Running Plus Strength Training Positively Affects Muscle Strength and Quality in Both Younger (Below 50 Years Old) and Older (Above 50 Years Old) Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Study Design
2.4. Experimental Procedures
2.4.1. Questionnaires
2.4.2. Isokinetic Muscle Assessment
2.4.3. Body Composition Assessment
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Muscular Strength Outcomes
3.3. Body Composition Outcomes
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.; dos Santos Chiappetta Salgado Nogueira, V.; Mulder, A.P. Sarcopenia and Poor Muscle Quality Associated with Severe Obesity in Young Adults and Middle-Aged Adults. Clin. Nutr. ESPEN 2021, 45, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Shaw, S.C.; Dennison, E.M.; Cooper, C. Epidemiology of Sarcopenia: Determinants throughout the Lifecourse. Calcif. Tissue Int. 2017, 101, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Bellettiere, J.; LaMonte, M.J.; Rillamas-Sun, E.; Kerr, J.; Evenson, K.R.; Lee, I.-M.; Di, C.; Buchner, D.; Hovell, M.F.; LaCroix, A.Z. Sedentary Behavior Increases Risk for Cardiovascular Disease in Older Women: The Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation 2018, 137, 1036–1046. [Google Scholar] [CrossRef]
- Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future Life Expectancy in 35 Industrialised Countries: Projections with a Bayesian Model Ensemble. Lancet 2017, 389, 1323–1335. [Google Scholar] [CrossRef]
- Peterson, M.D.; Sen, A.; Gordon, P.M. The Disabilities of the Arm, Shoulder and Hand (DASH) Score—Orthopaedic Scores. Med. Sci. Sports Exerc. 2011, 43, 249–258. [Google Scholar] [CrossRef]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance Exercise for Muscular Strength in Older Adults: A Meta-Analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef]
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of Skeletal Muscle: A 12-Yr Longitudinal Study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; A Quantitative Review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, R.M.; Smith, J.J.; Morgan, P.J.; Barnett, L.M.; Hallal, P.C.; Colyvas, K.; Lubans, D.R. Global Participation in Sport and Leisure-Time Physical Activities: A Systematic Review and Meta-Analysis. Prev. Med. 2017, 95, 14–25. [Google Scholar] [CrossRef]
- Seffrin, A.; Vivan, L.; dos Anjos Souza, V.R.; da Cunha, R.A.; de Lira, C.A.B.; Vancini, R.L.; Weiss, K.; Knechtle, B.; Andrade, M.S. Impact of Aging on Maximal Oxygen Uptake Adjusted for Lower Limb Lean Mass, Total Body Mass, and Absolute Values in Runners. GeroScience 2024, 46, 913–921. [Google Scholar] [CrossRef]
- Booth, F.W.; Weeden, S.H.; Tseng, B.S. Effect of Aging on Human Skeletal Muscle and Motor Function. Med. Sci. Sports Exerc. 1994, 26, 556–560. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Matsudo, S.; Araújo, T.; Matsudo, V.; Andrade, D.; Andrade, E.; Oliveira, L.C.; Braggion, G. Questionário Internacional de Atividade Física (Ipaq): Estudo de Validade e Reprodutibilidade No Brasil. Rev. Bras. Ativi. Física Saúde 2001, 6, 5–18. [Google Scholar] [CrossRef]
- Duarte, J.P.; Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Couto, P.; Costa, D.; Martinho, D.; Seabra, A.; Cyrino, E.S.; Conde, J.; Rosado, J.; et al. Reproducibility of Isokinetic Strength Assessment of Knee Muscle Actions in Adult Athletes: Torques and Antagonist-Agonist Ratios Derived at the Same Angle Position. PLoS ONE 2018, 13, e0202261. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body Composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Colyer, S.L.; Roberts, S.P.; Robinson, J.B.; Thompson, D.; Stokes, K.A.; Bilzon, J.L.J.; Salo, A.I.T. Detecting Meaningful Body Composition Changes in Athletes Using Dual-Energy X-ray Absorptiometry. Physiol. Meas. 2016, 37, 596–609. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the p Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G.L. Combined Effects of Body Composition and Ageing on Joint Torque, Muscle Activation and Co-Contraction in Sedentary Women. Age 2014, 36, 1407–1418. [Google Scholar] [CrossRef]
- Wearing, J.; Stokes, M.; De Bruin, E.D. Quadriceps Muscle Strength Is a Discriminant Predictor of Dependence in Daily Activities in Nursing Home Residents. PLoS ONE 2019, 14, e0223016. [Google Scholar] [CrossRef]
- Rausch Osthoff, A.-K.; Taeymans, J.; Kool, J.; Marcar, V.; van Gestel, A.J.R. Association Between Peripheral Muscle Strength and Daily Physical Activity in Patients with COPD. J. Cardiopulm. Rehabil. Prev. 2013, 33, 351–359. [Google Scholar] [CrossRef]
- Puthoff, M.L.; Janz, K.F.; Nielson, D. The Relationship between Lower Extremity Strength and Power to Everday Walking Behaviors in Older Adults with Functional Limitations. J. Geriatr. Phys. Ther. 2008, 31, 24–31. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Jubeau, M.; Munzinger, U.; Bizzini, M.; Agosti, F.; De Col, A.; Lafortuna, C.L.; Sartorio, A. Differences in Quadriceps Muscle Strength and Fatigue between Lean and Obese Subjects. Eur. J. Appl. Physiol. 2007, 101, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The Impact of Obesity on Skeletal Muscle Strength and Structure through Adolescence to Old Age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef]
- Butt, R.; Malick, W.H.; Kouser, S.; Raouf, D. Levels of Physical Activity and Its Association with Antigravity Muscles. J. Pak. Med. Assoc. 2021, 71, 2445–2447. [Google Scholar] [CrossRef]
- de Paula Souza, A.; Martins, F.M.; da Silva Carneiro, M.A.; Nunes, P.R.P.; de Oliveira, E.P.; Orsatti, F.L. Muscle Strength to Body Weight Ratio Is a Better Predictor of Low Physical Function than Absolute Muscle Strength in Postmenopausal Women. Acta Fisiátrica 2016, 23, 213–218. [Google Scholar] [CrossRef]
- Pinheiro, S.R.; de Lira, C.A.B.; Vancini, R.L.; Rayes, A.B.R.; Andrade, M.S. Profiling the Isokinetic Knee Muscle Strength in Women with Different Body Mass Index. Biomed. Phys. Eng. Express 2019, 5, 15016. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Hawkins, S.A.; Marcell, T.J.; Jaque, S.V.; Wiswell, R.A. A Longitudinal Assessment of Change in VO2max and Maximal Heart Rate in Master Athletes. Med. Sci. Sports Exerc. 2001, 33, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Strasser, B.; Burtscher, M.; Millet, G.P. The Impact of Training on the Loss of Cardiorespiratory Fitness in Aging Masters Endurance Athletes. Int. J. Environ. Res. Public Health 2022, 19, 11050. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R.; McLean, R.R.; Kiel, D.P.; Hannan, M.T.; Sahni, S. Higher Abdominal Adiposity Is Associated with Higher Lean Muscle Mass but Lower Muscle Quality in Middle-Aged and Older Men and Women: The Framingham Heart Study. Aging Clin. Exp. Res. 2023, 35, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Al Saedi, A.; Debruin, D.A.; Hayes, A.; Hamrick, M. Lipid Metabolism in Sarcopenia. Bone 2022, 164, 116539. [Google Scholar] [CrossRef]
- Foong, Y.C.; Chherawala, N.; Aitken, D.; Scott, D.; Winzenberg, T.; Jones, G. Accelerometer-determined Physical Activity, Muscle Mass, and Leg Strength in Community-dwelling Older Adults. J. Cachexia Sarcopenia Muscle 2016, 7, 275–283. [Google Scholar] [CrossRef]
Active Women (<50 yrs) | Active Women (≥50 yrs) | p Value | Effect Size | Power | |
---|---|---|---|---|---|
Endurance training (min/week) | 273.4 ± 130.1 | 345.6 ± 207.1 | 0.080 | 0.41 | 0.59 |
Strength training (min/week) | 161.5 ± 67.3 | 185.8 ± 120.7 | 0.326 | 0.24 | 0.30 |
Variables | Age Group | Active Group (n = 85) | Inactive Group (n = 62) | ANOVA | F | p Value | Effect Size | Power |
---|---|---|---|---|---|---|---|---|
Age (yrs) | <50 yrs | 35.8 ± 7.0 | 41.1 ± 6.1 | Age group | 365.7 | <0.001 | 0.719 | 1.0 |
≥50 yrs | 60.6 ± 7.2 | 57.6 ± 4.2 | Physical activity group | 1.1 | 0.292 | 0.008 | 0.2 | |
Interaction | 14.8 | <0.001 | 0.094 | 0.9 | ||||
Total body mass (kg) | <50 yrs | 60.3 ± 6.5 | 81.5 ± 13.4 | Age group | 0.0 | 0.988 | 0.000 | 0.1 |
≥50 yrs | 59.1 ± 9.7 | 82.8 ± 9.9 | Physical activity group | 183.4 | <0.001 | 0.562 | 1.0 | |
Interaction | 0.6 | 0.454 | 0.004 | 0.6 | ||||
Height (m) | <50 yrs | 1.63 ± 0.05 | 1.60 ± 0.06 | Age group | 13.4 | <0.001 | 0.086 | 0.9 |
≥50 yrs | 1.57 ± 0.06 | 1.59 ± 0.04 | Physical activity group | 0.1 | 0.713 | 0.001 | 0.1 | |
Interaction | 6.0 | 0.015 | 0.041 | 0.7 |
Variables | Age Group | Active Group (n = 85) | Inactive Group (n = 62) | ANOVA | F | p Value | Effect Size | Power |
---|---|---|---|---|---|---|---|---|
PT (Nm) | <50 yrs | 128.4 ± 24.0 | 123.4 ± 28.5 | Age group | 40.5 | <0.001 | 0.221 | 1.000 |
≥50 yrs | 102.0 ± 23.8 | 97.7 ± 19.3 | Physical activity group | 1.3 | 0.255 | 0.009 | 0.206 | |
Interaction | 0.01 | 0.927 | 0.000 | 0.051 | ||||
PT (Nm/kg) | <50 yrs | 2.1 ± 0.4 | 1.5 ± 0.3 | Age group | 44.1 | <0.001 | 0.230 | 1.000 |
≥50 yrs | 1.7 ± 0.3 | 1.2 ± 0.2 | Physical activity group | 113.0 | <0.001 | 0.440 | 1.000 | |
Interaction | 0.4 | 0.523 | 0.003 | 0.097 | ||||
PT (Nm/kgLM) | <50 yrs | 3.2 ± 0.5 | 3.0 ± 0.5 | Age group | 36.9 | <0.001 | 0.205 | 1.000 |
≥50 yrs | 2.7 ± 0.5 | 2.5 ± 0.4 | Physical activity group | 6.1 | 0.014 | 0.041 | 0.694 | |
Interaction | 0.1 | 0.014 | 0.000 | 0.051 |
Variables | Age Group | Active Group (n = 85) | Inactive Group (n = 62) | ANOVA | F | p Value | Effect Size | Power |
---|---|---|---|---|---|---|---|---|
PT (Nm) | <50 yrs | 69.0 ± 14.7 | 58.0 ± 15.3 | Age group | 13.9 | <0.001 | 0.890 | 0.969 |
≥50 yrs | 57.1 ± 16.3 | 50.6 ± 14.9 | Physical activity group | 11.5 | <0.001 | 0.750 | 0.921 | |
Interaction | 0.8 | 0.384 | 0.005 | 0.140 | ||||
PT (Nm/kg) | <50 yrs | 1.15 ± 0.25 | 0.71 ± 0.16 | Age group | 16.3 | <0.001 | 0.103 | 0.980 |
≥50 yrs | 0.97 ± 0.23 | 0.61 ± 0.17 | Physical activity group | 122.1 | <0.001 | 0.461 | 1.000 | |
Interaction | 1.2 | 0.263 | 0.009 | 0.201 | ||||
PT (Nm/kgLM) | <50 yrs | 1.7 ± 0.3 | 1.4 ± 0.3 | Age group | 9.1 | 0.003 | 0.060 | 0.851 |
≥50 yrs | 1.5 ± 0.4 | 1.3 ± 0.3 | Physical activity group | 22.7 | <0.001 | 0.137 | 0.997 | |
Interaction | 0.8 | 0.385 | 0.005 | 0.139 |
Variables | Age Group | Active Group (n = 85) | Inactive Group (n = 62) | ANOVA | F | p Value | Effect Size | Power |
---|---|---|---|---|---|---|---|---|
Fat mass (%) | <50 yrs | 29.4 ± 7.1 | 46.5 ± 5.8 | Age group | 5.8 | 0.017 | 0.039 | 0.667 |
≥50 yrs | 31.4 ± 9.6 | 50.2 ± 4.4 | Physical activity group | 225.1 | <0.001 | 0.612 | 1.000 | |
Interaction | 0.5 | 0.457 | 0.004 | 0.115 | ||||
Total lean mass (kg) | <50 yrs | 39.6 ± 3.6 | 40.8 ± 6.1 | Age group | 7.1 | 0.009 | 0.047 | 0.755 |
≥50 yrs | 37.5 ± 3.9 | 38.9 ± 4.3 | Physical activity group | 3.3 | 0.074 | 0.022 | 0.432 | |
Interaction | 0.1 | 0.842 | <0.001 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivan, L.; dos Anjos Souza, V.R.; Seffrin, A.; de Lira, C.A.B.; Vancini, R.L.; Weiss, K.; Knechtle, B.; Andrade, M.S. Running Plus Strength Training Positively Affects Muscle Strength and Quality in Both Younger (Below 50 Years Old) and Older (Above 50 Years Old) Women. Geriatrics 2024, 9, 127. https://doi.org/10.3390/geriatrics9050127
Vivan L, dos Anjos Souza VR, Seffrin A, de Lira CAB, Vancini RL, Weiss K, Knechtle B, Andrade MS. Running Plus Strength Training Positively Affects Muscle Strength and Quality in Both Younger (Below 50 Years Old) and Older (Above 50 Years Old) Women. Geriatrics. 2024; 9(5):127. https://doi.org/10.3390/geriatrics9050127
Chicago/Turabian StyleVivan, Lavínia, Vinícius Ribeiro dos Anjos Souza, Aldo Seffrin, Claudio Andre Barbosa de Lira, Rodrigo Luiz Vancini, Katja Weiss, Beat Knechtle, and Marilia Santos Andrade. 2024. "Running Plus Strength Training Positively Affects Muscle Strength and Quality in Both Younger (Below 50 Years Old) and Older (Above 50 Years Old) Women" Geriatrics 9, no. 5: 127. https://doi.org/10.3390/geriatrics9050127
APA StyleVivan, L., dos Anjos Souza, V. R., Seffrin, A., de Lira, C. A. B., Vancini, R. L., Weiss, K., Knechtle, B., & Andrade, M. S. (2024). Running Plus Strength Training Positively Affects Muscle Strength and Quality in Both Younger (Below 50 Years Old) and Older (Above 50 Years Old) Women. Geriatrics, 9(5), 127. https://doi.org/10.3390/geriatrics9050127