Shab-Bidar, S. Association of Serum Leptin with All-Cause and Disease Specific Mortality: A Meta-Analysis of Prospective Observational Studies. Horm. Metab. Res. 2018, 50, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.Z.; Nagy, K.; Remport, A.; Gaipov, A.; Fülöp, T.; Czira, M.E.; Kovesdy, C.P.; Mucsi, I.; Mathe, Z. Association Between Serum Leptin Level and Mortality in Kidney Transplant Recipients. J. Ren. Nutr. 2017, 27, 53–61. [Google Scholar] [CrossRef]
- Shah, R.V.; Allison, M.; Lima, J.; Abbasi, S.; Eisman, A.; Lai, C.; Jerosch-Herold, M.; Budoff, M.; Murthy, V. Abdominal fat radiodensity, quantity and cardiometabolic risk: The Multi-Ethnic Study of Atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Van der Boon, R.M.; Chieffo, A.; Dumonteil, N.; Tchetche, D.; Van Mieghem, N.M.; Buchanan, G.L.; Vahdat, O.; Marcheix, B.; Serruys, P.W.; Fajadet, J.; et al. Effect of body mass index on short- and long-term outcomes after transcatheter aortic valve implantation. Am. J. Cardiol. 2013, 111, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Kärkkäinen, J.M.; Oderich, G.S.; Tenorio, E.R.; Pather, K.; Oksala, N.; Macedo, T.A.; Vrtiska, T.; Mees, B.; Jacobs, M.J. Psoas muscle area and attenuation are highly predictive of complications and mortality after complex endovascular aortic repair. J. Vasc. Surg. 2021, 73, 1178–1188.e1. [Google Scholar] [CrossRef]
Category | Frequency | Percentage (%) | |
---|---|---|---|
GENDER | Female | 47 | 55.3 |
Male | 38 | 44.7 | |
BMI | <25 | 35 | 41.2 |
≥25 | 50 | 58.8 | |
AGE | BMI < 25 | 82 (mean) | - |
BMI ≥ 25 | 80 (mean) | - | |
Adverse cardiac events in 24-months follow-up | Absent | 61 | 71.8 |
Present | 24 | 28.2 | |
Cerebrovascular events in 24-months follow-up | Absent | 63 | 74.1 |
Present | 22 | 25.9 | |
Mortality in 24-months follow-up | Absent | 57 | 67.1 |
Present | 28 | 32.9 | |
Intrahospital mortality | Absent | 79 | 92.9 |
Present | 6 | 7.1 | |
Hospitalization days after TAVI | ≤5 | 50 | 58.8 |
>5 | 35 | 41.2 | |
Peri-prosthetic endoleak | Absent | 49 | 57.6 |
Present | 36 | 42.4 | |
Femoral stent placement | Absent | 77 | 90.6 |
Present | 8 | 9.4 | |
Femoral bleeding | Absent | 81 | 95.3 |
Present | 4 | 4.7 | |
Blood transfusion | Absent | 59 | 69.4 |
Present | 26 | 30.6 | |
Prolonged hypotension | Absent | 74 | 87.1 |
Present | 11 | 12.9 | |
Bundle branch block | Absent | 71 | 83.5 |
Present | 14 | 16.5 | |
Atrioventricular block type 1 | Absent | 75 | 88.2 |
Present | 10 | 11.8 | |
Atrioventricular block type 2 | Absent | 83 | 97.6 |
Present | 2 | 2.4 | |
Atrioventricular block type 3 | Absent | 76 | 89.4 |
Present | 9 | 10.6 | |
PPM implantation after TAVI | Absent | 67 | 78.8 |
Present | 18 | 21.2 |
Fat Measurements | Mean | SD | BMI Subgroups | BMI < 25 | BMI 25 | ||
Anterior SAT distance | 24.9 | 11.98 | Mean | SD | Mean | SD | |
Posterior SAT distance | 52.16 | 16.74 | Anterior SAT distance | 15.51 | 5.92 | 31.47 | 10.7 |
Anterior+Posterior SAT distance | 77.06 | 25.1 1 | Posterior SAT distance | 37.21 | 8.98 | 62.63 | 12.38 |
VAT thickness | 17.68 | 11.02 | Anterior+Posterior SAT distance | 52.72 | 12.5 | 94.1 | 15.9 |
FAT area (cm2) | 410.9 | 194 | VAT thickness | 10.69 | 5.72 | 22.43 | 11.25 |
SAT area (cm2) | 255.5 | 132 | FAT area (cm2) | 263.7 | 116 | 513.9 | 170 |
VAT area (cm2) | 154.6 | 81.23 | SAT area (cm2) | 163.4 | 73.3 | 320 | 125.8 |
FAT density (HI-I) | −8526 | 9.67 | VAT area (cm2) | 97.78 | 57.9 | 193.2 | 71.85 |
SAT density (HI-I) | −86.48 | 10.41 | FAT mean density (HO) | −82.02 | 10.5 | −87.52 | 8.45 |
VAT density (HI-I) | −82.76 | 9.86 | SAT mean density (HO) | −83.69 | 11.3 | −88.44 | 9.38 |
Right common femoral artery area (mm2) | 56.52 | 21.34 | VAT mean density (HO) | −79.54 | 10.4 | −85.02 | 8.9 |
Left common femoral artery area (mm2) | 58.62 | 20.18 | Right common femoral artery area (mm2) | 57.15 | 19.7 | 56.07 | 22.62 |
Right Psoas muscle area (cm2) | 7.57 | 2.03 | Left common femoral artery area (mm2) | 57.91 | 20.3 | 59.1 1 | 20.31 |
Left Psoas muscle area (cm2) | 7.74 | 2.18 | |||||
Psoas/height (HIJ) | 13.41 | 3.1 1 |
Cardiac Events in 24 Months of Follow-Up | Cerebrovascular Events in 24 Months of Follow-Up | Mortality in 24 Months of Follow-Up | ||
---|---|---|---|---|
total SAT thickness | Specificity Sensibility | 0.787 0.750 | 0.778 0.818 | 0.807 0.750 |
AUC | 0.759 moderate | 0.763 moderate | 0.836 moderate | |
Cut-off | 68.00 | 69.05 | 69.05 | |
VAT thickness | Specificity Sensibility | - | 0.532 0.818 | 0.536 0.857 |
AUC | - | 0.673 low | 0.727 moderate | |
Cut-off | - | 17.30 | 18.95 | |
Total fat area (cm2) | Specificity Sensibility | 0.574 0.667 | 0.587 0.727 | 0.754 0.714 |
AUC | 0.654 low | 0.668 low | 0.776 moderate | |
Cut-off | 385.51 | 385.51 | 350.49 | |
SAT area (cm2) | Specificity Sensibility | 0.607 0.750 | 0.503 0.682 | 0.719 0.857 |
AUC | 0.699 low | 0.668 low | 0.794 moderate | |
Cut-off | 232.10 | 229.51 | 229.51 | |
VAT area (cm2) | Specificity Sensibility | - | - | 0.554 0.857 |
AUC | - | - | 0.701 moderate | |
Cut-off | - | - | 166.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, F.; Benelli, L.; Pasqualetto, M.; Laudazi, M.; Pugliese, L.; Volpe, M.; Cerimele, C.; Di Donna, C.; Garaci, F.; Chiocchi, M. Beyond the Obesity Paradox: Analysis of New Prognostic Factors in Transcatheter Aortic Valve Implantation Procedure. J. Cardiovasc. Dev. Dis. 2024, 11, 368. https://doi.org/10.3390/jcdd11110368
Ricci F, Benelli L, Pasqualetto M, Laudazi M, Pugliese L, Volpe M, Cerimele C, Di Donna C, Garaci F, Chiocchi M. Beyond the Obesity Paradox: Analysis of New Prognostic Factors in Transcatheter Aortic Valve Implantation Procedure. Journal of Cardiovascular Development and Disease. 2024; 11(11):368. https://doi.org/10.3390/jcdd11110368
Chicago/Turabian StyleRicci, Francesca, Leonardo Benelli, Monia Pasqualetto, Mario Laudazi, Luca Pugliese, Maria Volpe, Cecilia Cerimele, Carlo Di Donna, Francesco Garaci, and Marcello Chiocchi. 2024. "Beyond the Obesity Paradox: Analysis of New Prognostic Factors in Transcatheter Aortic Valve Implantation Procedure" Journal of Cardiovascular Development and Disease 11, no. 11: 368. https://doi.org/10.3390/jcdd11110368
APA StyleRicci, F., Benelli, L., Pasqualetto, M., Laudazi, M., Pugliese, L., Volpe, M., Cerimele, C., Di Donna, C., Garaci, F., & Chiocchi, M. (2024). Beyond the Obesity Paradox: Analysis of New Prognostic Factors in Transcatheter Aortic Valve Implantation Procedure. Journal of Cardiovascular Development and Disease, 11(11), 368. https://doi.org/10.3390/jcdd11110368