Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sexual Dimorphism in the Progression of Adenine-Induced CKD
3.2. Body Weight Affected by Regimen Type, Duration, and Sex
3.3. Decline in Body Weight Affects Normalization of Heart Chambers in CKD Mouse Model
3.4. CKD-Induced LV Hypertrophy in Male and Female Mice
3.5. Male Sex Required for Manifestation of CKD-Induced LV Systolic and Diastolic Dysfunction
3.6. Cardiac Performance Exacerbated by Male Sex in CKD Mouse Model
3.7. CKD Increases Cycle Duration and Decreases HR in ECG Measurements
3.8. Accounting for HR Variability in the Duration of ECG Parameters
3.9. Increases in QTc and STc Interval Durations Depend on Sex, Regimen, and HR Correction
3.10. Sex-Specific Differences in Speak–J Duration Throughout CKD Disease Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toth-Manikowski, S.M.; Yang, W.; Appel, L.; Chen, J.; Deo, R.; Frydrych, A.; Krousel-Wood, M.; Rahman, M.; Rosas, S.E.; Sha, D.; et al. Sex Differences in Cardiovascular Outcomes in CKD: Findings From the CRIC Study. Am. J. Kidney Dis. 2021, 78, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Saleem, A.; Hajjaj, M.; Faiz, H.; Pragya, A.; Jamil, R.; Salim, S.S.; Lateef, I.K.; Singla, D.; Ramar, R.; et al. Sex-specific differences in risk factors, comorbidities, diagnostic challenges, optimal management, and prognostic outcomes of heart failure with preserved ejection fraction: A comprehensive literature review. Heart Fail. Rev. 2023, 29, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Christianson, A.L.; Meganathan, K.; Leonard, A.C.; Crews, D.C.; Rubinstein, J.; Mitsnefes, M.M.; Schauer, D.P.; Thakar, C.V. Sex Differences in Cardiovascular Outcomes in Patients With Kidney Failure. J. Am. Heart Assoc. 2024, 13, e029691. [Google Scholar] [CrossRef]
- Appelman, Y.; van Rijn, B.B.; Haaf, M.E.T.; Boersma, E.; Peters, S.A. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis 2015, 241, 211–218. [Google Scholar] [CrossRef]
- Smith, D.H.; Thorp, M.L.; Gurwitz, J.H.; McManus, D.D.; Goldberg, R.J.; Allen, L.A.; Hsu, G.; Sung, S.H.; Magid, D.J.; Go, A.S. Chronic Kidney Disease and Outcomes in Heart Failure With Preserved Versus Reduced Ejection Fraction. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 333–342. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Mazur, M.; Bertoni, A.G.; Bluemke, D.A.; Al-Mallah, M.H.; Lima, J.A.C.; Kitzman, D.; Soliman, E.Z. Electrocardiographic predictors of heart failure with reduced versus preserved ejection fraction: The multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2017, 6, e006023. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, A.K.; Chhabra, Y.K.; Mahajan, S. Cardiovascular disease in patients with chronic kidney disease: A neglected subgroup. Heart Asia 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Skampardoni, S.; Poulikakos, D.; Malik, M.; Green, D.; Kalra, P.A. The potential of electrocardiography for cardiac risk prediction in chronic and end-stage kidney disease. Nephrol. Dial. Transplant. 2019, 34, 1089–1098. [Google Scholar] [CrossRef]
- Simonson, E.; Blackburnjr, H.; Puchner, T.C.; Eisenberg, P.; Ribeiro, F.; Meja, M. Sex Differences in the Electrocardiogram. Circulation 1960, 22, 598–601. [Google Scholar] [CrossRef]
- Tani, T.; Orimo, H.; Shimizu, A.; Tsuruoka, S. Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease. Sci. Rep. 2017, 7, 2233. [Google Scholar] [CrossRef]
- Tamura, M.; Aizawa, R.; Hori, M.; Ozaki, H. Progressive renal dysfunction and macrophage infiltration in interstitial fibrosis in an adenine-induced tubulointerstitial nephritis mouse model. Histochem. Cell Biol. 2009, 131, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Kieswich, J.E.; Chen, J.; Alliouachene, S.; Caton, P.W.; McCafferty, K.; Thiemermann, C.; Yaqoob, M.M. A novel model of reno-cardiac syndrome in the C57BL/6 mouse strain. BMC Nephrol. 2018, 19, 346. [Google Scholar] [CrossRef] [PubMed]
- Tamagaki, K.; Yuan, Q.; Ohkawa, H.; Imazeki, I.; Moriguchi, Y.; Imai, N.; Sasaki, S.; Takeda, K.; Fukagawa, M. Severe hyperparathyroidism with bone abnormalities and metastatic calcification in rats with adenine-induced uraemia. Nephrol. Dial. Transplant. 2006, 21, 651–659. [Google Scholar] [CrossRef]
- Dargam, V.; Ng, H.H.; Nasim, S.; Chaparro, D.; Irion, C.I.; Seshadri, S.R.; Barreto, A.; Danziger, Z.C.; Shehadeh, L.A.; Hutcheson, J.D. S2 Heart Sound Detects Aortic Valve Calcification Independent of Hemodynamic Changes in Mice. Front. Cardiovasc. Med. 2022, 9, 809301. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, S.; Amin, J.; Phillips, J.K.; Hildreth, C.M. Relationship between sex and cardiovascular mortality in chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0254554. [Google Scholar] [CrossRef]
- Nitsch, D.; Grams, M.; Sang, Y.; Black, C.; Cirillo, M.; Djurdjev, O.; Iseki, K.; Jassal, S.K.; Kimm, H.; Kronenberg, F.; et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: A meta-analysis. BMJ 2013, 346, f324. [Google Scholar] [CrossRef]
- Boukens, B.J.; Rivaud, M.R.; Rentschler, S.; Coronel, R. Misinterpretation of the mouse ECG: ‘musing the waves of Mus musculus’. J. Physiol. 2014, 592, 4613–4626. [Google Scholar] [CrossRef]
- Radloff, J.; Latic, N.; Pfeiffenberger, U.; Schüler, C.; Tangermann, S.; Kenner, L.; Erben, R.G. A phosphate and calcium-enriched diet promotes progression of 5/6-nephrectomy-induced chronic kidney disease in C57BL/6 mice. Sci. Rep. 2021, 11, 14868. [Google Scholar] [CrossRef]
- Sysa-Shah, P.; Sørensen, L.L.; Abraham, M.R.; Gabrielson, K.L. Electrocardiographic Characterization of Cardiac Hypertrophy in Mice that Overexpress the ErbB2 Receptor Tyrosine Kinase. Comp. Med. 2015, 65, 295–307. [Google Scholar]
- Calvet, C.; Seebeck, P. What to consider for ECG in mice—With special emphasis on telemetry. Mamm. Genome 2023, 34, 166–179. [Google Scholar] [CrossRef]
- Speerschneider, T.; Thomsen, M.B. Physiology and analysis of the electrocardiographic T wave in mice. Acta Physiol. 2013, 209, 262–271. [Google Scholar] [CrossRef]
- Oestereicher, M.A.; Wotton, J.M.; Ayabe, S.; About, G.B.; Cheng, T.K.; Choi, J.-H.; Clary, D.; Dew, E.M.; Elfertak, L.; Guimond, A.; et al. Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide for cardiac electrophysiology studies in mice. Mamm. Genome 2023, 34, 180–199. [Google Scholar] [CrossRef]
- Hammad, M.; Maher, A.; Wang, K.; Jiang, F.; Amrani, M. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 2018, 125, 634–644. [Google Scholar] [CrossRef]
- Ambhore, A.; Teo, S.; Omar, A.; Poh, K. Importance of QT interval in clinical practice. Singap. Med. J. 2014, 55, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Hagdorn, Q.A.J.; Bossers, G.P.L.; Koop, A.M.C.; Piek, A.; Eijgenraam, T.R.; van der Feen, D.E.; Silljé, H.H.W.; de Boer, R.A.; Berger, R.M.F. A novel method optimizing the normalization of cardiac parameters in small animal models: The importance of dimensional indexing. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H1552–H1557. [Google Scholar] [CrossRef] [PubMed]
- Knapp, W.H. Relationships between mean velocity of circumferential fiber shortening (VCF) and heartrate—The diagnostic value of a normalization of VCF to heart rate. J. Clin. Ultrasound 1978, 6, 10–15. [Google Scholar] [CrossRef]
- Stypmann, J.; Engelen, M.A.; Troatz, C.; Rothenburger, M.; Eckardt, L.; Tiemann, K. Echocardiographic assessment of global left ventricular function in mice. Lab. Anim. 2009, 43, 127–137. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Zhou, J.; Liu, Y.; Du, C.; Yang, K.; Bi, X.; Liu, M.; Han, W.; Wang, K.; et al. IRF1-mediated downregulation of PGC1α contributes to cardiorenal syndrome type 4. Nat. Commun. 2020, 11, 4664. [Google Scholar] [CrossRef]
- Chen, C.; Xie, C.; Wu, H.; Wu, L.; Zhu, J.; Mao, H.; Xing, C. Uraemic Cardiomyopathy in Different Mouse Models. Front. Med. China 2021, 8, 690517. [Google Scholar] [CrossRef]
- King, B.M.; Mintz, S.; Lin, X.; Morley, G.E.; Schlamp, F.; Khodadadi-Jamayran, A.; Fishman, G.I. Chronic Kidney Disease Induces Proarrhythmic Remodeling. Circ. Arrhythmia Electrophysiol. 2023, 16, 13–27. [Google Scholar] [CrossRef]
- Konstam, M.A.; Abboud, F.M. Ejection Fraction: Misunderstood and Overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation 2017, 135, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Löfman, I.; Szummer, K.; Dahlström, U.; Jernberg, T.; Lund, L.H. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur. J. Heart Fail. 2017, 19, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Orero, M.; Garcia-Pavia, P.; Lara-Pezzi, E. Non-invasive assessment of HFpEF in mouse models: Current gaps and future directions. BMC Med. 2022, 20, 349. [Google Scholar] [CrossRef] [PubMed]
- Valero-Muñoz, M.; Backman, W.; Sam, F. Murine models of heart failure with preserved ejection fraction: A “fishing expedition”. Basic Transl. Sci. 2017, 2, 770–789. [Google Scholar]
- Maurer, M.S.; Sackner-Bernstein, J.D.; Rumbarger, L.E.-K.; Yushak, M.; King, D.L.; Burkhoff, D. Mechanisms Underlying Improvements in Ejection Fraction With Carvedilol in Heart Failure. Circ.-Heart Fail. 2009, 2, 189–196. [Google Scholar] [CrossRef]
- Verbrugge, F.H.; Verhaert, D.; Grieten, L.; Dupont, M.; Rivero-Ayerza, M.; De Vusser, P.; van Herendael, H.; Reyskens, R.; Vandervoort, P.; Tang, W.H.W.; et al. Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy. J. Am. Coll. Cardiol. 2013, 61, E611. [Google Scholar] [CrossRef]
- Colan, S.D.; Borow, K.M.; Neumann, A. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: A load-independent index of myocardial contractility. J. Am. Coll. Cardiol. 1984, 4, 715–724. [Google Scholar] [CrossRef]
- Yousef, A.; Sosnowski, D.K.; Fang, L.; Legaspi, R.J.; Korodimas, J.; Lee, A.; Magor, K.E.; Seubert, J.M. Cardioprotective response and senescence in aged sEH null female mice exposed to LPS. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H1366–H1385. [Google Scholar] [CrossRef]
- Rash, S.M.; Woodward, W.R.; Silberbach, G.M.; Thigpen, T.; Sahn, D.J.; Pillers, D.-A.M. Echo-and Electrocardiography in Mice: Establishment of Methods for Assessing Cardiac Function in Mutant Strains.• 132. Pediatr. Res. 1997, 41, 24. [Google Scholar] [CrossRef]
- Lipskaia, L.; Defer, N.; Esposito, G.; Hajar, I.; Garel, M.-C.; Rockman, H.A.; Hanoune, J. Enhanced cardiac function in transgenic mice expressing a Ca2+-stimulated adenylyl cyclase. Circ. Res. 2000, 86, 795–801. [Google Scholar] [CrossRef]
- Schnelle, M.; Catibog, N.; Zhang, M.; Nabeebaccus, A.A.; Anderson, G.; Richards, D.A.; Sawyer, G.; Zhang, X.; Toischer, K.; Hasenfuss, G.; et al. Echocardiographic evaluation of diastolic function in mouse models of heart disease. J. Mol. Cell Cardiol. 2018, 114, 20–28. [Google Scholar] [CrossRef]
- Deo, R.; Shou, H.; Soliman, E.Z.; Yang, W.; Arkin, J.M.; Zhang, X.; Townsend, R.R.; Go, A.S.; Shlipak, M.G.; Feldman, H.I. Electrocardiographic Measures and Prediction of Cardiovascular and Noncardiovascular Death in CKD. J. Am. Soc. Nephrol. 2016, 27, 559–569. [Google Scholar] [CrossRef]
- Patzer, R.E.; Flueckiger, P.; Pastan, S.; Goyal, A.; McClellan, W.W. Associations of ECG interval prolongations with mortality among ESRD patients evaluated for renal transplantation. Ann. Transplant. 2014, 19, 257–268. [Google Scholar] [CrossRef]
- Dobre, M.; Brateanu, A.; Rashidi, A.; Rahman, M. Electrocardiogram Abnormalities and Cardiovascular Mortality in Elderly Patients with CKD. Clin. J. Am. Soc. Nephrol. 2012, 7, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Impact of Age and Sex on QT Prolongation in Patients Receiving Psychotropics. Can. J. Psychiatry 2015, 60, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.J.; Bengtson, J.; Chen, Z.; Anderson, K.M.; Locati, E.; Levy, D. Duration of the QT interval and total and cardiovascular mortality in healthy persons (The Framingham heart study experience). Am. J. Cardiol. 1991, 67, 55–58. [Google Scholar] [CrossRef]
- Salama, G.; Bett, G.C. Sex differences in the mechanisms underlying long QT syndrome. Am. J. Physiol.-Heart Circ. Physiol. 2014, 307, H640–H648. [Google Scholar] [CrossRef]
- Saito, T.; Ciobotaru, A.; Bopassa, J.C.; Toro, L.; Stefani, E.; Eghbali, M. Estrogen contributes to gender differences in mouse ventricular repolarization. Circ. Res. 2009, 105, 343–352. [Google Scholar] [CrossRef]
- Kadish, A.H.; Greenland, P.; Limacher, M.C.; Frishman, W.H.; Daugherty, S.A.; Schwartz, J.B. Estrogen and Progestin Use and the QT Interval in Postmenopausal Women. Ann. Noninvasive Electrocardiol. 2004, 9, 366–374. [Google Scholar] [CrossRef]
- Kararigas, G.; Nguyen, B.T.; Jarry, H. Estrogen modulates cardiac growth through an estrogen receptor α-dependent mechanism in healthy ovariectomized mice. Mol. Cell Endocrinol. 2014, 382, 909–914. [Google Scholar] [CrossRef]
- Goldenberg, I.; Moss, A.J.; Zareba, W. QT interval: How to measure it and what is “normal”. J. Cardiovasc. Electrophysiol. 2006, 17, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Butt, N.; Sheikh, A.S. Early repolarization syndrome: A cause of sudden cardiac death. World J. Cardiol. 2015, 7, 466–475. [Google Scholar] [CrossRef]
- Yan, G.-X.; Antzelevitch, C. Cellular Basis for the Electrocardiographic J Wave. Circulation 1996, 93, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Kaese, S.; Verheule, S. Cardiac electrophysiology in mice: A matter of size. Front. Physiol. 2012, 3, 29023. [Google Scholar] [CrossRef]
- Hajhosseiny, R.; Rajani, R.; Khavandi, K.; Sebag, F.A.; Mashayekhi, S.; Wright, M.; Goldsmith, D. The prevalence of electrocardiographic early repolarization in an adult cohort with chronic kidney disease and its impact upon all-cause mortality and progression to dialysis. Front. Physiol. 2013, 4, 127. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.J.; Elkareh, J.; Shidyak, A.; Shapiro, A.P.; Smaili, S.; Mutgi, K.; Gupta, S.; Tian, J.; Morgan, E.; Khouri, S.; et al. Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. Am. J. Physiol.-Ren. Physiol. 2008, 294, F450–F454. [Google Scholar] [CrossRef]
- Soppert, J.; Frisch, J.; Wirth, J.; Hemmers, C.; Boor, P.; Kramann, R.; Vondenhoff, S.; Moellmann, J.; Lehrke, M.; Hohl, M.; et al. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int. 2022, 101, 256–273. [Google Scholar] [CrossRef]
- Patel, S.K.; Velkoska, E.; Gayed, D.; Ramchand, J.; Lesmana, J.; Burrell, L.M. Left ventricular hypertrophy in experimental chronic kidney disease is associated with reduced expression of cardiac Kruppel-like factor 15. BMC Nephrol. 2018, 19, 159. [Google Scholar] [CrossRef]
- Ricardo, A.C.; Yang, W.; Sha, D.; Appel, L.J.; Chen, J.; Krousel-Wood, M.; Manoharan, A.; Steigerwalt, S.; Wright, J.; Rahman, M.; et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol. 2019, 30, 137–146. [Google Scholar] [CrossRef]
- De Vries, G.J.; Rissman, E.F.; Simerly, R.B.; Yang, L.-Y.; Scordalakes, E.M.; Auger, C.J.; Swain, A.; Lovell-Badge, R.; Burgoyne, P.S.; Arnold, A.P. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 2002, 22, 9005–9014. [Google Scholar] [CrossRef]
- Kim, K.; Anderson, E.M.; Thome, T.; Lu, G.; Salyers, Z.R.; Cort, T.A.; O’Malley, K.A.; Scali, S.T.; Ryan, T.E. Skeletal myopathy in CKD: A comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice. Am. J. Physiol.-Ren. Physiol. 2021, 321, F106–F119. [Google Scholar] [CrossRef] [PubMed]
- Padalkar, M.V.; Tsivitis, A.H.; Gelfman, Y.; Kasiyanyk, M.; Kaungumpillil, N.; Ma, D.; Gao, M.; Borges, K.A.; Dhaliwal, P.; Nasruddin, S.; et al. Paradoxical reduction of plasma lipids and atherosclerosis in mice with adenine-induced chronic kidney disease and hypercholesterolemia. Front. Cardiovasc. Med. 2023, 10, 1088015. [Google Scholar] [CrossRef]
- Chang, I.C.; Austin, E.; Krishnan, B.; Benditt, D.G.; Quay, C.N.; Ling, L.H.; Chen, L.Y. Shorter minimum p-wave duration is associated with paroxysmal lone atrial fibrillation. J. Electrocardiol. 2014, 47, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Ocak, G.; Khairoun, M.; Khairoun, O.; Bos, W.J.W.; Fu, E.L.; Cramer, M.J.; Westerink, J.; Verhaar, M.C.; Visseren, F.L.; UCC-SMART Study Group. Chronic kidney disease and atrial fibrillation: A dangerous combination. PLoS ONE 2022, 17, e0266046. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Zhao, X.; Zhang, Y.; Zhang, D.; Ma, J.; Wang, Y.; Lip, G.Y. Relation of renal dysfunction to the increased risk of stroke and death in female patients with atrial fibrillation. Int. J. Cardiol. 2013, 168, 1502–1508. [Google Scholar] [CrossRef]
- Iseki, K.; Nakai, S.; Shinzato, T.; Nagura, Y.; Akiba, T.; The Patient Registration Committee of the Japanese Society for Dialysis Therapy. Increasing gender difference in the incidence of chronic dialysis therapy in Japan. Ther. Apher. Dial. 2005, 9, 407–411. [Google Scholar] [CrossRef]
- Hecking, M.; Bieber, B.A.; Ethier, J.; Kautzky-Willer, A.; Sunder-Plassmann, G.; Säemann, M.D.; Ramirez, S.P.B.; Gillespie, B.W.; Pisoni, R.L.; Robinson, B.M.; et al. Sex-Specific Differences in Hemodialysis Prevalence and Practices and the Male-to-Female Mortality Rate: The Dialysis Outcomes and Practice Patterns Study (DOPPS). PLoS Med. 2014, 11, e1001750. [Google Scholar] [CrossRef]
Week 3 | Week 6 | Week 9 | Week 12 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |||||||||||||||||
Parameters | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | ||||||||
n = 7M | n = 8M | p-Value | n = 7F | n = 8F | p-Value | n = 6–7M | n = 6–8M | p-Value | n = 6–7F | n = 8F | p-Value | n = 8M | n = 8M | p-Value | n = 6–7F | n = 8F | p-Value | n = 6–7M | n = 7M | p-Value | n = 7–8F | n = 8F | p-Value | |
LV Remodeling | ||||||||||||||||||||||||
LVAW;s (mm) | 1.28 ± 0.11 | 1.33 ± 0.14 | 1.0 | 1.08 ± 0.17 | 1.15 ± 0.16 | 1.0 | 1.25 ± 0.11 | 1.23 ± 0.16 | 1.0 | 1.11 ± 0.11 | 1.17 ± 0.15 | 1.0 | 1.26 ± 0.16 | 1.46 ± 0.19 | 0.113 | 0.97 ± 0.41 | 1.21 ± 0.14 § | 1.0 | 1.34 ± 0.18 | 1.40 ± 0.09 | 1.0 | 1.29 ± 0.10 | 1.18 ± 0.14 § | 0.475 |
LVAW;d (mm) | 0.82 ± 0.10 | 0.92 ± 0.12 | 0.712 | 0.71 ± 0.11 | 0.76 ± 0.09 | 1.0 | 0.76 ± 0.11 | 0.85 ± 0.15 | 0.959 | 0.76 ± 0.12 | 0.83 ± 0.11 | 1.0 | 0.78 ± 0.09 | 0.88 ± 0.15 | 0.415 | 0.64 ± 0.27 | 0.80 ± 0.10 | 1.0 | 0.90 ± 0.11 | 0.82 ± 0.07 | 1.0 | 0.84 ± 0.10 | 0.77 ± 0.17 | 1.0 |
LVPW;s (mm) | 1.14 ± 0.14 | 1.04 ± 0.10 | 0.812 | 0.97 ± 0.14 | 0.93 ± 0.14 | 1.0 | 1.03 ± 0.11 | 0.97 ± 0.17 | 1.0 | 0.93 ± 0.07 | 1.03 ± 0.11 | 0.756 | 1.02 ± 0.15 | 1.11 ± 0.18 | 1.0 | 0.84 ± 0.36 | 1.01 ± 0.10 | 1.0 | 1.14 ± 0.13 | 1.37 ± 0.25 | 0.074 | 1.03 ± 0.13 | 1.01 ± 0.11 § | 1.0 |
LVPW;d (mm) | 0.72 ± 0.04 | 0.70 ± 0.06 | 1.0 | 0.68 ± 0.10 | 0.67 ± 0.06 | 1.0 | 0.73 ± 0.06 | 0.64 ± 0.10 | 0.497 | 0.69 ± 0.05 | 0.72 ± 0.13 | 1.0 | 0.70 ± 0.06 | 0.76 ± 0.14 | 1.0 | 0.60 ± 0.25 | 0.71 ± 0.13 | 1.0 | 0.77 ± 0.06 | 0.80 ± 0.06 | 1.0 | 0.73 ± 0.07 | 0.68 ± 0.12 § | 1.0 |
LVID;s (mm) | 2.52 ± 0.17 | 2.66 ± 0.38 | 1.0 | 2.57 ± 0.35 | 2.62 ± 0.36 | 1.0 | 2.68 ± 0.22 | 2.40 ± 0.46 | 0.981 | 2.58 ± 0.40 | 2.60 ± 0.35 | 1.0 | 2.66 ± 0.46 | 1.96 ± 0.24 | 0.003 | 2.24 ± 0.96 | 2.48 ± 0.35 § | 1.0 | 2.65 ± 0.34 | 1.72 ± 0.18 | 2.2 × 10−5 | 2.55 ± 0.34 | 2.58 ± 0.30 § | 1.0 |
LVID;d (mm) | 3.83 ± 0.13 | 3.85 ± 0.35 | 1.0 | 3.59 ± 0.15 | 3.69 ± 0.29 | 1.0 | 3.96 ± 0.16 | 3.45 ± 0.38 | 0.009 | 3.61 ± 0.23 | 3.68 ± 0.26 | 1.0 | 3.94 ± 0.30 | 3.29 ± 0.21 | 1.1 × 10−4 | 3.17 ± 1.30 | 3.62 ± 0.25 | 1.0 | 3.91 ± 0.26 | 3.21 ± 0.24 | 8.2 × 10−5 | 3.70 ± 0.23 | 3.73 ± 0.24 § | 1.0 |
LV Thickness;s | 0.46 ± 0.06 | 0.47 ± 0.06 | 1.0 | 0.45 ± 0.07 | 0.44 ± 0.07 | 1.0 | 0.45 ± 0.04 | 0.47 ± 0.04 | 1.0 | 0.40 ± 0.06 | 0.43 ± 0.09 | 1.0 | 0.47 ± 0.06 | 0.57 ± 0.03 | 0.003 | 0.44 ± 0.06 | 0.48 ± 0.06 § | 1.0 | 0.48 ± 0.05 | 0.61 ± 0.04 | 1.5 × 10−4 | 0.48 ± 0.05 | 0.46 ± 0.05 § | 1.0 |
LV Thickness;d | 0.29 ± 0.01 | 0.30 ± 0.03 | 1.0 | 0.28 ± 0.02 | 0.28 ± 0.03 | 1.0 | 0.27 ± 0.02 | 0.30 ± 0.04 | 0.349 | 0.29 ± 0.03 | 0.30 ± 0.03 | 1.0 | 0.27 ± 0.03 | 0.33 ± 0.03 | 0.002 | 0.28 ± 0.02 | 0.29 ± 0.04 | 1.0 | 0.30 ± 0.02 | 0.34 ± 0.02 | 0.191 | 0.30 ± 0.03 | 0.28 ± 0.04 § | 1.0 |
LV Systolic Function | ||||||||||||||||||||||||
EF (%) | 64.0 ± 4.0 | 59.3 ± 6.3 | 1.0 | 55.4 ± 10.7 | 56.6 ± 7.8 | 1.0 | 61.0 ± 5.9 | 59.2 ± 8.2 | 1.0 | 55.9 ± 11.7 | 56.9 ± 8.3 | 1.0 | 61.5 ± 9.9 | 72.0 ± 6.6 | 0.112 | 49.8 ± 21.6 | 60.3 ± 8.3 | 1.0 | 61.0 ± 7.2 | 79.1 ± 3.9 | 0.001 | 59.3 ± 9.9 | 58.9 ± 8.3 § | 1.0 |
FS (%) | 34.3 ± 2.9 | 31.1 ± 4.2 | 1.0 | 28.5 ± 7.0 | 29.3 ± 5.3 | 1.0 | 32.4 ± 4.0 | 30.8 ± 5.1 | 1.0 | 28.9 ± 7.5 | 29.4 ± 5.4 | 1.0 | 33.0 ± 7.0 | 40.4 ± 5.5 | 0.111 | 25.8 ± 11.6 | 31.8 ± 5.5 § | 1.0 | 32.4 ± 5.2 | 46.6 ± 4.1 | 3.7 × 10−4 | 31.2 ± 6.8 | 30.9 ± 5.7 § | 1.0 |
VCFc (circ/s) | 7.6 ± 0.6 | 7.5 ± 1.1 | 1.0 | 5.8 ± 1.8 # | 6.2 ± 1.0 | 1.0 | 7.4 ± 1.0 | 7.2 ± 3.0 | 1.0 | 6.2 ± 1.8 | 6.6 ± 1.4 | 1.0 | 7.6 ± 1.6 | 9.8 ± 1.5 | 0.019 | 6.3 ± 1.0 | 6.8 ± 1.4 § | 1.0 | 7.5 ± 1.2 | 12.0 ± 2.2 | 6.9 × 10−5 | 5.9 ± 2.7 | 6.8 ± 1.1 § | 1.0 |
IVCT (ms) | 16.7 ± 1.6 | 17.8 ± 7.5 | 0.015 | 18.7 ± 1.9 | 15.9 ± 9.9 | 0.229 | 16.3 ± 2.1 | 15.2 ± 9.5 | 0.005 | 17.3 ± 2.1 | 18.7 ± 1.5 | 0.906 | 14.4 ± 6.1 | 19.7 ± 1.6 | 0.054 | 13.7 ± 8.6 | 17.2 ± 7.5 | 1.0 | 17.0 ± 1.8 | 20.0 ± 0.9 | 0.032 | 16.2 ± 6.8 | 20.7 ± 2.5 | 0.209 |
LV Diastolic Function | ||||||||||||||||||||||||
MV E Velocity (mm/s) | 773.6 ± 67.2 | 669. ± 83.5 | 0.215 | 730.6 ± 96.3 | 736.1 ± 109.3 | 1.0 | 810.4 ± 49.5 | 605.6 ± 96.1 | 0.001 | 723.7 ± 103.5 | 683.1 ± 107.5 | 1.0 | 757.6 ± 52.5 | 627.9 ± 50.8 | 0.055 | 590.0 ± 271.0 | 680.7 ± 104.9 | 1.0 | 766.2 ± 79.6 | 667.2 ± 68.1 | 0.070 | 720.9 ± 74.1 | 720.8 ± 48.7 | 1.0 |
MV E′ Velocity (mm/s) | 23.9 ± 5.8 | 18.5 ± 3.6 | 0.382 | 23.7 ± 5.5 | 25.2 ± 6.3 | 1.0 | 22.6 ± 3.5 | 18.1 ± 2.8 | 0.151 | 22.5 ± 4.4 | 22.8 ± 3.8 | 1.0 | 19.7 ± 1.9 | 15.8 ± 2.3 | 0.384 | 17.2 ± 8.1 | 24.9 ± 5.9 § | 0.097 | 21.4 ± 5.4 | 14.0 ± 4.4 | 0.028 | 24.5 ± 4.6 | 23.7 ± 3.5 § | 1.0 |
MV E/E′ | 33.4 ± 5.8 | 36.7 ± 4.9 | 1.0 | 31.5 ± 4.3 | 30.1 ± 5.2 | 1.0 | 36.7 ± 6.7 | 33.9 ± 5.5 | 1.0 | 32.7 ± 5.3 | 30.7 ± 7.4 | 1.0 | 38.8 ± 4.0 | 40.3 ± 5.0 | 1.0 | 30.3 ± 12.5 | 27.9 ± 3.1 § | 0.012 | 37.1 ± 6.4 | 51.2 ± 14.6 | 0.021 | 29.9 ± 3.6 | 30.9 ± 4.5 § | 1.0 |
IVRT (ms) | 24.3 ± 2.0 | 26.1 ± 2.4 | 1.0 | 26.2 ± 3.7 | 27.3 ± 4.1 | 1.0 | 18.3 ± 8.4 | 31.2 ± 4.0 | 1.9 × 10−5 | 24.8 ± 1.6 | 22.3 ± 9.5 § | 1.0 | 22.3 ± 2.7 | 31.2 ± 3.5 | 5.2 × 10−5 | 19.3 ± 12.2 | 23.5 ± 10.1 | 1.0 | 20.1 ± 9.0 | 31.5 ± 2.9 | 7.4 × 10−5 | 21.3 ± 9.0 | 26.7 ± 2.5 § | 0.579 |
LV Overall Function | ||||||||||||||||||||||||
Heart Rate (bpm) | 415.4 ± 40.7 | 361.3 ± 44.3 | 0.273 | 399.5 ± 42.6 | 402.3 ± 65.1 | 1.0 | 404.4 ± 31.3 | 388.6 ± 44.3 | 1.0 | 407.6 ± 52.8 | 423.0 ± 66.4 | 1.0 | 399.2 ± 26.4 | 406.0 ± 37.9 | 1.0 | 331.8 ± 142.5 | 401.4 ± 64.4 | 1.0 | 426. ± 24.3 | 395.1 ± 51.9 | 1.0 | 398.9 ± 52.9 | 408.9 ± 39.4 | 1.0 |
Volume;s | 22.9 ± 3.8 | 26.6 ± 8.1 | 1.0 | 24.7 ± 8.1 | 25.8 ± 8.5 | 1.0 | 26.8 ± 5.4 | 23.9 ± 12.8 | 1.0 | 24.9 ± 9.4 | 25.4 ± 8.3 | 1.0 | 27.1 ± 11.0 | 13.5 ± 4.8 | 0.011 | 21.3 ± 11.1 | 22.5 ± 8.2 | 1.0 | 28.3 ± 9.2 | 8.8 ± 2.2 | 8.2 × 10−5 | 24.1 ± 7.8 | 24.6 ± 6.7 § | 1.0 |
Volume;d | 63.4 ± 5.2 | 69.5 ± 15.9 | 1.0 | 54.3 ± 5.5 | 58.4 ± 11.0 | 1.0 | 68.3 ± 6.5 | 56.2 ± 19.1 | 0.400 | 55.1 ± 8.4 | 57.8 ± 9.8 | 1.0 | 68.0 ± 12.2 | 46.3 ± 9.2 | 5.9 × 10−4 | 48.6 ± 21.1 | 55.4 ± 9.2 | 1.0 | 71.8 ± 17.8 | 41.7 ± 7.5 | 1.6 × 10−4 | 58.5 ± 8.4 | 59.5 ± 8.8 § | 1.0 |
Cardiac Output (mL/min) | 16.9 ± 2.4 | 13.6 ± 2.5 | 0.066 | 11.9 ± 2.3 # | 13.0 ± 2.0 | 1.0 | 16.8 ± 1.9 | 11.1 ± 1.4 | 3.2 × 10−4 | 12.5 ± 3.3 # | 13.6 ± 2.2 | 1.0 | 16.3 ± 1.8 | 12.9 ± 2.8 | 0.055 | 10.4 ± 4.7 # | 13.2 ± 2.7 | 1.0 | 17.2 ± 2.9 | 12.9 ± 2.2 | 0.026 | 13.6 ± 2.1 | 14.3 ± 3.0 | 1.0 |
Stroke Volume (µL) | 40.5 ± 3.1 | 37.7 ± 6.0 | 1.0 | 29.6 ± 3.5 # | 32.5 ± 4.2 | 1.0 | 41.5 ± 4.4 | 28.6 ± 3.5 | 4.5 × 10−5 | 30.3 ± 5.4 # | 32.4 ± 4.5 | 1.0 | 40.9 ± 4.1 | 31.6 ± 5.2 | 9.0 × 10−4 | 27.3 ± 11.6 # | 32.9 ± 3.5 | 1.0 | 40.2 ± 5.2 | 33.0 ± 6.1 | 0.173 | 34.4 ± 5.9 | 34.9 ± 6.3 | 1.0 |
ET | 54.9 ± 3.1 | 54.5 ± 3.4 | 1.0 | 62.3 ± 9.8 | 57.3 ± 5.0 | 0.661 | 53.7 ± 4.0 | 42.2 ± 17.7 | 0.660 | 58.8 ± 8.8 | 53.5 ± 5.9 | 0.692 | 53.7 ± 4.2 | 50.3 ± 4.8 | 1.0 | 52.2 ± 21.3 | 60.1 ± 8.5 § | 1.0 | 51.1 ± 2.9 | 48.3 ± 6.3 | 1.0 | 57.0 ± 4.1 | 54.8 ± 3.4 § | 1.0 |
MPI | 0.6 ± 0.0 | 0.7 ± 0.1 | 0.037 | 0.6 ± 0.1 | 0.6 ± 0.0 | 0.049 | 0.6 ± 0.1 | 0.7 ± 0.3 | 3.3 × 10−6 | 0.6 ± 0.1 | 0.7 ± 0.1 § | 0.003 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.003 | 0.5 ± 0.2 | 0.7 ± 0.1 | 0.324 | 0.6 ± 0.1 | 0.8 ± 0.1 | 8.2 × 10−5 | 0.6 ± 0.0 | 0.7 ± 0.1 § | 0.481 |
Week 3 | Week 6 | Week 9 | Week 12 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |||||||||||||||||
Duration | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | Control | Adenine | ||||||||
n = 7–10M | n = 9M | p-Value | n = 5–10F | n = 6–8F | p-Value | n = 7–8M | n = 10M | p-Value | n = 9–10F | n = 7–9F | n = 9–10M | n = 10M | p-Value | n = 7–9F | n = 9F | p-Value | n = 10M | n = 9–10M | p-Value | n = 8–10F | n = 9–10F | p-Value | ||
RR Interval (ms) | 123.9 ± 9.3 | 149.4 ± 25.6 | 0.015 | 133.4 ± 9.2 | 137.3 ± 19.9 | 1.0 | 141.0 ± 14.7 | 202.5 ± 22.6 | 8.0 × 10−7 | 135.8 ± 20.9 | 140.5 ± 17.3 § | 1.0 | 133.4 ± 8.8 | 201.0 ± 21.2 | 6.2 × 10−7 | 134.6 ± 14.3 | 180.4 ± 36.8 | 7.8 × 10−4 | 120.8 ± 18.2 | 162.5 ± 41.7 | 0.010 | 116.2 ± 11.1 | 164.5 ± 28.1 | 0.002 |
HR–RR Interval (bpm) | 486.9 ± 38.9 | 412.2 ± 70.5 | 0.020 | 451.8 ± 30.4 | 444.5 ± 60.0 | 1.0 | 429.7 ± 45.7 | 299.4 ± 31.4 | 2.5 × 10−5 | 450.7 ± 64.9 | 432.6 ± 50.8 § | 1.0 | 451.4 ± 28.8 | 301.6 ± 32.7 | 9.7 × 10−8 | 449.9 ± 43.0 | 345.1 ± 69.6 | 1.5 × 10−4 | 506.5 ± 73.4 | 391.7 ± 102.8 | 0.008 | 520.6 ± 48.1 | 374.0 ± 61.5 | 5.3 × 10−4 |
PP Interval (ms) | 121.9 ± 8.1 | 143.3 ± 23.3 | 0.033 | 131.3 ± 8.8 | 133.6 ± 18.9 | 1.0 | 135.7 ± 16.1 | 197.7 ± 20.9 | 3.2 × 10−7 | 133.7 ± 20.3 | 136.1 ± 16.1 § | 1.0 | 130.4 ± 9.6 | 192.2 ± 21.7 | 1.2 × 10−6 | 132.3 ± 13.6 | 173.9 ± 33.4 | 0.001 | 119.4 ± 16.8 | 154.0 ± 30.5 | 0.009 | 114.0 ± 10.2 | 160.6 ± 27.0 | 3.0 × 10−4 |
HR–PP Interval (bpm) | 494.3 ± 34.9 | 428.5 ± 68.9 | 0.041 | 459.0 ± 30.2 | 456.3 ± 58.7 | 1.0 | 447.7 ± 52.6 | 306.5 ± 30.5 | 8.0 × 10−6 | 457.4 ± 63.2 | 446.1 ± 50.7 § | 1.0 | 462.3 ± 32.1 | 315.8 ± 36.6 | 2.1 × 10−7 | 457.3 ± 43.1 | 356.3 ± 67.5 | 3.1 × 10−4 | 511.5 ± 70.0 | 405.7 ± 93.2 | 0.010 | 529.9 ± 45.7 | 382.9 ± 61.6 | 2.2 × 10−4 |
P-Wave (ms) | 10.0 ± 1.4 | 11.1 ± 1.0 | 0.607 | 11.5 ± 1.9 | 10.2 ± 1.1 | 0.359 | 10.4 ± 1.3 | 11.2 ± 1.3 | 1.0 | 10.4 ± 1.3 | 10.5 ± 1.5 | 1.0 | 11.2 ± 1.0 | 9.7 ± 2.2 | 0.223 | 10.9 ± 1.2 | 11.2 ± 1.3 | 1.0 | 11.5 ± 2.1 | 8.3 ± 2.5 | 0.003 | 10.4 ± 1.2 | 10.6 ± 1.2 | 1.0 |
PR Interval (ms) | 37.3 ± 2.0 | 40.6 ± 3.1 | 0.098 | 40.4 ± 3.1 | 38.1 ± 3.1 | 0.607 | 40.5 ± 7.9 | 40.6 ± 4.5 | 1.0 | 38.9 ± 2.8 | 38.6 ± 1.2 | 1.0 | 40.6 ± 2.2 | 41.2 ± 4.1 | 1.0 | 39.7 ± 2.8 | 45.7 ± 5.2 | 0.010 | 39.4 ± 2.8 | 39.6 ± 9.5 | 1.0 | 38.9 ± 2.7 | 41.8 ± 4.2 | 1.0 |
PR Segment (ms) | 27.3 ± 1.9 | 29.5 ± 2.7 | 0.335 | 28.9 ± 2.6 | 27.9 ± 2.6 | 1.0 | 30.1 ± 6.9 | 29.4 ± 3.9 | 1.0 | 28.5 ± 2.8 | 28.1 ± 1.9 | 1.0 | 29.4 ± 2.1 | 31.4 ± 2.7 | 1.0 | 28.8 ± 2.2 | 34.6 ± 5.5 | 0.005 | 27.9 ± 2.0 | 31.2 ± 8.0 | 0.763 | 28.6 ± 2.4 | 31.2 ± 4.1 | 1.0 |
Qstart–R (ms) | 6.3 ± 0.9 | 5.6 ± 1.3 | 0.937 | 6.2 ± 1.0 | 6.2 ± 0.5 | 1.0 | 6.6 ± 0.6 | 6.6 ± 0.8 | 1.0 | 6.8 ± 0.9 | 6.5 ± 0.7 | 1.0 | 6.8 ± 0.5 | 6.1 ± 1.3 | 1.0 | 6.3 ± 0.7 | 6.5 ± 1.7 | 1.0 | 6.5 ± 0.6 | 6.2 ± 0.7 | 1.0 | 6.4 ± 1.1 | 6.1 ± 1.3 | 1.0 |
Qstart–Speak (ms) | 8.7 ± 1.0 | 8.3 ± 1.5 | 1.0 | 8.9 ± 1.3 | 8.7 ± 0.7 | 1.0 | 9.4 ± 0.8 | 9.1 ± 0.9 | 1.0 | 9.4 ± 1.1 | 9.0 ± 0.7 | 1.0 | 9.2 ± 0.7 | 8.4 ± 1.5 | 1.0 | 9.0 ± 0.9 | 9.1 ± 1.7 | 1.0 | 9.4 ± 0.8 | 8.7 ± 1.0 | 0.900 | 9.3 ± 1.3 | 8.6 ± 1.5 | 1.0 |
QRS Complex (ms) | 11.2 ± 0.8 | 10.5 ± 1.8 | 1.0 | 11.1 ± 1.4 | 11.0 ± 0.5 | 1.0 | 11.9 ± 0.7 | 12.2 ± 1.7 | 1.0 | 11.4 ± 1.1 | 11.3 ± 1.2 | 1.0 | 11.5 ± 0.9 | 12.0 ± 3.0 | 1.0 | 12.4 ± 1.0 | 12.0 ± 2.2 | 1.0 | 11.2 ± 1.0 | 13.1 ± 2.7 | 0.211 | 10.9 ± 1.2 | 11.8 ± 2.4 | 1.0 |
QRSJ (ms) | 12.3 ± 0.8 | 12.1 ± 1.7 | 1.0 | 12.7 ± 1.6 | 12.7 ± 0.7 | 1.0 | 13.3 ± 1.1 | 15.3 ± 1.6 | 0.019 | 13.2 ± 1.3 | 13.2 ± 1.2 § | 1.0 | 12.7 ± 0.8 | 16.1 ± 2.0 | 0.003 | 13.3 ± 1.0 | 15.0 ± 3.1 | 0.438 | 12.5 ± 0.8 | 16.9 ± 3.0 | 1.3 × 10−4 | 12.8 ± 1.4 | 14.3 ± 2.0 § | 0.653 |
QRSp (ms) | 15.1 ± 1.5 | 16.8 ± 2.9 | 0.761 | 18.1 ± 2.2 | 18.2 ± 1.7 | 1.0 | 17.6 ± 4.3 | 22.6 ± 1.7 | 0.005 | 17.8 ± 3.2 | 18.4 ± 1.5 § | 1.0 | 16.1 ± 1.9 | 24.5 ± 2.3 | 2.6 × 10−5 | 17.2 ± 1.8 | 23.0 ± 5.5 | 0.010 | 15.4 ± 1.2 | 24.9 ± 3.1 | 3.0 × 10−9 | 17.9 ± 3.0 | 20.7 ± 2.3 § | 0.121 |
Qpeak–Speak (ms) | 6.6 ± 0.6 | 5.9 ± 0.9 | 1.0 | 7.2 ± 1.3 | 5.9 ± 1.1 | 0.087 | 6.9 ± 1.1 | 5.9 ± 1.0 | 0.233 | 7.1 ± 0.9 | 6.3 ± 0.9 | 0.502 | 6.6 ± 0.6 | 5.7 ± 1.1 | 0.357 | 6.6 ± 1.2 | 5.9 ± 1.0 | 0.726 | 6.9 ± 0.9 | 6.3 ± 1.6 | 1.0 | 7.5 ± 0.7 | 6.0 ± 1.2 | 0.039 |
Qpeak–Send (ms) | 8.8 ± 0.5 | 8.2 ± 1.2 | 1.0 | 9.3 ± 1.4 | 8.3 ± 1.0 | 0.286 | 9.5 ± 1.0 | 9.0 ± 1.5 | 1.0 | 9.2 ± 0.7 | 8.6 ± 0.5 | 1.0 | 8.8 ± 0.6 | 9.3 ± 2.4 | 1.0 | 9.9 ± 1.2 | 8.7 ± 1.3 | 0.859 | 8.7 ± 1.0 | 10.7 ± 2.9 | 0.123 | 9.1 ± 0.8 | 9.1 ± 2.1 | 1.0 |
QTpeak Interval (ms) | 26.3 ± 2.3 | 29.0 ± 4.3 | 0.409 | 28.7 ± 3.1 | 29.0 ± 1.5 | 1.0 | 31.1 ± 7.4 | 37.2 ± 2.7 | 0.048 | 29.4 ± 4.2 | 29.3 ± 2.0 § | 1.0 | 28.1 ± 1.6 | 38.7 ± 3.3 | 2.5 × 10−5 | 29.3 ± 2.4 | 35.9 ± 7.7 | 0.017 | 26.6 ± 2.2 | 39.8 ± 5.4 | 1.9 × 10−7 | 27.7 ± 4.1 | 34.1 ± 3.8 § | 0.013 |
QTpeakc Interval (ms) | 29.5 ± 2.5 | 28.9 ± 2.1 | 1.0 | 30.8 ± 2.3 | 30.4 ± 2.4 | 1.0 | 32.0 ± 6.2 | 30.4 ± 3.8 | 1.0 | 30.7 ± 2.5 | 30.2 ± 2.2 | 1.0 | 30.0 ± 2.1 | 32.1 ± 3.9 | 1.0 | 31.1 ± 2.3 | 31.9 ± 6.1 | 1.0 | 30.1 ± 1.6 | 38.4 ± 5.9 | 6.8 × 10−5 | 31.7 ± 2.8 | 31.6 ± 1.9 § | 1.0 |
QT Interval (ms) | 39.5 ± 2.7 | 43.3 ± 5.9 | 0.305 | 40.2 ± 3.2 | 40.3 ± 2.7 | 1.0 | 46.4 ± 8.1 | 59.2 ± 6.7 | 0.002 | 43.2 ± 7.1 | 42.5 ± 3.5 § | 1.0 | 43.1 ± 3.8 | 62.5 ± 6.6 | 6.7 × 10−9 | 41.9 ± 3.3 | 52.6 ± 6.4 § | 7.7 × 10−4 | 43.3 ± 4.7 | 63.4 ± 10.3 | 4.7 × 10−6 | 40.6 ± 4.8 | 51.8 ± 7.2 § | 0.017 |
QTc Interval (ms) | 45.0 ± 2.1 | 43.2 ± 3.1 | 0.772 | 43.9 ± 2.1 | 42.7 ± 2.8 | 1.0 | 48.1 ± 6.2 | 47.2 ± 7.8 | 1.0 | 45.4 ± 3.9 | 44.1 ± 5.7 | 1.0 | 46.5 ± 3.1 | 50.9 ± 8.0 | 0.471 | 45.1 ± 2.6 | 45.5 ± 5.7 | 1.0 | 49.5 ± 1.7 | 60.8 ± 7.5 | 4.9 × 10−5 | 47.6 ± 2.5 | 47.4 ± 4.6 § | 1.0 |
R–Speak (ms) | 2.5 ± 0.3 | 2.6 ± 0.5 | 1.0 | 2.7 ± 0.4 | 2.5 ± 0.3 | 1.0 | 2.9 ± 0.3 | 2.5 ± 0.4 | 0.088 | 2.6 ± 0.4 | 2.5 ± 0.2 | 1.0 | 2.4 ± 0.5 | 2.3 ± 0.4 | 1.0 | 2.7 ± 0.5 | 2.6 ± 0.6 | 1.0 | 2.9 ± 0.5 | 2.5 ± 0.5 | 0.361 | 2.9 ± 0.5 | 2.5 ± 0.4 | 0.568 |
R–Send (ms) | 4.6 ± 0.6 | 4.9 ± 0.6 | 1.0 | 4.9 ± 0.8 | 4.8 ± 0.3 | 1.0 | 5.3 ± 0.3 | 5.6 ± 1.3 | 1.0 | 4.7 ± 0.6 | 4.8 ± 0.8 | 1.0 | 4.6 ± 0.8 | 5.9 ± 2.1 | 0.241 | 5.8 ± 0.8 | 5.5 ± 0.9 | 1.0 | 4.7 ± 0.7 | 6.9 ± 2.4 | 0.010 | 4.5 ± 0.6 | 5.7 ± 1.6 | 0.504 |
R–J (ms) | 6.0 ± 0.4 | 6.5 ± 0.7 | 0.777 | 6.5 ± 1.0 | 6.5 ± 0.6 | 1.0 | 6.8 ± 0.8 | 8.7 ± 1.3 | 5.3 × 10−4 | 6.4 ± 0.6 | 6.7 ± 0.8 § | 1.0 | 5.9 ± 0.8 | 10.0 ± 1.5 | 1.6 × 10−7 | 7.0 ± 1.0 | 8.5 ± 1.6 | 0.104 | 6.0 ± 0.5 | 10.7 ± 2.7 | 3.0 × 10−7 | 6.4 ± 0.5 | 8.2 ± 1.1 § | 0.081 |
R–p (ms) | 8.5 ± 1.0 | 11.1 ± 2.3 | 0.036 | 11.9 ± 1.9 # | 12.0 ± 1.5 | 1.0 | 11.0 ± 4.1 | 15.9 ± 1.2 | 0.002 | 11.2 ± 2.7 | 11.9 ± 1.5 § | 1.0 | 9.2 ± 1.7 | 18.4 ± 1.6 | 3.9 × 10−8 | 10.7 ± 1.8 | 16.5 ± 4.1 | 4.3 × 10−4 | 8.8 ± 1.2 | 18.8 ± 3.1 | 4.7 × 10−10 | 11.5 ± 2.5 | 14.6 ± 2.6 § | 0.047 |
R–Tpeak (ms) | 20.1 ± 1.7 | 23.4 ± 3.6 | 0.051 | 22.8 ± 2.6 | 22.8 ± 1.3 | 1.0 | 24.5 ± 7.4 | 30.6 ± 3.0 | 0.043 | 22.5 ± 3.7 | 22.7 ± 1.8 § | 1.0 | 21.3 ± 1.4 | 32.6 ± 2.7 | 1.9 × 10−7 | 23.0 ± 2.1 | 29.3 ± 6.2 | 0.003 | 20.1 ± 2.0 | 33.8 ± 5.2 | 1.8 × 10−8 | 21.3 ± 3.4 | 27.9 ± 3.6 § | 0.005 |
R–Tpeak c (ms) | 23.0 ± 2.0 | 23.3 ± 1.3 | 1.0 | 24.7 ± 1.9 | 24.1 ± 2.3 | 1.0 | 25.4 ± 6.2 | 24.2 ± 4.1 | 1.0 | 23.7 ± 2.3 | 23.6 ± 2.1 | 1.0 | 23.2 ± 2.0 | 26.4 ± 4.0 | 0.320 | 24.7 ± 1.9 | 25.6 ± 5.3 | 1.0 | 23.4 ± 1.7 | 32.4 ± 5.9 | 1.8 × 10−5 | 25.0 ± 2.4 | 25.5 ± 2.3 § | 1.0 |
Speak–J (ms) | 3.5 ± 0.4 | 3.8 ± 0.9 | 1.0 | 3.8 ± 0.8 | 4.0 ± 0.6 | 1.0 | 3.9 ± 0.6 | 6.2 ± 1.3 | 5.2 × 10−5 | 3.8 ± 0.7 | 4.2 ± 1.0 § | 1.0 | 3.5 ± 0.8 | 7.7 ± 1.4 | 2.8 × 10−7 | 4.3 ± 1.2 | 5.9 ± 1.8 § | 0.086 | 3.1 ± 0.5 | 8.2 ± 2.8 | 1.2 × 10−7 | 3.5 ± 0.5 | 5.7 ± 1.4 § | 0.028 |
Speak–p (ms) | 5.9 ± 1.1 | 8.5 ± 2.3 | 0.046 | 9.1 ± 1.9 # | 9.5 ± 1.4 | 1.0 | 8.1 ± 3.9 | 13.5 ± 1.3 | 4.9 × 10−4 | 8.6 ± 2.7 | 9.4 ± 1.3 § | 1.0 | 6.8 ± 1.9 | 16.1 ± 1.7 | 4.4 × 10−8 | 7.8 ± 1.7 | 13.9 ± 4.1 | 3.7 × 10−4 | 5.9 ± 1.4 | 16.3 ± 3.2 | 3.8 × 10−10 | 8.6 ± 2.6 | 12.1 ± 2.6 § | 0.025 |
Speak–Tpeak (ms) | 17.6 ± 1.6 | 20.8 ± 3.7 | 0.071 | 20.1 ± 2.4 | 20.3 ± 1.4 | 1.0 | 21.6 ± 7.2 | 28.1 ± 2.8 | 0.022 | 19.9 ± 3.6 | 20.3 ± 1.8 § | 1.0 | 18.9 ± 1.6 | 30.3 ± 2.9 | 2.0 × 10−7 | 20.3 ± 1.9 | 26.7 ± 6.2 | 0.003 | 17.2 ± 2.2 | 31.4 ± 5.2 | 8.4 × 10−9 | 18.3 ± 3.1 | 25.4 ± 3.7 § | 0.002 |
Speak–Tpeak c (ms) | 20.6 ± 1.9 | 20.7 ± 1.4 | 1.0 | 22.1 ± 1.8 | 21.6 ± 2.4 | 1.0 | 22.6 ± 6.0 | 21.6 ± 4.1 | 1.0 | 21.1 ± 2.3 | 21.2 ± 2.0 | 1.0 | 20.8 ± 2.1 | 24.0 ± 4.2 | 0.360 | 22.0 ± 2.1 | 22.9 ± 5.4 | 1.0 | 20.5 ± 2.1 | 30.0 ± 6.1 | 1.7 × 10−5 | 22.1 ± 2.1 | 23.0 ± 2.5 § | 1.0 |
ST Interval (ms) | 30.8 ± 2.3 | 35.1 ± 5.8 | 0.117 | 31.6 ± 2.1 | 31.6 ± 2.8 | 1.0 | 37.0 ± 7.8 | 50.1 ± 6.7 | 8.0 × 10−4 | 33.7 ± 6.3 | 33.5 ± 3.2 § | 1.0 | 33.9 ± 3.7 | 54.1 ± 6.2 | 2.2 × 10−10 | 32.9 ± 2.6 | 43.4 ± 5.4 § | 2.2 × 10−4 | 33.9 ± 4.4 | 54.9 ± 10.0 | 5.5 × 10−7 | 31.2 ± 3.8 | 43.1 ± 6.6 § | 0.005 |
STc Interval (ms) | 36.2 ± 1.6 | 34.9 ± 3.1 | 1.0 | 35.2 ± 1.1 | 34.0 ± 2.9 | 1.0 | 38.6 ± 5.9 | 38.4 ± 8.0 | 1.0 | 35.8 ± 3.3 | 35.1 ± 5.5 | 1.0 | 37.2 ± 3.1 | 42.7 ± 8.2 | 0.204 | 36.0 ± 2.2 | 36.6 ± 6.3 | 1.0 | 39.9 ± 1.9 | 52.5 ± 7.8 | 1.0 × 10−5 | 38.0 ± 1.9 | 38.8 ± 4.4 § | 1.0 |
Send–J (ms) | 1.2 ± 0.4 | 1.6 ± 0.6 | 1.0 | 1.7 ± 0.4 | 1.7 ± 0.4 | 1.0 | 1.5 ± 0.8 | 3.1 ± 1.1 | 5.6 × 10−4 | 1.6 ± 0.6 | 1.9 ± 0.3 § | 1.0 | 1.1 ± 0.3 | 4.1 ± 1.4 | 7.1 × 10−6 | 1.1 ± 0.4 | 3.0 ± 1.4 | 0.006 | 1.4 ± 0.6 | 3.8 ± 1.8 | 1.0 × 10−4 | 1.9 ± 0.6 | 2.5 ± 0.9 | 1.0 |
Send–p (ms) | 3.9 ± 1.5 | 6.2 ± 2.4 | 0.166 | 7.0 ± 2.2 # | 7.2 ± 1.6 | 1.0 | 5.7 ± 4.0 | 10.4 ± 2.0 | 0.010 | 6.4 ± 3.1 | 7.1 ± 1.8 | 1.0 | 4.6 ± 2.2 | 12.5 ± 2.9 | 2.4 × 10−5 | 4.9 ± 2.5 | 11.0 ± 4.2 | 0.002 | 4.2 ± 1.6 | 11.8 ± 3.5 | 1.3 × 10−5 | 7.0 ± 2.8 | 8.9 ± 3.7 | 1.0 |
J–p (ms) | 2.6 ± 1.2 | 4.7 ± 2.2 | 0.303 | 5.3 ± 2.4 | 5.5 ± 1.8 | 1.0 | 4.2 ± 3.4 | 7.2 ± 1.7 | 0.110 | 4.9 ± 2.8 | 5.2 ± 1.9 | 1.0 | 3.5 ± 1.9 | 8.4 ± 2.2 | 6.1 × 10−4 | 3.8 ± 2.3 | 8.0 ± 3.2 | 0.009 | 2.8 ± 1.2 | 8.1 ± 2.5 | 3.2 × 10−4 | 5.1 ± 2.6 | 6.4 ± 3.4 | 1.0 |
J–Tpeak (ms) | 14.1 ± 1.7 | 16.9 ± 3.5 | 0.165 | 16.0 ± 3.3 | 16.2 ± 1.5 | 1.0 | 17.8 ± 6.8 | 21.9 ± 3.5 | 0.336 | 16.0 ± 3.8 | 15.8 ± 2.0 | 1.0 | 15.4 ± 1.8 | 22.6 ± 3.4 | 2.4 × 10−4 | 16.0 ± 2.6 | 20.8 ± 5.1 | 0.029 | 14.1 ± 2.1 | 23.3 ± 3.8 | 4.0 × 10−6 | 14.7 ± 3.2 | 19.5 ± 3.8 | 0.026 |
J–Tend (ms) | 27.3 ± 2.2 | 31.2 ± 5.4 | 0.132 | 27.5 ± 2.4 | 27.6 ± 2.3 | 1.0 | 33.1 ± 7.3 | 43.8 ± 7.6 | 0.010 | 29.8 ± 6.5 | 29.0 ± 3.5 § | 1.0 | 30.4 ± 4.0 | 46.4 ± 7.2 | 2.0 × 10−7 | 28.6 ± 3.3 | 37.6 ± 4.5 § | 0.004 | 30.8 ± 4.4 | 46.9 ± 9.0 | 3.3 × 10−5 | 27.6 ± 3.9 | 37.2 ± 7.0 § | 0.026 |
J–Tendc (ms) | 31.8 ± 1.7 | 31.1 ± 3.1 | 1.0 | 30.5 ± 1.4 | 29.6 ± 2.7 | 1.0 | 34.5 ± 5.6 | 34.0 ± 8.6 | 1.0 | 31.6 ± 4.0 | 30.3 ± 5.6 | 1.0 | 33.2 ± 3.3 | 36.8 ± 8.9 | 0.973 | 31.2 ± 2.1 | 31.8 ± 5.4 | 1.0 | 35.9 ± 2.1 | 44.8 ± 6.4 | 6.5 × 10−4 | 33.4 ± 2.2 | 33.6 ± 5.1 § | 1.0 |
Tpeak–Tend (ms) | 13.2 ± 2.0 | 14.3 ± 3.7 | 1.0 | 11.5 ± 2.1 | 11.3 ± 2.1 | 1.0 | 15.3 ± 3.4 | 22.0 ± 5.0 | 0.006 | 13.8 ± 3.5 | 13.2 ± 2.5 § | 1.0 | 15.0 ± 3.5 | 23.8 ± 7.2 | 0.002 | 12.6 ± 3.2 | 16.7 ± 4.5 § | 0.518 | 16.7 ± 3.3 | 23.6 ± 6.4 | 0.014 | 12.9 ± 2.4 | 17.7 ± 4.8 | 0.226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dargam, V.; Sanchez, A.; Kolengaden, A.; Perez, Y.; Arias, R.; Valentin Cabrera, A.M.; Chaparro, D.; Tarafa, C.; Coba, A.; Yapaolo, N.; et al. Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice. J. Cardiovasc. Dev. Dis. 2024, 11, 362. https://doi.org/10.3390/jcdd11110362
Dargam V, Sanchez A, Kolengaden A, Perez Y, Arias R, Valentin Cabrera AM, Chaparro D, Tarafa C, Coba A, Yapaolo N, et al. Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice. Journal of Cardiovascular Development and Disease. 2024; 11(11):362. https://doi.org/10.3390/jcdd11110362
Chicago/Turabian StyleDargam, Valentina, Anet Sanchez, Aashiya Kolengaden, Yency Perez, Rebekah Arias, Ana M. Valentin Cabrera, Daniel Chaparro, Christopher Tarafa, Alexandra Coba, Nathan Yapaolo, and et al. 2024. "Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice" Journal of Cardiovascular Development and Disease 11, no. 11: 362. https://doi.org/10.3390/jcdd11110362
APA StyleDargam, V., Sanchez, A., Kolengaden, A., Perez, Y., Arias, R., Valentin Cabrera, A. M., Chaparro, D., Tarafa, C., Coba, A., Yapaolo, N., da Silva Nogueira, P., Todd, E. A., Williams, M. M., Shehadeh, L. A., & Hutcheson, J. D. (2024). Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice. Journal of Cardiovascular Development and Disease, 11(11), 362. https://doi.org/10.3390/jcdd11110362