Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Investigational MRI Acquisition
2.3. SVD Assessment on MRI
2.4. Statistical Analysis
3. Results
3.1. General Features of the Study Cohort
3.2. Univariable and Multivariable Regression Analyses
3.3. Analyses Using PVS Fractional Volumes in Basal Ganglia as the Dependent Variable
3.4. Analyses Using PVS Fractional Volume in White Matter as the Dependent Variable
3.5. Analyses Using the PVS Fractional Volume in the Brainstem as the Dependent Variable
3.6. Analyses Using PVS Ratios Between the White Matter and Basal Ganglia as the Dependent Variable
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pasi, M.; Cordonnier, C. Clinical Relevance of Cerebral Small Vessel Diseases. Stroke 2020, 51, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.Y.K.; Cai, Y.; Akinyemi, R.; Biessels, G.J.; van den Brink, H.; Chen, C.; Cheung, C.W.; Chow, K.N.; Chung, H.K.H.; Duering, M.; et al. The global burden of cerebral small vessel disease in low- and middle-income countries: A systematic review and meta-analysis. Int. J. Stroke 2023, 18, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Duering, M.; Biessels, G.J.; Brodtmann, A.; Chen, C.; Cordonnier, C.; de Leeuw, F.E.; Debette, S.; Frayne, R.; Jouvent, E.; Rost, N.S.; et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023, 22, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Benveniste, H.; Nedergaard, M.; Zlokovic, B.V.; Mestre, H.; Lee, H.; Doubal, F.N.; Brown, R.; Ramirez, J.; MacIntosh, B.J.; et al. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol. 2020, 16, 137–153. [Google Scholar] [CrossRef]
- Rodriguez Lara, F.; Toro, A.R.; Pinheiro, A.; Demissie, S.; Ekenze, O.; Martinez, O.; Parva, P.; Charidimou, A.; Ghosh, S.; DeCarli, C.; et al. Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease. Brain Sci. 2023, 13, 1323. [Google Scholar] [CrossRef]
- Francis, F.; Ballerini, L.; Wardlaw, J.M. Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: A systematic review and meta-analysis. Int. J. Stroke 2019, 14, 359–371. [Google Scholar] [CrossRef]
- Malhotra, K.; Theodorou, A.; Katsanos, A.H.; Zompola, C.; Shoamanesh, A.; Boviatsis, E.; Paraskevas, G.P.; Spilioti, M.; Cordonnier, C.; Werring, D.J.; et al. Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis. Stroke 2022, 53, 1944–1953. [Google Scholar] [CrossRef]
- Wang, X.X.; Cao, Q.C.; Teng, J.F.; Wang, R.F.; Yang, Z.T.; Wang, M.G.; Cao, Z.-H. MRI-visible enlarged perivascular spaces: Imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur. Radiol. 2022, 32, 5446–5457. [Google Scholar] [CrossRef]
- Dredla, B.K.; Del Brutto, O.H.; Castillo, P.R. Sleep and Perivascular Spaces. Curr. Neurol. Neurosci. Rep. 2023, 23, 607–615. [Google Scholar] [CrossRef]
- Smith, E.E.; Biessels, G.J.; De Guio, F.; de Leeuw, F.E.; Duchesne, S.; Düring, M.; Frayne, R.; Ikram, M.A.; Jouvent, E.; MacIntosh, B.J.; et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimers Dement. 2019, 11, 191–204. [Google Scholar] [CrossRef]
- Staals, J.; Makin, S.D.J.; Doubal, F.N.; Dennis, M.S.; Wardlaw, J.M. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014, 83, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.M.; Chappell, F.M.; Morris, Z.; Wardlaw, J.M. Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc. Dis. 2015, 39, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.; Ballerini, L.; Valdés Hernández, M.d.C.; Chappell, F.M.; Muñoz Maniega, S.; Meijboom, R.; Backhouse, E.V.; Stringer, M.S.; Coello, R.D.; Brown, R.; et al. Topological relationships between perivascular spaces and progression of white matter hyperintensities: A pilot study in a sample of the Lothian Birth Cohort 1936. Front Neurol 2022, 13, 889884. [Google Scholar] [CrossRef]
- Valdés Hernández, M.D.C.; Ballerini, L.; Glatz, A.; Aribisala, B.S.; Bastin, M.E.; Dickie, D.A.; Duarte, C.R.; Munoz, M.S.; Wardlaw, J.M. Step-by-Step Pipeline for Segmenting Enlarged Perivascular Spaces from 3D T2-Weighted MRI, 2018–2023; University of Edinburgh, College of Medicine and Veterinary Medicine, Centre for Clinical Brain Sciences: Edinburgh, UK, 2023. [Google Scholar]
- Duarte Coello, R.; Valdés Hernández, M.d.C.; Zwanenburg, J.J.M.; van der Velden, M.; Kuijf, H.J.; De Luca, A.; Moyano, J.B.; Ballerini, L.; Chappell, F.M.; Brown, R.; et al. Detectability and accuracy of computational measurements of in-silico and physical representations of enlarged perivascular spaces from magnetic resonance images. J. Neurosci. Methods 2024, 403, 110039. [Google Scholar] [CrossRef]
- Valdés Hernández, M.D.C.; Ferguson, K.J.; Chappell, F.M.; Wardlaw, J.M. New multispectral MRI data fusion technique for white matter lesion segmentation: Method and comparison with thresholding in FLAIR images. Eur. Radiol. 2010, 20, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Xu, F.; Yang, M.; Zhang, M.; Yun, W. Correlation between enlarged perivascular space and brain white matter hyperintensities in patients with recent small subcortical infarct. Brain Behav. 2023, 13, e3168. [Google Scholar] [CrossRef]
- Laveskog, A.; Wang, R.; Bronge, L.; Wahlund, L.O.; Qiu, C. Perivascular Spaces in Old Age: Assessment, Distribution, and Correlation with White Matter Hyperintensities. AJNR Am. J. Neuroradiol. 2018, 39, 70–76. [Google Scholar] [CrossRef]
- Yamada, S.; Ishikawa, M.; Yamamoto, K.; Yamaguchi, M.; Oshima, M. Location-specific characteristics of perivascular spaces as the brain’s interstitial fluid drainage system. J. Neurol. Sci. 2019, 398, 9–15. [Google Scholar] [CrossRef]
- Yakushiji, Y.; Charidimou, A.; Hara, M.; Noguchi, T.; Nishihara, M.; Eriguchi, M.; Nanri, Y.; Nishiyama, M.; Werring, D.J.; Hara, H. Topography and associations of perivascular spaces in healthy adults: The Kashima scan study. Neurology 2014, 83, 2116–2123. [Google Scholar] [CrossRef]
- Zou, Q.; Wang, M.; Zhang, D.; Wei, X.; Li, W. White Matter Hyperintensities in Young Patients from a Neurological Outpatient Clinic: Prevalence, Risk Factors, and Correlation with Enlarged Perivascular Spaces. J. Pers. Med. 2023, 13, 525. [Google Scholar] [CrossRef]
- Blanco, P.J.; Müller, L.O.; Spence, J.D. Blood pressure gradients in cerebral arteries: A clue to pathogenesis of cerebral small vessel disease. Stroke Vasc. Neurol. 2017, 2, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Riba-Llena, I.; Jiménez-Balado, J.; Castañé, X.; Girona, A.; López-Rueda, A.; Mundet, X.; Jarca, C.I.; Álvarez-Sabin, J.; Montaner, J.; Delgado, P. Arterial Stiffness Is Associated With Basal Ganglia Enlarged Perivascular Spaces and Cerebral Small Vessel Disease Load. Stroke 2018, 49, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Thrippleton, M.J.; Makin, S.D.; Marshall, I.; Geerlings, M.I.; De Craen, A.J.M.; van Buchem, M.A.; Wardlaw, J.M. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 2016, 36, 1653–1667. [Google Scholar] [CrossRef]
- Wang, H.; Nie, Z.Y.; Liu, M.; Li, R.R.; Huang, L.H.; Lu, Z.; Jin, L.-J.; Li, Y.-X. Clinical characteristics of perivascular space and brain CT perfusion in stroke-free patients with intracranial and extracranial atherosclerosis of different extents. Ann. Transl. Med. 2020, 8, 215. [Google Scholar] [CrossRef]
- Evans, T.E.; Knol, M.J.; Schwingenschuh, P.; Wittfeld, K.; Hilal, S.; Ikram, M.A.; Dubost, F.; van Wijnen, K.M.H.; Katschnig, P.; Yilmaz, P.; et al. Determinants of Perivascular Spaces in the General Population: A Pooled Cohort Analysis of Individual Participant Data. Neurology 2023, 100, E107–E122. [Google Scholar] [CrossRef] [PubMed]
- Lysen, T.S.; Yilmaz, P.; Dubost, F.; Ikram, M.A.; de Bruijne, M.; Vernooij, M.W.; Luik, A.I. Sleep and perivascular spaces in the middle-aged and elderly population. J. Sleep Res. 2022, 31, 13485. [Google Scholar] [CrossRef]
- Shih, N.C.; Barisano, G.; Lincoln, K.D.; Mack, W.J.; Sepehrband, F.; Choupan, J. Effects of sleep on brain perivascular space in a cognitively healthy population. Sleep Med. 2023, 111, 170–179. [Google Scholar] [CrossRef]
Clinical Characteristics | All N = 71 | Cohort 1 N = 50 | Cohort 2 N = 21 |
---|---|---|---|
Age, years, mean (SD) | 70.2 (10.8) | 70.1 (11.5) | 70.6 (9.2) |
Female sex, n (%) | 19 (26.8) | 18 (36.0) | 1 (4.8) |
Arterial hypertension, n (%) | 47 (66.2) | 31 (62.0) | 16 (76.2) |
Hyperlipidemia, n (%) | 39 (54.9) | 29 (58.0) | 10 (47.6) |
Diabetes mellitus, n (%) | 23 (32.4) | 17 (34.0) | 6 (28.6) |
Any smoking, n (%) | 24 (33.8) | 18 (36.0) | 6 (28.6) |
Any alcohol intake, n (%) | 28 (39.4) | 20 (40.0) | 8 (38.1) |
PSQI, median (IQR) | 6 (4–10) | 6 (4–10) | 7 (4.5–10) |
ESS score, median (IQR) | 5 (2–7) | 5 (2–7) | 6 (2.5–7) |
Lacunes, presence of, n (%) | 1.9 (2.5) | 33 (66.0) | 11 (52.4) |
Lacunes, number of, median (IQR) | 1 (0–3) | 1 (0–3) | 1 (0–3) |
Cerebral microbleeds, presence of, n (%) | 18 (25.35) | 11 (22.0) | 7 (33.3) |
Cerebral microbleeds, number, median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–1.5) |
BG-PVS, percentage, mean (SD) | 4.0 (1.6) | 0.89 (0.78) | 1.48 (1.07) |
WM-PVS, percentage, mean (SD) | 1.1 (0.9) | 0.66 (0.38) | 0.57 (0.30) |
BS-PVS, percentage, mean (SD) | 0.6 (0.4) | 0.66 (0.38) | 0.57 (0.30) |
Fazekas score, periventricular areas, median (IQR) | 2 (1–2) | 2 (1–2) | 2 (1–2) |
Fazekas score, deep white matter, median (IQR) | 1 (1–2) | 1 (1–2) | 1 (1–2) |
WMH ratio (%), mean (SD) | 1.1 (1.0) | 1.2 (1.0) | 1.0 (1.0) |
NIHSS, median (IQR) | 2.5 (1–4) | 3 (1–5) | 2 (1–4) |
Dependent Variable: BG-PVS % (log) | Unadjusted Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
Regressors: | βs− | p | R2 (%) | βs− | p | R2 (%) |
Age | 0.022 | <0.001 * | 29.4 | 0.018 | <0.001 * | 36.8 |
Female sex | 0.050 | 0.668 | 0.3 | −0.008 | 0.934 | 36.84 |
Arterial hypertension | 0.363 | 0.001 * | 16.1 | 0.256 | 0.007 * | 36.84 |
Dyslipidemia | 0.049 | 0.634 | 0.3 | −0.085 | 0.337 | 37.7 |
Diabetes mellitus | 0.134 | 0.222 | 2.2 | −0.092 | 0.351 | 37.7 |
Body Mass Index | −0.0009 | 0.514 | 0.6 | −0.001 | 0.384 | 37.8 |
Any smoking | −0.130 | 0.231 | 2.1 | 0.052 | 0.587 | 37.1 |
Any alcohol intake | −0.088 | 0.403 | 1.0 | −0.011 | 0.900 | 36.9 |
PSQI | −0.0003 | 0.979 | 0.0 | −0.006 | 0.581 | 38.9 |
ESS score | −0.002 | 0.888 | 0.0 | 0.009 | 0.494 | 38.8 |
Number of lacunes | 0.049 | 0.017 * | 8.0 | 0.037 | 0.034 * | 41.0 |
Number of cerebral microbleeds | 0.053 | 0.046 * | 5.7 | 0.061 | 0.006 * | 44.2 |
WMH ratio | 0.162 | 0.001 * | 14.9 | 0.109 | 0.017 * | 42.2 |
Dependent variable: WM-PVS % (log) | Unadjusted model | Adjusted model | ||||
Regressors: | βs− | p | R2 (%) | βs− | p | R2 (%) |
Age | 0.024 | 0.013 * | 8.6 | 0017 | 0.073 | 20.8 |
Female sex | −0.096 | 0.689 | 0.2 | −0.226 | 0.308 | 20.8 |
Arterial hypertension | 0.735 | 0.001 * | 15.5 | 0.673 | 0.002 * | 20.8 |
Dyslipidemia | 0.298 | 0.162 | 2.8 | 0.068 | 0.742 | 20.9 |
Diabetes mellitus | 0.245 | 0.280 | 1.7 | −0.151 | 0.508 | 21.3 |
Body Mass Index | −0.0009 | 0.765 | 0.1 | −0.002 | 0.565 | 21.1 |
Any smoking | 0.042 | 0.853 | 0.0 | 0.314 | 0.150 | 23.4 |
Any alcohol intake | 0.090 | 0.681 | 0.2 | 0.175 | 0.387 | 21.7 |
PSQI | 0.045 | 0.086 | 4.5 | 0.035 | 0.144 | 24.8 |
ESS score | −0.020 | 0.531 | 0.6 | −0.007 | 0.793 | 20.9 |
Number of lacunes | 0.135 | 0.001 * | 14.4 | 0.117 | 0.003 * | 30.8 |
Number of cerebral microbleeds | 0.095 | 0.085 | 4.3 | 0.086 | 0.098 | 24.0 |
WMH ratio | 0.159 | 0.126 | 3.4 | 0.089 | 0.405 | 21.6 |
Dependent variable: BS-PVS % (log) | Unadjusted model | Adjusted model | ||||
Regressors: | βs− | p | R2 (%) | βs− | p | R2 (%) |
Age | 0.012 | 0.076 | 4.5 | 0.010 | 0.151 | 8.5 |
Female sex | −0.164 | 0.305 | 1.5 | −0.206 | 0.196 | 8.5 |
Arterial hypertension | 0.223 | 0.135 | 3.2 | 0.198 | 0.197 | 8.5 |
Dyslipidemia | 0.135 | 0.343 | 1.3 | 0.063 | 0.667 | 8.7 |
Diabetes mellitus | 0.306 | 0.041 * | 5.9 | 0.194 | 0.235 | 10.4 |
Body Mass Index | −0.001 | 0.460 | 0.8 | −0.002 | 0.362 | 9.8 |
Any smoking | −0.049 | 0.743 | 0.1 | 0.079 | 0.616 | 8.8 |
Any alcohol intake | −0.045 | 0.755 | 0.1 | −0.030 | 0.834 | 8.5 |
PSQI | 0.019 | 0.269 | 1.9 | 0.018 | 0.295 | 10.4 |
ESS score | 0.037 | 0.861 | 0.0 | 0.006 | 0.788 | 8.9 |
Number of lacunes | 0.007 | 0.481 | 0.7 | 0.017 | 0.570 | 8.9 |
Number of cerebral microbleeds | 0.025 | 0.499 | 0.7 | 0.026 | 0.494 | 9.0 |
WMH ratio | 0.085 | 0.218 | 2.2 | 0.090 | 0.242 | 10.4 |
Dependent variable: WM/BG-PVS % (log) | Unadjusted model | Adjusted model | ||||
Regressors: | βs− | p | R2 (%) | βs− | p | R2 (%) |
Age | 0.002 | 0.751 | 0.15 | −0.002 | 0.808 | 8.3 |
Female sex | −0.146 | 0.441 | 0.86 | −0.218 | 0.248 | 8.3 |
Arterial hypertension | 0.373 | 0.034 * | 6.38 | 0.417 | 0.024 * | 8.3 |
Dyslipidemia | 0.248 | 0.139 | 3.14 | 0.153 | 0.381 | 9.4 |
Diabetes mellitus | 0.111 | 0.538 | 0.55 | −0.060 | 0.761 | 8.4 |
Body Mass Index | 0.000 | 0.983 | 0.00 | −0.001 | 0.818 | 8.2 |
Any smoking | 0.172 | 0.333 | 1.36 | 0.263 | 0.157 | 11.1 |
Any alcohol intake | 0.178 | 0.301 | 1.55 | 0.186 | 0.279 | 9.93 |
PSQI | 0.046 | 0.028 * | 7.36 | 0.041 | 0.046 * | 14.4 |
ESS score | −0.017 | 0.480 | 0.74 | −0.016 | 0.514 | 8.7 |
Number of lacunes | 0.086 | 0.010 * | 9.35 | 0.080 | 0.018 * | 15.8 |
Number of cerebral microbleeds | 0.042 | 0.338 | 1.35 | 0.025 | 0.571 | 9.1 |
WMH ratio | −0.003 | 0.967 | 0.00 | −0.020 | 0.828 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sozzi, C.; Brenlla, C.; Bartolomé, I.; Girona, A.; Muñoz-Moreno, E.; Laredo, C.; Rodríguez-Vázquez, A.; Doncel-Moriano, A.; Rudilosso, S.; Chamorro, Á. Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct. J. Cardiovasc. Dev. Dis. 2024, 11, 345. https://doi.org/10.3390/jcdd11110345
Sozzi C, Brenlla C, Bartolomé I, Girona A, Muñoz-Moreno E, Laredo C, Rodríguez-Vázquez A, Doncel-Moriano A, Rudilosso S, Chamorro Á. Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct. Journal of Cardiovascular Development and Disease. 2024; 11(11):345. https://doi.org/10.3390/jcdd11110345
Chicago/Turabian StyleSozzi, Caterina, Carla Brenlla, Inés Bartolomé, Andrés Girona, Emma Muñoz-Moreno, Carlos Laredo, Alejandro Rodríguez-Vázquez, Antonio Doncel-Moriano, Salvatore Rudilosso, and Ángel Chamorro. 2024. "Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct" Journal of Cardiovascular Development and Disease 11, no. 11: 345. https://doi.org/10.3390/jcdd11110345
APA StyleSozzi, C., Brenlla, C., Bartolomé, I., Girona, A., Muñoz-Moreno, E., Laredo, C., Rodríguez-Vázquez, A., Doncel-Moriano, A., Rudilosso, S., & Chamorro, Á. (2024). Clinical Relevance of Different Loads of Perivascular Spaces According to Their Localization in Patients with a Recent Small Subcortical Infarct. Journal of Cardiovascular Development and Disease, 11(11), 345. https://doi.org/10.3390/jcdd11110345