Patient-Level Pericoronary Adipose Tissue Mean Attenuation: Associations with Plaque Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. CCTA Acquisition
2.4. Image Analysis
2.5. PCAT Attenuation Measurement
2.6. Statistics
3. Results
3.1. Clinical Characteristics
3.2. CCTA Findings
3.3. Association Between PCATMA, Plaque Types, and CCS
3.4. Association Between PCATMA, Plaque Volumes, and Burden
4. Discussion
4.1. Inflammation in Atherosclerosis
4.2. Interpreting the Variability of PCAT Measurements
4.3. The Role of Calcification in Coronary Inflammation
4.4. Methodological Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Top 10 Causes of Death; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 24 April 2024).
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Shioi, A.; Ikari, Y. Plaque Calcification During Atherosclerosis Progression and Regression. J. Atheroscler. Thromb. 2018, 25, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Kumric, M.; Borovac, J.A.; Martinovic, D.; Ticinovic Kurir, T.; Bozic, J. Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef] [PubMed]
- Britton, K.A.; Fox, C.S. Perivascular adipose tissue and vascular disease. Clin. Lipidol. 2011, 6, 79–91. [Google Scholar] [CrossRef]
- Margaritis, M.; Antonopoulos, A.S.; Digby, J.; Lee, R.; Reilly, S.; Coutinho, P.; Shirodaria, C.; Sayeed, R.; Petrou, M.; De Silva, R.; et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013, 127, 2209–2221. [Google Scholar] [CrossRef]
- Antoniades, C.; Antonopoulos, A.S.; Deanfield, J. Imaging residual inflammatory cardiovascular risk. Eur. Heart J. 2020, 41, 748–758. [Google Scholar] [CrossRef]
- Antoniades, C.; Tousoulis, D.; Vavlukis, M.; Fleming, I.; Duncker, D.J.; Eringa, E.; Manfrini, O.; Antonopoulos, A.S.; Oikonomou, E.; Padró, T.; et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers: A clinical consensus statement from the European Society of Cardiology Working Group on Coronary Pathophysiology and Micro-circulation. Eur. Heart J. 2023, 44, 3827–3844. [Google Scholar] [CrossRef]
- Goeller, M.; Tamarappoo, B.K.; Kwan, A.C.; Cadet, S.; Commandeur, F.; Razipour, A.; Slomka, P.J.; Gransar, H.; Chen, X.; Otaki, Y.; et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 636–643. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Ma, R.; Ties, D.; van Assen, M.; Pelgrim, G.J.; Sidorenkov, G.; van Ooijen, P.M.A.; van der Harst, P.; van Dijk, R.; Vliegenthart, R. Towards reference values of pericoronary adipose tissue attenuation: Impact of coronary artery and tube voltage in coronary computed tomography angiography. Eur. Radiol. 2020, 30, 6838–6846. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Leipsic, J.A.; Indraratna, P.; Gulsin, G.; Khasanova, E.; Tzimas, G.; Lin, F.Y.; Shaw, L.J.; Lee, S.E.; Andreini, D.; et al. Association of Tube Voltage with Plaque Composition on Coronary CT Angiography: Results From PARADIGM Registry. JACC Cardiovasc. Imaging 2021, 14, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, M.A.; Broersen, A.; Kitslaar, P.H.; Roos, C.J.; Dijkstra, J.; Lelieveldt, B.P.; Jukema, J.W.; Schalij, M.J.; Delgado, V.; Bax, J.J.; et al. Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: Cross-correlation with intravascular ultrasound virtual histology. Int. J. Cardiovasc. Imaging 2013, 29, 1177–1190. [Google Scholar] [CrossRef]
- Austen, W.G.; Edwards, J.E.; Frye, R.L.; Gensini, G.G.; Gott, V.L.; Griffith, L.S.; McGoon, D.C.; Murphy, M.L.; Roe, B.B. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975, 51 (Suppl. S4), 5–40. [Google Scholar] [CrossRef]
- Chang, H.J.; Lin, F.Y.; Lee, S.E.; Andreini, D.; Bax, J.; Cademartiri, F.; Chinnaiyan, K.; Chow, B.J.W.; Conte, E.; Cury, R.C.; et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2018, 71, 2511–2522. [Google Scholar] [CrossRef]
- Sjöström, L.; Kvist, H.; Cederblad, A.; Tylén, U. Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. Am. J. Physiol. 1986, 250, E736–E745. [Google Scholar] [CrossRef]
- Joshi, N.V.; Vesey, A.T.; Williams, M.C.; Shah, A.S.; Calvert, P.A.; Craighead, F.H.; Yeoh, S.E.; Wallace, W.; Salter, D.; Fletcher, A.M.; et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014, 383, 705–713. [Google Scholar] [CrossRef]
- Ma, R.; van Assen, M.; Ties, D.; Pelgrim, G.J.; van Dijk, R.; Sidorenkov, G.; van Ooijen, P.M.A.; van der Harst, P.; Vliegenthart, R. Focal pericoronary adipose tissue attenuation is related to plaque presence, plaque type, and stenosis severity in coronary CTA. Eur. Radiol. 2021, 31, 7251–7261. [Google Scholar] [CrossRef]
- Jing, M.; Sun, J.; Zhou, Q.; Sun, J.; Li, X.; Xi, H.; Zhang, B.; Lin, X.; Deng, L.; Han, T.; et al. Pericoronary adipose tissue differences among plaque types: A retrospective assessment. Clin. Imaging 2023, 96, 58–63. [Google Scholar] [CrossRef]
- Jing, M.; Xi, H.; Zhu, H.; Zhang, B.; Deng, L.; Han, T.; Zhang, Y.; Zhou, J. Correlation of pericoronary adipose tissue CT attenuation values of plaques and periplaques with plaque characteristics. Clin. Radiol. 2023, 78, e591–e599. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Nabavi, V.; Hajsadeghi, F.; Flores, F.; French, W.J.; Mao, S.S.; Shavelle, D.; Ebrahimi, R.; Budoff, M. Mortality incidence of patients with non-obstructive coronary artery disease diagnosed by computed tomography angiography. Am. J. Cardiol. 2011, 107, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Giesen, A.; Mouselimis, D.; Weichsel, L.; Giannopoulos, A.A.; Schmermund, A.; Nunninger, M.; Schuetz, M.; André, F.; Frey, N.; Korosoglou, G. Pericoronary adipose tissue attenuation is associated with non-calcified plaque burden in patients with chronic coronary syndromes. J. Cardiovasc. Comput. Tomogr. 2023, 17, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Chen, C.; Yang, M.; Qin, L.; Xu, Z.; Yan, F.; Yang, W. A preliminary coronary computed tomography angiography-based study of perivascular fat attenuation index: Relation with epicardial adipose tissue and its distribution over the entire coronary vasculature. Eur. Radiol. 2022, 32, 6028–6036. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Xi, H.; Zhu, H.; Zhang, X.; Xu, Z.; Wu, S.; Sun, J.; Deng, L.; Han, T.; Zhang, B.; et al. Is there an association between coronary artery inflammation and coronary atherosclerotic burden? Quant. Imaging Med. Surg. 2023, 13, 6048–6058. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef]
- Lee, S.E.; Chang, H.J.; Sung, J.M.; Park, H.B.; Heo, R.; Rizvi, A.; Lin, F.Y.; Kumar, A.; Hadamitzky, M.; Kim, Y.J.; et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc. Imaging 2018, 11, 1475–1484. [Google Scholar] [CrossRef]
Demographic Data | n = 466 |
---|---|
Age, years (SD) | 61.2 (±10.7) |
Sex, male (%) | 263 (57) |
BMI, kg/m2 (IQR) | 27.8 (25.4–31.2) |
Smoking, n (%) | |
Active | 67 (14) |
Former | 200 (43) |
Never | 199 (43) |
Antihypertensive medication, n (%) | 184 (41) |
Statins, n (%) | 170 (37) |
Diabetes, n (%) | 42 (9) |
Prior AMI, n (%) | 10 (2%) |
CV revascularization, n (%) | 15 (3%) |
Family history of CAD, n (%) | 159 (34) |
Laboratory data | |
eGFR, mL/min/1.73 m2 (IQR) | 86 (76–90) |
HbA1c, mmol/mol (IQR) | 37 (35–40) |
Cholesterol, mmol/L (SD) | 4.8 (±1.1) |
LDL, mmol/L (SD) | 2.8 (±1.0) |
CRP, mg/L (IQR) | 1.6 (0.8–3.5) |
CCTA findings | |
Mean PCAT, HU (SD) | −80.4 (±6.0) |
RCA-PCAT, HU (SD) | −81.3 (±7.5) |
LAD-PCAT, HU (SD) | −82.8 (±6.2) |
CX-PCAT, HU (SD) | −76.6 (±7.2) |
Plaque present, n (%) | 275 (59) |
Type of plaque, n (%) | |
Calcified | 87 (32) |
Mixed | 120 (44) |
Soft | 68 (25) |
Total CCS, (IQR) | 21 (0–167) |
CCS groups, n (%): | |
0 | 124 (30) |
1–99 | 158 (38) |
100–399 | 77 (19) |
>400 | 54 (13) |
Missing CCS-data | 53 (11) |
Plaque volumes, mm3 | |
Total plaque, (SD) | 842 (±263) |
Calcified, (IQR) | 28 (10–68) |
Fibrous, (SD) | 545 (±178) |
Fibro–fatty, (IQR) | 164 (116–235) |
Necrotic core, (IQR) | 15 (7–28) |
Non-calcified, (SD) | 749 (±189) |
Plaque burden, mm2: | |
Total NAV, (IQR) | 2.8 (2.4–3.3) |
Calcified NAV, (IQR) | 0.1 (0.03–0.3) |
Non-calcified NAV, (IQR) | 2.5 (2.2–3.0) |
Tube voltage, kV (%) | |
100, n (%) | 361 (77) |
120, n (%) | 105 (23) |
Basic Model 1 | Multivariate Model 2 | Multivariate Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value |
Types of plaque: | |||||||||
Calcified (n = 87) | 0 (ref) | 0 (ref) | |||||||
Mixed (n = 120) | 1.4 | [−0.2; 3.0] | 0.08 | 0.8 | [−0.7; 2.3] | 0.3 | |||
Soft (n = 68) | 4.2 | [2.4; 6.0] | <0.0001 | 2.7 | [0.9; 4.5] | 0.004 | |||
Plaque volumes, mm3: | |||||||||
Total plaque | 0.005 | [0.003; 0.007] | <0.0001 | 0.004 | [0.002; 0.006] | 0.001 | |||
Calcified a | −0.4 | [−0.8; −0.006] | 0.047 | −0.5 | [−0.9; −0.02] | 0.04 | |||
Non-calcified | 0.01 | [0.007; 0.01] | <0.0001 | 0.008 | [0.005; 0.01] | <0.0001 | |||
Fibrous | 0.006 | [0.003; 0.009] | <0.0001 | 0.008 | [0.005; 0.01] | <0.0001 | |||
Fibro–fatty b | 3.1 | [2.1; 4.1] | <0.0001 | 0.8 | [−0.4; 2.0] | 0.2 | |||
Necrotic core b | 0.9 | [0.3; 1.4] | 0.002 | −0.4 | [−1.0; 0.2] | 0.2 | |||
Plaque burden, NAV: | |||||||||
Total plaque burden b | 4.6 | [2.4; 6.8] | <0.0001 | 3.6 | [1.1; 6.0] | 0.004 | 5.5 | [−1.1; 12.1] | 0.1 |
CP burden a | −3.3 | [−5.9; −0.7] | 0.01 | −3.5 | [−6.4; −0.7] | 0.02 | −6.5 | [−9.4; −3.6] | <0.0001 |
NCP burden b | 8.5 | [5.9; 11.2] | <0.0001 | 7.0 | [4.3; 9.8] | <0.0001 | 9.1 | [6.3; 12.0] | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overgaard, K.S.; Andersen, T.R.; Mohamed, R.A.; Kristensen, S.V.; Precht, H.; Lambrechtsen, J.; Auscher, S.; Egstrup, K. Patient-Level Pericoronary Adipose Tissue Mean Attenuation: Associations with Plaque Characteristics. J. Cardiovasc. Dev. Dis. 2024, 11, 360. https://doi.org/10.3390/jcdd11110360
Overgaard KS, Andersen TR, Mohamed RA, Kristensen SV, Precht H, Lambrechtsen J, Auscher S, Egstrup K. Patient-Level Pericoronary Adipose Tissue Mean Attenuation: Associations with Plaque Characteristics. Journal of Cardiovascular Development and Disease. 2024; 11(11):360. https://doi.org/10.3390/jcdd11110360
Chicago/Turabian StyleOvergaard, Katrine Schultz, Thomas Rueskov Andersen, Roda Abdulkadir Mohamed, Sebastian Villesen Kristensen, Helle Precht, Jess Lambrechtsen, Søren Auscher, and Kenneth Egstrup. 2024. "Patient-Level Pericoronary Adipose Tissue Mean Attenuation: Associations with Plaque Characteristics" Journal of Cardiovascular Development and Disease 11, no. 11: 360. https://doi.org/10.3390/jcdd11110360
APA StyleOvergaard, K. S., Andersen, T. R., Mohamed, R. A., Kristensen, S. V., Precht, H., Lambrechtsen, J., Auscher, S., & Egstrup, K. (2024). Patient-Level Pericoronary Adipose Tissue Mean Attenuation: Associations with Plaque Characteristics. Journal of Cardiovascular Development and Disease, 11(11), 360. https://doi.org/10.3390/jcdd11110360