A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design with Design of Experiments
2.2. In Vitro Cell Culture
2.3. The Ablation Setup and the Ablation Probe
2.4. Ablation Imaging and Postprocessing
3. Results and Discussion
3.1. Ablation Images and Measurements
3.2. Design and Experiments Analysis and Discussion
3.2.1. Observations with Large Residuals (Greater Than Two Standard Deviations)
3.2.2. The Developed Empirical Mathematical Model
3.3. Confirmation Runs of the Empirical Model
- An ablation area of approximately 97 mm2 with the constraints of 8 mm electrode spacing and an input voltage of 1000 V;
- An ablation area of approximately 97 mm2 with the constraints of 8 mm electrode spacing and an input voltage of 1300 V;
- An ablation area of approximately 80 mm2 with the constraints of 8 mm electrode spacing;
- An ablation area of approximately 110 mm2 with the constraints of 8 mm electrode spacing.
3.4. Optimizing Ablation Area for Electrical Isolation
3.5. Limitations of the Study and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Suárez, A.; Pérez, J.J.; Irastorza, R.M.; D’Avila, A.; Berjano, E. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Comput. Methods Programs Biomed. 2022, 214, 106546. [Google Scholar] [CrossRef] [PubMed]
- Buist, T.J.; Zipes, D.P.; Elvan, A. Atrial fibrillation ablation strategies and technologies: Past, present, and future. Clin. Res. Cardiol. 2021, 110, 775–788. [Google Scholar] [CrossRef]
- Gómez-Barea, M.; García-Sánchez, T.; Ivorra, A. A computational comparison of radiofrequency and pulsed field ablation in terms of lesion morphology in the cardiac chamber. Sci. Rep. 2022, 12, 16144. [Google Scholar] [CrossRef]
- Di Biase, L.; Diaz, J.C.; Zhang, X.-D.; Romero, J. Pulsed field catheter ablation in atrial fibrillation. Trends Cardiovasc. Med. 2022, 32, 378–387. [Google Scholar] [CrossRef]
- Geboers, B.; Scheffer, H.J.; Graybill, P.M.; Ruarus, A.H.; Nieuwenhuizen, S.; Puijk, R.S.; van den Tol, P.M.; Davalos, R.V.; Rubinsky, B.; de Gruijl, T.D.; et al. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020, 295, 254–272. [Google Scholar] [CrossRef]
- Younis, A.; Zilberman, I.; Krywanczyk, A.; Higuchi, K.; Yavin, H.D.; Sroubek, J.; Anter, E. Effect of Pulsed-Field and Radiofrequency Ablation on Heterogeneous Ventricular Scar in a Swine Model of Healed Myocardial Infarction. Circ. Arrhythmia Electrophysiol. 2022, 15, e011209. [Google Scholar] [CrossRef]
- Di Monaco, A.; Vitulano, N.; Troisi, F.; Quadrini, F.; Romanazzi, I.; Calvi, V.; Grimaldi, M. Pulsed Field Ablation to Treat Atrial Fibrillation: A Review of the Literature. J. Cardiovasc. Dev. Dis. 2022, 9, 94. [Google Scholar] [CrossRef]
- Safavi-Naeini, P.; Rasekh, A. Closure of Left Atrial Appendage to Prevent Stroke: Devices and Status. Tex. Heart Inst. J. 2018, 45, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Niedz, R.P.; Evens, T.J. Design of experiments (DOE)—History, concepts, and relevance to in vitro culture. Vitr. Cell. Dev. Biol.-Plant 2016, 52, 547–562. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, B.; Moser, M.; Zhang, E.; Zhang, W. Analysis and Optimization of Determining Factors in Irreversible Electroporation for Large Ablation Zones Without Thermal Damage. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition (IMECE2017), Tampa, FL, USA, 3–9 November 2017; American Society of Mechanical Engineers: Tampa, FL, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wardhana, G.; Almeida, J.P.; Abayazid, M.; Fütterer, J.J. Development of a thermal model for irreversible electroporation: An approach to estimate and optimize the IRE protocols. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Nassour, Y.B.K.; Nemmich, S.; Tilmatine, A. Analysis and Optimization of Pulsed Electric Field Distribution Efficiency in a Cylindrical Treatment Chamber for Juice Extraction. Carpathian J. Food Sci. Technol. 2020, 12, 145–154. [Google Scholar] [CrossRef]
- Zhang, C.; Du, J.; Tang, X.; Ma, D.; Qin, L.; Zhang, A.; Jiang, N. Electrotransformation optimization of plasmid pGAPZαA–CecMd3cs into Pichia pastoris GS115 with response surface methodology. Electron. J. Biotechnol. 2023, 61, 54–60. [Google Scholar] [CrossRef]
- Eslaminejad, T.; Nematollahi-Mahani, S.N.; Ansari, M. Cationic β-Cyclodextrin–Chitosan Conjugates as Potential Carrier for pmCherry-C1 Gene Delivery. Mol. Biotechnol. 2016, 58, 287–298. [Google Scholar] [CrossRef]
- Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 2009, 54, 4863–4878. [Google Scholar] [CrossRef] [PubMed]
- Istuk, N.; La Gioia, A.; Benchakroun, H.; Lowery, A.; McDermott, B.; O’Halloran, M. Relationship between the Conductivity of Human Blood and Blood Counts. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 184–190. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Minitab LLC, Unusual Observations. Support.minitab.com. 2022. Available online: https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistical-modeling/regression/supporting-topics/model-assumptions/unusual-observations/ (accessed on 2 August 2023).
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Verma, A.; Macle, L. Persistent Atrial Fibrillation Ablation: Where Do We Go From Here? Can. J. Cardiol. 2018, 34, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.B.; Fan, R.E.; Xing, L. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies. Sci. Rep. 2017, 7, 40747. [Google Scholar] [CrossRef]
- Gudvangen, E.; Kim, V.; Novickij, V.; Battista, F.; Pakhomov, A.G. Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci. Rep. 2022, 12, 1763. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, S.; Yin, H.; He, Q.; Xue, Z.; Lu, C.; Su, S. Study on Optimal Parameter and Target for Pulsed-Field Ablation of Atrial Fibrillation. Front. Cardiovasc. Med. 2021, 8, 690092. [Google Scholar] [CrossRef] [PubMed]
- Santangeli, P.; Di, L.; Horton, R.; David, J.; Natale, A. CT Imaging to Assess the Left Atrial Appendage Anatomy: Clinical Implications. In Computed Tomography-Clinical Applications; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Howard, B.; Verma, A.; Tzou, W.S.; Mattison, L.; Kos, B.; Miklavčič, D.; Onal, B.; Stewart, M.T.; Sigg, D.C. Effects of Electrode-Tissue Proximity on Cardiac Lesion Formation Using Pulsed Field Ablation. Circ. Arrhythmia Electrophysiol. 2022, 15, 706–713. [Google Scholar] [CrossRef] [PubMed]
Individual Factor | Description | Low | High |
---|---|---|---|
Input Voltage (V) | Voltage level of the waveform | 1000 | 1300 |
Number of Waveform/Ablation Repeats | Proxy for the on time | 4 | 8 |
Electrode Spacing c-c (mm) | Center-to-center distance between the electrodes | 6 | 8 |
Electrode Width (mm) | Edge-to-edge distance of the electrode | 1.2 | 1.5 |
Electrode Width (mm) | Electrode Spacing (mm) | Input Voltage (V) | Number of Ablation Repeats | Area Expected (mm2) | Area Measured (mm2) | 98.75% Prediction Interval (mm2) |
---|---|---|---|---|---|---|
1.5 | 8 | 1000 | 7 | 98.22 | 98.05 | (83.17, 113.27) |
1.5 | 8 | 1300 | 4 | 102.45 | 100.35 | (87.10, 117.81) |
1.5 | 8 | 1000 | 4 | 78.16 | 77.15 | (62.80, 93.51) |
1.5 | 8 | 1150 | 7 | 110.37 | 108.28 | (95.73, 125.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunne, E.; Baena-Montes, J.M.; Donaghey, K.; Clarke, C.; Kraśny, M.J.; Amin, B.; O’Halloran, T.; Quinlan, L.R.; Elahi, A.; O’Halloran, M. A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments. J. Cardiovasc. Dev. Dis. 2023, 10, 423. https://doi.org/10.3390/jcdd10100423
Dunne E, Baena-Montes JM, Donaghey K, Clarke C, Kraśny MJ, Amin B, O’Halloran T, Quinlan LR, Elahi A, O’Halloran M. A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments. Journal of Cardiovascular Development and Disease. 2023; 10(10):423. https://doi.org/10.3390/jcdd10100423
Chicago/Turabian StyleDunne, Eoghan, Jara M. Baena-Montes, Kevin Donaghey, Cormac Clarke, Marcin J. Kraśny, Bilal Amin, Tony O’Halloran, Leo R. Quinlan, Adnan Elahi, and Martin O’Halloran. 2023. "A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments" Journal of Cardiovascular Development and Disease 10, no. 10: 423. https://doi.org/10.3390/jcdd10100423
APA StyleDunne, E., Baena-Montes, J. M., Donaghey, K., Clarke, C., Kraśny, M. J., Amin, B., O’Halloran, T., Quinlan, L. R., Elahi, A., & O’Halloran, M. (2023). A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments. Journal of Cardiovascular Development and Disease, 10(10), 423. https://doi.org/10.3390/jcdd10100423