Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. RNA Isolation and Quantitative Real-Time PCR
2.3. Western Blot
2.4. Echocardiography
2.5. Statistical Analysis
3. Results
3.1. Mouse Body and Heart Weights
3.2. Heart Rates
3.3. Echocardiography
3.4. MHC mRNA Expression
3.5. MHC Protein Levels
3.6. Connexin-43 and Desmin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, M.; Pan, X.; Xu, Z.; Sun, M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res. 2017, 109, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Crispi, F.; Miranda, J.; Gratacos, E. Long-term cardiovascular consequences of fetal growth restriction: Biology, clinical implications, and opportunities for prevention of adult disease. Am. J. Obstet. Gynecol. 2018, 218, S869–S879. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schleich, J.M.; Abdulla, T.; Summers, R.; Houyel, L. An overview of cardiac morphogenesis. Arch. Cardiovasc. Dis. 2013, 106, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Purisch, S.E.; Gyamfi-Bannerman, C. Epidemiology of preterm birth. Semin. Perinatol. 2017, 41, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Dey, S.K.; Fisher, S.J. Preterm labor: One syndrome, many causes. Science 2014, 345, 760–765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrone, S.; Santacroce, A.; Longini, M.; Proietti, F.; Bazzini, F.; Buonocore, G. The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. Oxid. Med. Cell Longev. 2018, 2018, 7483062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graf, A.E.; Haines, K.M.; Pierson, C.R.; Bolon, B.N.; Houston, R.H.; Velten, M.; Heyob, K.M.; Rogers, L.K. Perinatal inflammation results in decreased oligodendrocyte numbers in adulthood. Life Sci. 2014, 94, 164–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velten, M.; Gorr, M.W.; Youtz, D.J.; Velten, C.; Rogers, L.K.; Wold, L.E. Adverse perinatal environment contributes to altered cardiac development and function. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1334–H1340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velten, M.; Hutchinson, K.R.; Gorr, M.W.; Wold, L.E.; Lucchesi, P.A.; Rogers, L.K. Systemic maternal inflammation and neonatal hyperoxia induces remodeling and left ventricular dysfunction in mice. PLoS ONE 2011, 6, e24544. [Google Scholar] [CrossRef] [PubMed]
- Velten, M.; Heyob, K.M.; Wold, L.E.; Rogers, L.K. Perinatal inflammation induces sex-related differences in cardiovascular morbidities in mice. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H573–H579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lindsey, M.L.; Kassiri, Z.; Virag, J.A.I.; de Castro Bras, L.E.; Scherrer-Crosbie, M. Guidelines for measuring cardiac physiology in mice. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H733–H752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- R.C. Teams. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Carr, H.; Cnattingius, S.; Granath, F.; Ludvigsson, J.F.; Edstedt Bonamy, A.K. Preterm Birth and Risk of Heart Failure up to Early Adulthood. J. Am. Coll. Cardiol. 2017, 69, 2634–2642. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Perston, L.; More, K.; Graham, P.; Ellis, N.; Frampton, C.; Troughton, R.; Moor, S.; Austin, N. Cardiac structure and function in very preterm-born adolescents compared to term-born controls: A longitudinal cohort study. Early Hum. Dev. 2021, 163, 105505. [Google Scholar] [CrossRef] [PubMed]
- Telles, F.; McNamara, N.; Nanayakkara, S.; Doyle, M.P.; Williams, M.; Yaeger, L.; Marwick, T.H.; Leeson, P.; Levy, P.T.; Lewandowski, A.J. Changes in the Preterm Heart from Birth to Young Adulthood: A Meta-analysis. Pediatrics 2020, 146, e20200146. [Google Scholar] [CrossRef] [PubMed]
- Crump, C.; Groves, A.; Sundquist, J.; Sundquist, K. Association of Preterm Birth with Long-term Risk of Heart Failure into Adulthood. JAMA Pediatr. 2021, 175, 689–697. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romo, A.; Carceller, R.; Tobajas, J. Intrauterine growth retardation (IUGR): Epidemiology and etiology. Pediatr. Endocrinol. Rev. 2009, 6 (Suppl. S3), 332–336. [Google Scholar] [PubMed]
- Leeson, P.; Lewandowski, A.J. A New Risk Factor for Early Heart Failure: Preterm Birth. J. Am. Coll. Cardiol. 2017, 69, 2643–2645. [Google Scholar] [CrossRef] [PubMed]
- Arnott, C.; Skilton, M.R.; Ruohonen, S.; Juonala, M.; Viikari, J.S.; Kahonen, M.; Lehtimäki, T.; Laitinen, T.; Celermajer, D.S.; Raitakari, O.T. Subtle increases in heart size persist into adulthood in growth restricted babies: The Cardiovascular Risk in Young Finns Study. Open Heart 2015, 2, e000265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Norman, M. Preterm birth—An emerging risk factor for adult hypertension? Semin. Perinatol. 2010, 34, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Kaijser, M.; Bonamy, A.K.; Akre, O.; Cnattingius, S.; Granath, F.; Norman, M.; Ekbom, A. Perinatal risk factors for diabetes in later life. Diabetes 2009, 58, 523–526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crump, C.; Howell, E.A.; Stroustrup, A.; McLaughlin, M.A.; Sundquist, J.; Sundquist, K. Association of Preterm Birth with Risk of Ischemic Heart Disease in Adulthood. JAMA Pediatr. 2019, 173, 736–743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Rydberg, A.; Halvorsen, C.P.; Liuba, P.; Fellman, V.; Domellöf, M.; Sjöberg, G.; Norman, M. The Preterm Heart in Childhood: Left Ventricular Structure, Geometry, and Function Assessed by Echocardiography in 6-Year-Old Survivors of Periviable Births. J. Am. Heart Assoc. 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aye, C.Y.L.; Lewandowski, A.J.; Lamata, P.; Upton, R.; Davis, E.; Ohuma, E.O.; Kenworthy, Y.; Boardman, H.; Wopperer, S.; Packham, A.; et al. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Pediatr. Res. 2017, 82, 36–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kozak-Barany, A.; Jokinen, E.; Saraste, M.; Tuominen, J.; Valimaki, I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: A prospective follow-up study. J. Pediatr. 2001, 139, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.J.; Bai, W.; Price, A.N.; Edwards, A.D.; Rueckert, D.; Groves, A.M. Ventricular remodeling in preterm infants: Computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res. 2019, 85, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Bensley, J.G.; Moore, L.; De Matteo, R.; Harding, R.; Black, M.J. Impact of preterm birth on the developing myocardium of the neonate. Pediatr. Res. 2018, 83, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Burchert, H.; Lewandowski, A.J. Preterm Birth Is a Novel, Independent Risk Factor for Altered Cardiac Remodeling and Early Heart Failure: Is it Time for a New Cardiomyopathy? Curr. Treat. Options Cardiovasc. Med. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Haghdoost, A.A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low birthweight or rapid catch-up growth: Which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr. Int. Child. Health 2015, 35, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.G.; Forsen, T.; Tuomilehto, J.; Winter, P.D.; Osmond, C.; Barker, D.J. Catch-up growth in childhood and death from coronary heart disease: Longitudinal study. BMJ 1999, 318, 427–431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trittmann, J.K.; Velten, M.; Heyob, K.M.; Almazroue, H.; Jin, Y.; Nelin, L.D.; Rogers, L.K. Arginase and alpha-smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia. Clin. Exp. Pharmacol. Physiol. 2018, 45, 556–562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velten, M.; Britt, R.D.; Jr Heyob, K.M.; Welty, S.E.; Eiberger, B.; Tipple, T.E.; Rogers, L.K. Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R279–R290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blenck, C.L.; Harvey, P.A.; Reckelhoff, J.F.; Leinwand, L.A. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ. Res. 2016, 118, 1294–1312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, W.A.; Grupp, I.L.; Subramaniam, A.; Robbins, J. Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ. Res. 1991, 68, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.P. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J. Mol. Cell Cardiol. 2007, 43, 388–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krenz, M.; Robbins, J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J. Am. Coll. Cardiol. 2004, 44, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Herron, T.J.; McDonald, K.S. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ. Res. 2002, 90, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Tsikitis, M.; Galata, Z.; Mavroidis, M.; Psarras, S.; Capetanaki, Y. Intermediate filaments in cardiomyopathy. Biophys. Rev. 2018, 10, 1007–1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Gene, Mouse | Sequence |
---|---|
β-actin | For: 5′-CCT GAC AGA CTA CCT CAT GAA GAT C-3′ |
Rev: 5′-TAG AGC AAC ATA GCA CAG CTT CTC-3′ | |
Connexin-43 | For: 5′-ACA GCG GTT GAG TCA GCT TG-3′ |
Rev: 5′-GAG AGA TGG GGA AGG ACT TGT-3′ | |
Desmin | For: 5′-GTG GAT GCA GCC ACT CTA GC-3′ |
Rev: 5′-TTA GCC GCG ATG GTC TCA TAC-3′ | |
α-myosin heavy chain | For: 5′-GCC CAG TAC CTC CGA AAG TC-3′ |
Rev: 5′-ATC AGG CAC GAA GCA CTC C-3′ | |
β-myosin heavy chain | For: 5′-CCT GCG GAA GTC TGA GAA GG-3′ |
Rev: 5′-CTC GGG ACA CGA TCT TGG C-3′ |
DOL | Sex | Sal/RA | Sal/O2 | LPS/RA | LPS/O2 | Two-Way ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Grams) | Mean | SEM | N | Mean | SEM | N | Mean | SEM | N | Mean | SEM | N | ||
P0 | male | 1.74 | 0.023 | 32 | 1.65 * | 0.019 | 41 | effect of sex, p = 0.001 | ||||||
female | 1.67 | 0.029 | 31 | 1.56 * | 0.026 | 39 | effect of exposure, p < 0.001 | |||||||
P7 | male | 5.03 | 0.099 | 42 | 4.35 | 0.143 | 36 | 4.74 * | 0.083 | 45 | 4.33 * | 0.112 | 24 | effect of exposure, p < 0.001 |
female | 4.93 | 0.185 | 18 | 4.15 | 0.144 | 27 | 4.44 * | 0.108 | 43 | 4.19 * | 0.162 | 20 | ||
P21 | males | 10.11 | 0.439 | 11 | 9.43 | 0.278 | 14 | 12.48 *# | 0.746 | 13 | 11.00 *#& | 0.576 | 14 | effect of exposure, p < 0.001 |
female | 9.71 | 0.253 | 15 | 8.62 | 0.212 | 12 | 11.25 # | 0.639 | 10 | 9.97 | 0.437 | 17 | interaction, p = 0.005 | |
P56 | males | 24.03 | 0.260 | 3 | 24.52 | 0.490 | 6 | 27.61 *# | 0.519 | 7 | 23.52 & | 0.686 | 5 | effect of sex, p < 0.001 |
female | 21.37 | 0.888 | 7 | 19.55 ^ | 0.622 | 4 | 22.01 ^ | 0.698 | 5 | 19.00 ^ | 0.503 | 4 | effect of exposure, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlek, L.R.; Heyob, K.M.; Jacob, N.R.; Korada, S.; Khuhro, Z.; Khan, A.Q.; Shaffer, T.A.; Conroy, S.; Velten, M.; Rogers, L.K. Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction. J. Cardiovasc. Dev. Dis. 2024, 11, 346. https://doi.org/10.3390/jcdd11110346
Pavlek LR, Heyob KM, Jacob NR, Korada S, Khuhro Z, Khan AQ, Shaffer TA, Conroy S, Velten M, Rogers LK. Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction. Journal of Cardiovascular Development and Disease. 2024; 11(11):346. https://doi.org/10.3390/jcdd11110346
Chicago/Turabian StylePavlek, Leeann R., Kathryn M. Heyob, Nitya R. Jacob, Saichidroopi Korada, Zahra Khuhro, Aiman Q. Khan, Terri A. Shaffer, Sara Conroy, Markus Velten, and Lynette K. Rogers. 2024. "Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction" Journal of Cardiovascular Development and Disease 11, no. 11: 346. https://doi.org/10.3390/jcdd11110346
APA StylePavlek, L. R., Heyob, K. M., Jacob, N. R., Korada, S., Khuhro, Z., Khan, A. Q., Shaffer, T. A., Conroy, S., Velten, M., & Rogers, L. K. (2024). Perinatal Inflammation Results in Sex-Dependent Cardiac Dysfunction. Journal of Cardiovascular Development and Disease, 11(11), 346. https://doi.org/10.3390/jcdd11110346