Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials
2.3. Procedure
2.4. Ethical Considerations
3. Statistical Analyses
4. Results
4.1. Patterns of Cognition in Groups of Patients with EOMCI, MOMCI, and LOMCI
4.2. Interaction Effects of MCI Age-of-Onset and Gender on Cognition
4.3. Levels of Depression, Anxiety, and Stress across the Different MCI-Onset Groups
4.4. Prevalence of MCI Types across the Three Age-of-Onset Groups
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vatanabe, I.P.; Manzine, P.R.; Cominetti, M.R. Historic Concepts of Dementia and Alzheimer’s Disease: From Ancient Times to the Present. Rev. Neurol. 2020, 176, 140–147. [Google Scholar] [CrossRef]
- Canevelli, M.; Grande, G.; Lacorte, E.; Quarchioni, E.; Cesari, M.; Mariani, C.; Bruno, G.; Vanacore, N. Spontaneous Reversion of Mild Cognitive Impairment to Normal Cognition: A Systematic Review of Literature and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Pandya, S.Y.; Lacritz, L.H.; Weiner, M.F.; Deschner, M.; Woon, F.L. Predictors of Reversion from Mild Cognitive Impairment to Normal Cognition. Dement. Geriatr. Cogn. Disord. 2017, 43, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.R.; Eppig, J.S.; Weigand, A.J.; Edmonds, E.C.; Wong, C.G.; Jak, A.J.; Delano-Wood, L.; Galasko, D.R.; Salmon, D.P.; Edland, S.D.; et al. Artificially Low Mild Cognitive Impairment to Normal Reversion Rate in the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 2019, 15, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current Concepts in Mild Cognitive Impairment. Arch. Neurol. 2001, 58, 1985. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R. Mild Cognitive Impairment. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef]
- Roberts, R.; Knopman, D.S. Classification and Epidemiology of MCI. Clin. Geriatr. Med. 2013, 29, 753–772. [Google Scholar] [CrossRef]
- Hänninen, T.; Hallikainen, M.; Tuomainen, S.; Vanhanen, M.; Soininen, H. Prevalence of Mild Cognitive Impairment: A Population-Based Study in Elderly Subjects. Acta Neurol. Scand. 2002, 106, 148–154. [Google Scholar] [CrossRef]
- Luck, T.; Luppa, M.; Briel, S.; Riedel-Heller, S.G. Incidence of Mild Cognitive Impairment: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2010, 29, 164–175. [Google Scholar] [CrossRef]
- Hunderfund, A.L.; Roberts, R.O.; Slusser, T.C.; Leibson, C.L.; Geda, Y.E.; Ivnik, R.J.; Tangalos, E.G.; Petersen, R.C. Mortality in Amnestic Mild Cognitive Impairment: A Prospective Community Study. Neurology 2006, 67, 1764–1768. [Google Scholar] [CrossRef] [PubMed]
- Manly, J.J.; Bell-McGinty, S.; Tang, M.-X.; Schupf, N.; Stern, Y.; Mayeux, R. Implementing Diagnostic Criteria and Estimating Frequency of Mild Cognitive Impairment in an Urban Community. Arch. Neurol. 2005, 62, 1739. [Google Scholar] [CrossRef] [PubMed]
- Overton, M.; Pihlsgård, M.; Elmståhl, S. Prevalence and Incidence of Mild Cognitive Impairment across Subtypes, Age, and Sex. Dement. Geriatr. Cogn. Disord. 2019, 47, 219–232. [Google Scholar] [CrossRef]
- Palmer, K.; Bäckman, L.; Winblad, B.; Fratiglioni, L. Mild Cognitive Impairment in the General Population: Occurrence and Progression to Alzheimer Disease. Am. J. Geriatr. Psychiatry 2008, 16, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, G.S.; Kosmidis, M.H.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Tzoulaki, I.; Georgiou, A.N.; Sakka, P.; Anastasiou, C.A.; Stefanis, L.; et al. Incidence of Mild Cognitive Impairment in the Elderly Population in Greece: Results from the HELIAD Study. Aging Clin. Exp. Res. 2021, 33, 2679–2688. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, L.; Ash, E.L.; Korczyn, A.D.; Andelman, F.; Levy, S.; Elkana, O. Can the RAVLT Predict Deterioration from MCI to Dementia? Data from Long Term Follow Up. Exp. Aging Res. 2021, 47, 347–356. [Google Scholar] [CrossRef]
- Peaker, A.; Stewart, L.E. Developments in Clinical and Experimental Neuropsychology. In Developments in Clinical and Experimental Neuropsychology; Crawford, J.R., Parker, D.M., Eds.; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Rosenberg, S.J.; Ryan, J.J.; Prifitera, A. Rey Auditory-Verbal Learning Test Performance of Patients with and without Memory Impairment. J. Clin. Psychol. 1984, 40, 785–787. [Google Scholar] [CrossRef]
- Salthouse, T.A.; Fristoe, N.M. Process Analysis of Adult Age Effects on a Computer-Administered Trail Making Test. Neuropsychology 1995, 9, 518–528. [Google Scholar] [CrossRef]
- Salthouse, T.A. What Cognitive Abilities Are Involved in Trail-Making Performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Jak, A.J.; Preis, S.R.; Beiser, A.S.; Seshadri, S.; Wolf, P.A.; Bondi, M.W.; Au, R. Neuropsychological Criteria for Mild Cognitive Impairment and Dementia Risk in the Framingham Heart Study. J. Int. Neuropsychol. Soc. 2016, 22, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L.; Becker, J.T.; Sweet, R.A. Non-Cognitive Symptoms in Mild Cognitive Impairment Subjects. Neurocase 2005, 11, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Monastero, R.; Mangialasche, F.; Camarda, C.; Ercolani, S.; Camarda, R. A Systematic Review of Neuropsychiatric Symptoms in Mild Cognitive Impairment. J. Alzheimer’s Dis. 2009, 18, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Gates, N.; Valenzuela, M.; Sachdev, P.; Singh, F. Psychological Well-Being in Individuals with Mild Cognitive Impairment. Clin. Interv. Aging 2014, 9, 779–792. [Google Scholar] [CrossRef]
- Koyanagi, A.; Oh, H.; Vancampfort, D.; Carvalho, A.F.; Veronese, N.; Stubbs, B.; Lara, E. Perceived Stress and Mild Cognitive Impairment among 32,715 Community-Dwelling Older Adults across Six Low- and Middle-Income Countries. Gerontology 2019, 65, 155–163. [Google Scholar] [CrossRef]
- Rozzini, L.; Conti, M.Z.; Riva, M.; Ceraso, A.; Caratozzolo, S.; Zanetti, M.; Padovani, A. Non-Amnestic Mild Cognitive Impairment and Sleep Complaints: A Bidirectional Relationship? Aging Clin. Exp. Res. 2018, 30, 661–668. [Google Scholar] [CrossRef]
- Hamdy, R.C.; Kinser, A.; Dickerson, K.; Kendall-Wilson, T.; Depelteau, A.; Copeland, R.; Whalen, K. Insomnia and Mild Cognitive Impairment. Gerontol. Geriatr. Med. 2018, 4, 233372141877842. [Google Scholar] [CrossRef]
- Tábuas-Pereira, M.; Baldeiras, I.; Duro, D.; Santiago, B.; Ribeiro, M.; Leitão, M.; Oliveira, C.; Santana, I. Prognosis of Early-Onset vs. Late-Onset Mild Cognitive Impairment: Comparison of Conversion Rates and Its Predictors. Geriatrics 2016, 1, 11. [Google Scholar] [CrossRef]
- Gustavson, D.E.; Elman, J.A.; Sanderson-Cimino, M.; Franz, C.E.; Panizzon, M.S.; Jak, A.J.; Reynolds, C.A.; Neale, M.C.; Lyons, M.J.; Kremen, W.S. Extensive Memory Testing Improves Prediction of Progression to MCI in Late Middle Age. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020, 12, e12004. [Google Scholar] [CrossRef]
- Johnson, S.C.; Schmitz, T.W.; Moritz, C.H.; Meyerand, M.E.; Rowley, H.A.; Alexander, A.L.; Hansen, K.W.; Gleason, C.E.; Carlsson, C.M.; Ries, M.L.; et al. Activation of Brain Regions Vulnerable to Alzheimer’s Disease: The Effect of Mild Cognitive Impairment. Neurobiol. Aging 2006, 27, 1604–1612. [Google Scholar] [CrossRef]
- Moreira, H.S.; Costa, A.S.; Machado, Á.; Castro, S.L.; Lima, C.F.; Vicente, S.G. Distinguishing Mild Cognitive Impairment from Healthy Aging and Alzheimer’s Disease: The Contribution of the INECO Frontal Screening (IFS). PLoS ONE 2019, 14, e0221873. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.V.; Frisoni, G.B.; Fracassi, C.; Pievani, M.; Geroldi, C.; Binetti, G.; Rossini, P.M.; Zanetti, O. MCI Patients’ EEGs Show Group Differences between Those Who Progress and Those Who Do Not Progress to AD. Neurobiol. Aging 2011, 32, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Sohn, D.; Shpanskaya, K.; Lucas, J.E.; Petrella, J.R.; Saykin, A.J.; Tanzi, R.E.; Samatova, N.F.; Doraiswamy, P.M. Sex Differences in Cognitive Decline in Subjects with High Likelihood of Mild Cognitive Impairment Due to Alzheimer’s Disease. Sci. Rep. 2018, 8, 7490. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Seo, S.W.; Yoon, D.S.; Chin, J.; Lee, B.H.; Cheong, H.-K.; Han, S.-H.; Na, D.L. Comparison of Neuropsychological and FDG-PET Findings between Early- versus Late-Onset Mild Cognitive Impairment: A Five-Year Longitudinal Study. Dement. Geriatr. Cogn. Disord. 2010, 29, 213–223. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Roqué i Figuls, M.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the Detection of Alzheimer’s Disease and Other Dementias in People with Mild Cognitive Impairment (MCI). In Cochrane Database of Systematic Reviews; Arevalo-Rodriguez, I., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Hobson, J. The Montreal Cognitive Assessment (MoCA). Occup. Med. (Chic Ill) 2015, 65, 764–765. [Google Scholar] [CrossRef]
- Harvey, R.J. The Prevalence and Causes of Dementia in People under the Age of 65 Years. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1206–1209. [Google Scholar] [CrossRef]
- Barbosa, R.; Midão, L.; Almada, M.; Costa, E. Cognitive Performance in Older Adults across Europe Based on the SHARE Database. Aging Neuropsychol. Cogn. 2021, 28, 584–599. [Google Scholar] [CrossRef]
- Khezrian, M.; McNeil, C.J.; Myint, P.K.; Murray, A.D. The Association between Polypharmacy and Late Life Deficits in Cognitive, Physical and Emotional Capability: A Cohort Study. Int. J. Clin. Pharm. 2019, 41, 251–257. [Google Scholar] [CrossRef]
- Zaninotto, P.; Batty, G.D.; Allerhand, M.; Deary, I.J. Cognitive Function Trajectories and Their Determinants in Older People: 8 Years of Follow-up in the English Longitudinal Study of Ageing. J. Epidemiol. Community Health 2018, 72, 685–694. [Google Scholar] [CrossRef]
- Diniz, B.S.; Nunes, P.V.; Yassuda, M.S.; Pereira, F.S.; Flaks, M.K.; Viola, L.F.; Radanovic, M.; de Abreu, I.D.; Borelli, D.T.; Gattaz, W.F.; et al. Mild Cognitive Impairment: Cognitive Screening or Neuropsychological Assessment? Rev. Bras. Psiquiatr. 2008, 30, 316–321. [Google Scholar] [CrossRef]
- Göthlin, M.; Eckerström, M.; Rolstad, S.; Kettunen, P.; Wallin, A. Better Prognostic Accuracy in Younger Mild Cognitive Impairment Patients with More Years of Education. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A. Mini Mental State Examination (MMSE): A Validation Study in Greece. Am. J. Alzheimers Dis. Other Dementiasr 2000, 15, 342–345. [Google Scholar] [CrossRef]
- Kabátová, O.; Puteková, S.; Martinková, J.; Súkenníková, M. Analysis of Psychometric Features of the Mini-Mental State Examination and the Montreal Cognitive Assessment Methods. Clin. Soc. Work Health Interv. 2016, 7, 62–69. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment, 4th ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Messinis, L.; Tsakona, I.; Malefaki, S.; Papathanasopoulos, P. Normative Data and Discriminant Validity of Rey’s Verbal Learning Test for the Greek Adult Population. Arch. Clin. Neuropsychol. 2007, 22, 739–752. [Google Scholar] [CrossRef]
- Rey, A. L’examen Clinique en Psychologie; Presses Universitaires de France: Paris, France, 1964. [Google Scholar]
- Schmidt, M. Rey Auditory Verbal Learning Test: A Handbook; Western Psychological Services: Torrance, CA, USA, 1996. [Google Scholar]
- Benton, A.L.; Hamsher, K.S. Multilingual Aphasia Examination; University of Iowa: Iowa City, IA, USA, 1976. [Google Scholar]
- Kosmidis, M.H.; Vlahou, C.H.; Panagiotaki, P.; Kiosseoglou, G. The Verbal Fluency Task in the Greek Population: Normative Data, and Clustering and Switching Strategies. J. Int. Neuropsychol. Soc. 2004, 10, 164–172. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Reitan, R.M. Trail Making Test: Manual for Administration and Scoring; Reitan Neuropsychology Library: Tucson, AZ, USA, 1992. [Google Scholar]
- Lyrakos, G.N.; Arvaniti, C.; Smyrnioti, M.; Kostopanagiotou, G. Translation and Validation Study of the Depression Anxiety Stress Scale in the Greek General Population and in a Psychiatric Patient’s Sample. Eur. Psychiatry 2011, 26, 1731. [Google Scholar] [CrossRef]
- Norton, P.J. Depression Anxiety and Stress Scales (DASS-21): Psychometric Analysis across Four Racial Groups. Anxiety Stress Coping 2007, 20, 253–265. [Google Scholar] [CrossRef]
- Pezirkianidis, C.; Karakasidou, E.; Lakioti, A.; Stalikas, A.; Galanakis, M. Psychometric Properties of the Depression, Anxiety, Stress Scales-21 (DASS-21) in a Greek Sample. Psychology 2018, 9, 2933–2950. [Google Scholar] [CrossRef]
- Ali, A.M.; Alameri, R.A.; Hendawy, A.O.; Al-Amer, R.; Shahrour, G.; Ali, E.M.; Alkhamees, A.A.; Ibrahim, N.; Hassan, B.H. Psychometric Evaluation of the Depression Anxiety Stress Scale 8-Items (DASS-8)/DASS-12/DASS-21 among Family Caregivers of Patients with Dementia. Front. Public Health 2022, 10, 1012311. [Google Scholar] [CrossRef] [PubMed]
- Messinis, L.; Nasios, G.; Mougias, A.; Politis, A.; Zampakis, P.; Tsiamaki, E.; Malefaki, S.; Gourzis, P.; Papathanasopoulos, P. Age and Education Adjusted Normative Data and Discriminative Validity for Rey’s Auditory Verbal Learning Test in the Elderly Greek Population. J. Clin. Exp. Neuropsychol. 2016, 38, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Zalonis, I.; Kararizou, E.; Triantafyllou, N.I.; Kapaki, E.; Papageorgiou, S.; Sgouropoulos, P.; Vassilopoulos, D. A Normative Study of the Trail Making Test A and B in Greek Adults. Clin. Neuropsychol. 2008, 22, 842–850. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, W.; Feng, W.; Wang, J.; Chen, Y.; Shen, Y.; Li, Q.; Zhang, X.; Li, C. The Effects of Multi-Domain versus Single-Domain Cognitive Training in Non-Demented Older People: A Randomized Controlled Trial. BMC Med. 2012, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.L.; Petersen, R.C.; Negash, S.; Weigand, S.D.; Kantarci, K.; Ivnik, R.J.; Knopman, D.S.; Boeve, B.F.; Smith, G.E.; Jack, C.R. Patterns of Atrophy Differ Among Specific Subtypes of Mild Cognitive Impairment. Arch. Neurol. 2007, 64, 1130. [Google Scholar] [CrossRef]
- Salthouse, T.A. General and Specific Speed Mediation of Adult Age Differences in Memory. J. Gerontol. B Psychol. Sci. Soc. Sci. 1996, 51B, P30–P42. [Google Scholar] [CrossRef]
- Craik, F.I.M. Memory Functions in Normal Aging. In Memory Disorders: Research and Clinical Practice; Yanagihara, T., Petersen, R.C., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 347–367. [Google Scholar]
- Diniz, B.S.O.; Yassuda, M.S.; Nunes, P.V.; Radanovic, M.; Forlenza, O.V. Mini-Mental State Examination Performance in Mild Cognitive Impairment Subtypes. Int. Psychogeriatr. 2007, 19, 647–656. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, Y.M.; Park, J.M.; Lee, B.D.; Moon, E.S.; Chung, Y.I. Amnestic Multiple Cognitive Domains Impairment and Periventricular White Matter Hyperintensities Are Independently Predictive Factors Progression to Dementia in Mild Cognitive Impairment. Int. J. Geriatr. Psychiatry 2014, 29, 526–532. [Google Scholar] [CrossRef]
- Morris, J.C.; Price, J.L. Pathologic Correlates of Nondemented Aging, Mild Cognitive Impairment, and Early-Stage Alzheimer’s Disease. J. Mol. Neurosci. 2001, 17, 101–118. [Google Scholar] [CrossRef]
- Schaie, K.W. The Hazards of Cognitive Aging. Gerontologist 1989, 29, 484–493. [Google Scholar] [CrossRef]
- Anstey, K.J.; Cherbuin, N.; Eramudugolla, R.; Sargent-Cox, K.; Easteal, S.; Kumar, R.; Sachdev, P. Characterizing Mild Cognitive Disorders in the Young-old over 8 Years: Prevalence, Estimated Incidence, Stability of Diagnosis, and Impact on IADLs. Alzheimer’s Dement. 2013, 9, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Hessen, E.; Reinvang, I.; Eliassen, C.F.; Nordlund, A.; Gjerstad, L.; Fladby, T.; Wallin, A. The Combination of Dysexecutive and Amnestic Deficits Strongly Predicts Conversion to Dementia in Young Mild Cognitive Impairment Patients: A Report from the Gothenburg-Oslo MCI Study. Dement. Geriatr. Cogn. Dis. Extra 2014, 4, 76–85. [Google Scholar] [CrossRef]
- Schönknecht, P.; Pantel, J.; Kruse, A.; Schröder, J. Prevalence and Natural Course of Aging-Associated Cognitive Decline in a Population-Based Sample of Young-Old Subjects. Am. J. Psychiatry 2005, 162, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment. Arch. Neurol. 1999, 56, 303. [Google Scholar] [CrossRef] [PubMed]
- Forlenza, O.V.; Diniz, B.S.; Talib, L.L.; Radanovic, M.; Yassuda, M.S.; Ojopi, E.B.; Gattaz, W.F. Clinical and Biological Predictors of Alzheimer’s Disease in Patients with Amnestic Mild Cognitive Impairment. Rev. Bras. Psiquiatr. 2010, 32, 216–222. [Google Scholar] [CrossRef]
- Fulop, G.A.; Tarantini, S.; Yabluchanskiy, A.; Molnar, A.; Prodan, C.I.; Kiss, T.; Csipo, T.; Lipecz, A.; Balasubramanian, P.; Farkas, E.; et al. Role of Age-Related Alterations of the Cerebral Venous Circulation in the Pathogenesis of Vascular Cognitive Impairment. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H1124–H1140. [Google Scholar] [CrossRef]
- Keith, J.; Gao, F.; Noor, R.; Kiss, A.; Balasubramaniam, G.; Au, K.; Rogaeva, E.; Masellis, M.; Black, S.E. Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction? J. Neuropathol. Exp. Neurol. 2017, 76, 299–312. [Google Scholar] [CrossRef]
- Shaaban, C.E.; Aizenstein, H.J.; Jorgensen, D.R.; MacCloud, R.L.; Meckes, N.A.; Erickson, K.I.; Glynn, N.W.; Mettenburg, J.; Guralnik, J.; Newman, A.B.; et al. In Vivo Imaging of Venous Side Cerebral Small-Vessel Disease in Older Adults: An MRI Method at 7T. Am. J. Neuroradiol. 2017, 38, 1923–1928. [Google Scholar] [CrossRef]
- Coffman, J.A.; Torello, M.W.; Bornstein, R.A.; Chakeres, D.; Burns, E.; Nasrallah, H.A. Leukoaraiosis in Asymptomatic Adult Offspring of Individuals with Alzheimer’s Disease. Biol. Psychiatry 1990, 27, 1244–1248. [Google Scholar] [CrossRef]
- Jacobs, H.I.L.; Clerx, L.; Gronenschild, E.H.B.M.; Aalten, P.; Verhey, F.R.J. White Matter Hyperintensities Are Positively Associated with Cortical Thickness in Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 39, 409–422. [Google Scholar] [CrossRef]
- Kandel, B.M.; Avants, B.B.; Gee, J.C.; McMillan, C.T.; Erus, G.; Doshi, J.; Davatzikos, C.; Wolk, D.A. White Matter Hyperintensities Are More Highly Associated with Preclinical Alzheimer’s Disease than Imaging and Cognitive Markers of Neurodegeneration. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2016, 4, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.; Haque, M.E.; Balakrishnan, R.; Kim, I.-S.; Choi, D.-K. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front. Cell Dev. Biol. 2021, 9, 683459. [Google Scholar] [CrossRef] [PubMed]
- Head, D. Differential Vulnerability of Anterior White Matter in Nondemented Aging with Minimal Acceleration in Dementia of the Alzheimer Type: Evidence from Diffusion Tensor Imaging. Cereb. Cortex 2004, 14, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Murman, D. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Peters, R. Ageing and the Brain. Postgrad. Med. J. 2006, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, M.; Leys, D. Vascular Cognitive Impairment. Circ. Res. 2017, 120, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Naglie, G.; Duff-Canning, S.; Meaney, C.; Gill, D.; Eslinger, P.J.; Zadikoff, C.; Mapstone, M.; Chou, K.L.; Persad, C.; et al. Roles of Education and IQ in Cognitive Reserve in Parkinson’s Disease-Mild Cognitive Impairment. Dement. Geriatr. Cogn. Dis. Extra 2012, 2, 343–352. [Google Scholar] [CrossRef]
- Manly, J.J.; Touradji, P.; Tang, M.-X.; Stern, Y. Literacy and Memory Decline Among Ethnically Diverse Elders. J. Clin. Exp. Neuropsychol. 2003, 25, 680–690. [Google Scholar] [CrossRef]
- Steffener, J.; Stern, Y. Exploring the Neural Basis of Cognitive Reserve in Aging. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012, 1822, 467–473. [Google Scholar] [CrossRef]
- Stern, Y.; Alexander, G.E.; Prohovnik, I.; Mayeux, R. Inverse Relationship between Education and Parietotemporal Perfusion Deficit in Alzheimer’s Disease. Ann. Neurol. 1992, 32, 371–375. [Google Scholar] [CrossRef]
- VALENZUELA, M.J.; SACHDEV, P. Brain Reserve and Dementia: A Systematic Review. Psychol. Med. 2006, 36, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.S.; Seo, S.W.; Lee, Y.; Kim, S.Y.; Choi, S.H.; Lee, Y.M.; Kim, D.H.; Han, H.J.; Na, D.L.; Kim, E.-J. Neuropsychological Performance and Conversion to Alzheimer’s Disease in Early- Compared to Late-Onset Amnestic Mild Cognitive Impairment: CREDOS Study. Dement. Geriatr. Cogn. Disord. 2012, 34, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Glisky, E.L. Changes in Cognitive Function in Human Aging. In Brain Aging: Models, Methods, and Mechanisms; Riddle, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–20. [Google Scholar]
- Raz, N. Aging of the Brain and Its Impact on Cognitive Performance: Integration of Structural and Functional Findings. In The Handbook of Aging and Cognition; Craik, F.I.M., Salthouse, T.A., Eds.; Erlbaum: Mahwah, NJ, USA, 2000. [Google Scholar]
- Reuter-Lorenz, P.A.; Sylvester, C.-Y.C. The Cognitive Neuroscience of Working Memory and Aging. In Cognitive Neuroscience of Aging; Cabeza, R., Nyberg, L., Park, D., Eds.; Oxford University Press: Oxford, UK, 2005; p. 186. [Google Scholar]
- Sanfey, A.G.; Hastie, R. Judgment and Decision Making across the Adult Life Span: A Tutorial Review of Psychological Research. In Cognitive Aging: A Primer; Park, D., Schwarz, N., Eds.; Psychology Press: London, UK, 2000; p. 253. [Google Scholar]
- Wingfield, A.; Stine-Morrow, E.A.L. Language and Speech. In The Handbook of Aging and Cognition; Craik, F.I.M., Salthouse, T.A., Eds.; Erlbaum: Mahwah, NJ, USA, 2000; p. 359. [Google Scholar]
- Fjell, A.M.; Sneve, M.H.; Grydeland, H.; Storsve, A.B.; Walhovd, K.B. The Disconnected Brain and Executive Function Decline in Aging. Cereb. Cortex 2016, 27, 2303–2317. [Google Scholar] [CrossRef]
- Grieve, S.M.; Williams, L.M.; Paul, R.H.; Clark, C.R.; Gordon, E. Cognitive Aging, Executive Function, and Fractional Anisotropy: A Diffusion Tensor MR Imaging Study. AJNR Am. J. Neuroradiol. 2007, 28, 226–235. [Google Scholar]
- Malek-Ahmadi, M. Reversion From Mild Cognitive Impairment to Normal Cognition. Alzheimer Dis. Assoc. Disord. 2016, 30, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Tokuchi, R.; Hishikawa, N.; Kurata, T.; Sato, K.; Kono, S.; Yamashita, T.; Deguchi, K.; Abe, K. Clinical and Demographic Predictors of Mild Cognitive Impairment for Converting to Alzheimer’s Disease and Reverting to Normal Cognition. J. Neurol. Sci. 2014, 346, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Hou, P.; Li, Y.; Mao, X.; Wu, L.; Liu, Y. Factors for Predicting Reversion from Mild Cognitive Impairment to Normal Cognition: A Meta-analysis. Int. J. Geriatr. Psychiatry 2019, 34, 1361–1368. [Google Scholar] [CrossRef]
Participants’ Characteristics | Number of Participants | Statistics |
---|---|---|
N (%) | Mean (SD) | |
Overall Sample | ||
Age | 69.16 (9.16) | |
Education | 11.80 (4.22) | |
MMSE | 27.39 (2.37) | |
IADL | 8.25 (2.58) | |
Gender | ||
Female | 215 (72.4) | |
Male | 82 (27.6) | |
Occupational Status | ||
Currently Working | 59 (20.3) | |
Unemployed | 9 (3.1) | |
Pensioner/Home Economics | 222 (76.6) | |
Handedness | ||
Right-handed | 203 (94.4) | |
Left-handed | 8 (3.7) | |
Ambidextrous | 4 (1.9) | |
Family Status | ||
Single | 14 (4.7) | |
Partnership | 2 (0.7) | |
Married | 170 (57.4) | |
Divorced | 45 (15.2) | |
Widowed | 65 (21.9) | |
Medical History | ||
Elevated Blood Pressure | 125 (42.5) | |
Diabetes | 48 (16.7) | |
Hypercholesterolemia | 142 (49.8) | |
Stroke | 13 (4.6) | |
Heart Attack | 11 (3.9) | |
Traumatic Brain Injury | 29 (10.2) | |
Smoking | 66 (23.0) | |
Physical Exercise | 52 (18.1) | |
Dementia Medication | 15 (5.2) | |
Psychiatric Medication | 110 (38.2) | |
General Medication | 235 (82.2) | |
Dementia Family History | 100 (35.5) | |
Cardiovascular Disease Family History | 122 (43.4) |
Lawton IADL | Mean (SD) | N (%) |
---|---|---|
Age Group | ||
EOMCI | 7.77 (0.14) | 89 (30.0) |
MOMCI | 8.14 (0.19) | 126 (42.4) |
LOMCI | 8.93 (0.22) | 82 (27.6) |
Gender | ||
Females | 8.78 (0.17) | 215 (72.4) |
Males | 6.86 (0.27) | 82 (27.6) |
Participants’ Categorizations | Number of Participants | Statistics |
---|---|---|
N (%) | Mean Age (SD) | |
EOMCI (<65 years old) | 89 (29.7) | 57.96 (5.07) |
MCI Categorization 1 | ||
Non-Amnestic | 14 (15.7) | |
Amnestic | 75 (84.3) | |
MCI Categorization 2 | ||
Single-Domain | 20 (22.5) | |
Multiple-Domain | 69 (77.5) | |
MCI Overall Categorization | ||
Non-Amnestic Single-Domain | 6 (6.7) | |
Non-Amnestic Multiple-Domain | 8 (9.0) | |
Amnestic Single-Domain | 14 (15.7) | |
Amnestic Multiple-Domain | 61 (68.5) | |
MOMCI (65–75 years old) | 126 (42.4) | 70.37 (3.22) |
MCI Categorization 1 | ||
Non-Amnestic | 23 (18.3) | |
Amnestic | 103 (81.7) | |
MCI Categorization 2 | ||
Single-Domain | 15 (11.9) | |
Multiple-Domain | 111 (88.1) | |
MCI Overall Categorization | ||
Non-Amnestic Single-Domain | 7 (5.6) | |
Non-Amnestic Multiple-Domain | 16 (12.7) | |
Amnestic Single-Domain | 8 (6.3) | |
Amnestic Multiple-Domain | 95 (75.4) | |
LOMCI (>75 years old) | 82 (27.6) | 79.49 (3.82) |
MCI Categorization 1 | ||
Non-Amnestic | 14 (17.1) | |
Amnestic | 68 (82.9) | |
MCI Categorization 2 | ||
Single-Domain | 3 (3.7) | |
Multiple-Domain | 79 (96.3) | |
MCI Overall Categorization | ||
Non-Amnestic Single-Domain | 2 (2.4) | |
Non-Amnestic Multiple-Domain | 12 (14.6) | |
Amnestic Single-Domain | 1 (1.2) | |
Amnestic Multiple-Domain | 67 (81.7) |
Participants’ Categorizations | Number of Participants | Statistics |
---|---|---|
N (%) | Mean Age (SD) | |
EOMCI (<65 years old) | 89 (29.7) | 57.96 (5.07) |
AD | 64 (71.9) | |
CVD | 15 (16.9) | |
MP | 10 (11.2) | |
MOMCI (65–75 years old) | 126 (42.4) | 70.37 (3.22) |
AD | 84 (66.7) | |
CVD | 21 (16.7) | |
MP | 21 (16.7) | |
LOMCI (>75 years old) | 82 (27.6) | 79.49 (3.82) |
AD | 51 (62.2) | |
CVD | 16 (19.5) | |
MP | 15 (18.3) |
EOMCI | MOMCI | LOMCI | |||
---|---|---|---|---|---|
Cognition | Age Group | Mean (SD) | Sig. | ||
RAVLT A1 | EOMCI | −0.0129 (0.9739) | - | 0.631 | 0.595 |
MOMCI | −0.2231 (0.9251) | 0.631 | - | 0.028 * | |
LOMCI | 0.2257 (1.7194) | 0.595 | 0.028 * | - | |
RAVLT A5 | EOMCI | 0.1396 (1.1510) | - | 1.000 | 1.000 |
MOMCI | 0.0241 (1.2634) | 1.000 | - | 0.816 | |
LOMCI | 0.2246 (1.4281) | 1.000 | 0.816 | - | |
RAVLT A7 | EOMCI | 0.2364 (1.3089) | - | 0.103 | 0.001 * |
MOMCI | −0.2018 (1.4293) | 0.103 | - | 0.245 | |
LOMCI | −0.5714 (1.7217) | 0.001 * | 0.245 | - | |
RAVLT A8 | EOMCI | −0.7474 (1.2914) | - | 0.162 | 0.001 * |
MOMCI | −1.1872 (1.5977) | 0.162 | - | 0.093 | |
LOMCI | −1.6942 (1.6558) | 0.001 * | 0.093 | - | |
VFT SF | EOMCI | −0.2000 (1.2437) | - | 0.007* | <0.001 * |
MOMCI | −0.6782 (1.0711) | 0.007 * | - | 0.007 * | |
LOMCI | −1.1677 (1.0370) | <0.001 * | 0.007* | - | |
VFT PF | EOMCI | −0.4347 (1.093) | - | 0.187 | 0.025 * |
MOMCI | −0.7208 (1.1347) | 0.187 | - | 0.890 | |
LOMCI | −0.8841 (1.0543) | 0.025 * | 1.000 | - | |
TMT A | EOMCI | 0.3597 (1.0499) | - | 0.054 | <0.001 * |
MOMCI | −0.2122 (1.4561) | 0.054 | - | 0.001 * | |
LOMCI | −1.0837 (2.5266) | <0.001 * | 0.001* | - | |
TMT B | EOMCI | −0.3558 (2.8603) | - | 0.270 | <0.001 * |
MOMCI | −1.0335 (2.7005) | 0.270 | - | 0.027 * | |
LOMCI | −2.1846 (2.8602) | <0.001 * | 0.027* | - |
EOMCI | MOMCI | LOMCI | |||
---|---|---|---|---|---|
Age Group | Mean (SD) | Sig. | |||
MMSE | EOMCI | 28.34 (1.71) | - | 0.011 | <0.001 |
MOMCI | 27.41 (2.32) | 0.011 | - | 0.004 | |
LOMCI | 26.37 (2.64) | <0.001 | 0.004 | - |
EOMCI | MOMCI | LOMCI | ||||
---|---|---|---|---|---|---|
Females | Males | Females | Males | Females | Males | |
Cognition | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) |
RAVLT A1 | −0.1875 (0.9766) | 0.0088 (0.9902) | −0.1340 (0.9305) | −0.4744 (0.8748) | 0.3139 (1.6904) | 0.0730 (1.7872) |
RAVLT A5 | 0.1975 (1.1300) | −0.0708 (1.2339) | 0.1136 (1.2688) | −0.2281 (1.2321) | 0.3721 (1.5093) | −0.0263 (1.2606) |
RAVLT A7 | 0.3223 (1.2980) | −0.0755 (1.3360) | −0.0888 (1.5041) | −0.5308 (1.1437) | −0.1354 (1.7608) | −1.3125 (1.3891) |
RAVLT A8 | −0.5919 (1.2122) | −1.3039 (1.4423) | −1.1097 (1.5695) | −1.4127 (1.6822) | −1.3627 (1.8835) | −2.2656 (2.0269) |
VFT SF | −0.2246 (1.3081) | −0.1094 (0.9959) | −0.6021 (1.0775) | −0.8928 (1.0389) | −0.9893 (0.9689) | −1.4769 (1.0940) |
VFT PF | −0.3997 (1.1772) | −0.5619 (0.7212) | −0.6094 (1.1512) | −1.0349 (1.0400) | −0.7564 (0.9471) | −1.1054 (1.2030) |
TMT A | −0.3071 (1.0474) | −0.3356 (0.6819) | −0.6057 (0.9546) | −0.9638 (0.8779) | −0.8728 (0.81929) | −1.2912 (1.0015) |
TMT B | 0.3941 (1.0609) | 0.2348 (1.0272) | −0.1595 (1.4550) | −0.3652 (1.4718) | −1.2641 (2.8748) | −0.7771 (1.7906) |
Age Group | Depression | Anxiety | Stress |
---|---|---|---|
EOMCI | 4.90 (4.93) | 2.87 (3.47) | 5.57 (4.52) |
MOMCI | 4.23 (4.70) | 3.25 (3.74) | 5.18 (4.54) |
LOMCI | 5.27 (4.77) | 3.05 (3.41) | 4.95 (4.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustaka, K.; Nega, C.; Beratis, I.N. Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms. Geriatrics 2023, 8, 96. https://doi.org/10.3390/geriatrics8050096
Moustaka K, Nega C, Beratis IN. Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms. Geriatrics. 2023; 8(5):96. https://doi.org/10.3390/geriatrics8050096
Chicago/Turabian StyleMoustaka, Kleio, Chrysanthi Nega, and Ion N. Beratis. 2023. "Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms" Geriatrics 8, no. 5: 96. https://doi.org/10.3390/geriatrics8050096
APA StyleMoustaka, K., Nega, C., & Beratis, I. N. (2023). Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms. Geriatrics, 8(5), 96. https://doi.org/10.3390/geriatrics8050096