Prevalence and Trends of Slow Gait Speed in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ageing and Health Available. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 8 August 2023).
- Colby, S.; Ortman, J. Projections of the Size and Composition of the U.S. Population: 2014 to 2060; Population Estimates and Projections. Available online: https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf (accessed on 8 August 2023).
- Promoting Health for Older Adults. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-for-older-adults.htm (accessed on 8 August 2023).
- Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The Burden of Disease in Older People and Implications for Health Policy and Practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef]
- Roberts, S.; Colombier, P.; Sowman, A.; Mennan, C.; Rölfing, J.H.D.; Guicheux, J.; Edwards, J.R. Ageing in the Musculoskeletal System. Acta Orthop. 2016, 87, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.L.; Cassells, J.S. Falls in Older Persons: Risk Factors and Prevention. In The Second Fifty Years: Promoting Health and Preventing Disability; National Academies Press (US): Washington, DC, USA, 1992. Available online: https://www.ncbi.nlm.nih.gov/books/NBK235613/ (accessed on 8 August 2023).
- Centers for Disease Control and Prevention. Resource Algorithm for Fall Risk Screening, Assessment, and Intervention. Available online: https://www.cdc.gov/steadi/pdf/STEADI-Algorithm-508.pdf (accessed on 8 August 2023).
- Newman, P.; Juliette, C.; Damico, A. Medicare per Capita Spending by Age and Service: New Data Highlights Oldest Beneficiaries. Health Aff. 2015, 34, 335–339. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Mehmet, H.; Robinson, S.R.; Yang, A.W.H. Assessment of Gait Speed in Older Adults. J. Geriatr. Phys. Ther. 2020, 43, 42. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Park, H.; Aul, C.; DeGutis, J.; Lo, O.-Y.; Poole, V.N.; McGlinchey, R.; Bean, J.F.; Leritz, E.; Esterman, M. Evidence for a Specific Association between Sustained Attention and Gait Speed in Middle-to-Older-Aged Adults. Front. Aging Neurosci. 2021, 13, 326. [Google Scholar] [CrossRef]
- Manjavong, M.; So-Ngern, A.; Limpawattana, P.; Kamsuanjig, T.; Manomaiwong, N.; Chokkhatiwat, P.; Srisuwannakit, K.; Khammak, C. Prevalence and Factors Influencing Slow Gait Speed among Geriatric Patients at Outpatient Clinic of a Tertiary Care Hospital. Ir. J. Med. Sci. 2023, 1–7. [Google Scholar] [CrossRef]
- Castell, M.-V.; Sánchez, M.; Julián, R.; Queipo, R.; Martín, S.; Otero, Á. Frailty Prevalence and Slow Walking Speed in Persons Age 65 and Older: Implications for Primary Care. BMC Fam. Pract. 2013, 14, 86. [Google Scholar] [CrossRef]
- Pinter, D.; Ritchie, S.J.; Gattringer, T.; Bastin, M.E.; Hernández, M.D.C.V.; Corley, J.; Maniega, S.M.; Pattie, A.; Dickie, D.A.; Gow, A.J.; et al. Predictors of Gait Speed and Its Change over Three Years in Community-Dwelling Older People. Aging 2018, 10, 144–153. [Google Scholar] [CrossRef]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A Position Paper Endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Health and Retirement Study. HRS Data Products. Available online: https://hrs.isr.umich.edu/data-products (accessed on 8 August 2023).
- Sonnega, A.; Faul, J.D.; Ofstedal, M.B.; Langa, K.M.; Phillips, J.W.R.; Weir, D.R. Cohort Profile: The Health and Retirement Study (HRS). Int. J. Epidemiol. 2014, 43, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Health and Retirement Study. HRS Survey Design and Methodology. Available online: https://hrs.isr.umich.edu/documentation/survey-design (accessed on 8 August 2023).
- Health and Retirement Study. Sample Sizes and Response Rates. Available online: https://hrs.isr.umich.edu/sites/default/files/biblio/ResponseRates_2017.pdf (accessed on 3 August 2023).
- Fisher, G.G.; Ryan, L.H. Overview of the Health and Retirement Study and Introduction to the Special Issue. Work Aging Retire 2018, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Health and Retirement Study. HRS Data Book. Available online: https://hrs.isr.umich.edu/about/data-book (accessed on 8 August 2023).
- McGrath, R.; Lang, J.J.; Ortega, F.B.; Chaput, J.-P.; Zhang, K.; Smith, J.; Vincent, B.; Piñero, J.C.; Garcia, M.C.; Tomkinson, G.R. Handgrip Strength Asymmetry Is Associated with Slow Gait Speed and Poorer Standing Balance in Older Americans. Arch. Gerontol. Geriatr. 2022, 102, 104716. [Google Scholar] [CrossRef] [PubMed]
- McGrath, B.M.; Johnson, P.J.; McGrath, R.; Cawthon, P.M.; Klawitter, L.; Choi, B.-J. A Matched Cohort Analysis for Examining the Association between Slow Gait Speed and Shortened Longevity in Older Americans. J. Appl. Gerontol. 2022, 41, 1905–1913. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Manini, T.; Patel, S.M.; Newman, A.; Travison, T.; Kiel, D.P.; Santanasto, A.J.; Ensrud, K.E.; Xue, Q.-L.; Shardell, M.; et al. Putative Cut-Points in Sarcopenia Components and Incident Adverse Health Outcomes: An SDOC Analysis. J. Am. Geriatr. Soc. 2020, 68, 1429–1437. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Patel, S.M.; Kritchevsky, S.B.; Newman, A.B.; Santanasto, A.; Kiel, D.P.; Travison, T.G.; Lane, N.; Cummings, S.R.; Orwoll, E.S.; et al. What Cut-Point in Gait Speed Best Discriminates Community-Dwelling Older Adults with Mobility Complaints from Those without? A Pooled Analysis from the Sarcopenia Definitions and Outcomes Consortium. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, e321–e327. [Google Scholar] [CrossRef]
- Crimmins, E.; Guyer, H.; Langa, K.; Ofstedal, M.B.; Wallace, R. Documentation of Physical Measures, Anthropometrics and Blood Pressure in the Health and Retirement Study. Available online: https://hrs.isr.umich.edu/sites/default/files/biblio/dr-011.pdf (accessed on 8 August 2023).
- Afilalo, J.; Kim, S.; O’Brien, S.; Brennan, J.M.; Edwards, F.H.; Mack, M.J.; McClurken, J.B.; Cleveland, J.C.; Smith, P.K.; Shahian, D.M.; et al. Gait Speed and Operative Mortality in Older Adults following Cardiac Surgery. JAMA Cardiol. 2016, 1, 314–321. [Google Scholar] [CrossRef]
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of Osteoporosis in the World: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2021, 16, 609. [Google Scholar] [CrossRef]
- Rolland, Y.; Cesari, M.; Fielding, R.A.; Reginster, J.Y.; Vellas, B.; Cruz-Jentoft, A.J. The ICFSR Task Force Osteoporosis in Frail Older Adults: Recommendations for Research from the ICFSR Task Force 2020. J. Frailty Aging 2021, 10, 168–175. [Google Scholar]
- Khadilkar, S.S. Musculoskeletal Disorders and Menopause. J. Obstet. Gynaecol. India 2019, 69, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Boro, B.; Kumar, M.; Srivastava, S. Gender Differences in the Association of Obesity-Related Measures with Multi-Morbidity among Older Adults in India: Evidence from LASI, Wave-1. BMC Geriatr. 2022, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Roser, M.; Appel, C.; Ritchie, H. Human Height. Available online: https://ourworldindata.org/human-height (accessed on 1 September 2023).
- Wolff, C.; Steinheimer, P.; Warmerdam, E.; Dahmen, T.; Slusallek, P.; Schlinkmann, C.; Chen, F.; Orth, M.; Pohlemann, T.; Ganse, B. Effects of Age, Body Height, Body Weight, Body Mass Index and Handgrip Strength on the Trajectory of the Plantar Pressure Stance-Phase Curve of the Gait Cycle. Front. Bioeng. Biotechnol. 2023, 11, 1110099. [Google Scholar] [CrossRef] [PubMed]
- White, T.A.; LeBrasseur, N.K. Myostatin and Sarcopenia: Opportunities and Challenges-A Mini Review. Gerontology 2014, 60, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Gates, D.H.; Rosenblatt, N.J. The Impact of Obesity on Gait Stability in Older Adults. J. Biomech. 2020, 100, 109585. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 8 August 2023).
- Centers for Disease Control and Prevention. Obesity, Race/Ethnicity, and COVID-19. Available online: https://www.cdc.gov/obesity/data/obesity-and-covid-19.html (accessed on 8 August 2023).
- How Discrimination in Health Care Affects Older Americans, and What Health Systems and Providers Can Do? Available online: https://www.commonwealthfund.org/publications/issue-briefs/2022/apr/how-discrimination-in-health-care-affects-older-americans (accessed on 29 August 2023).
- Perera, S.; Patel, K.V.; Rosano, C.; Rubin, S.M.; Satterfield, S.; Harris, T.; Ensrud, K.; Orwoll, E.; Lee, C.G.; Chandler, J.M.; et al. Gait Speed Predicts Incident Disability: A Pooled Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 63–71. [Google Scholar] [CrossRef]
- Brach, J.S.; VanSwearingen, J.M. Interventions to Improve Walking in Older Adults. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 2013, 2, 230–238. [Google Scholar] [CrossRef]
- Wong, A.K.C.; Wong, F.K.Y.; Wong, M.C.S.; Chow, K.K.S.; Kwan, D.K.S.; Lau, D.Y.S. A Community-Based Health–Social Partnership Program for Community-Dwelling Older Adults: A Hybrid Effectiveness–Implementation Pilot Study. BMC Geriatr. 2022, 22, 789. [Google Scholar] [CrossRef]
- Moisan, G.; Descarreaux, M.; Cantin, V. The Influence of Footwear on Walking Biomechanics in Individuals with Chronic Ankle Instability. PLoS ONE 2020, 15, e0239621. [Google Scholar] [CrossRef]
- Boulifard, D.A.; Ayers, E.; Verghese, J. Home Based Gait Speed Assessment: Normative Data and Racial/Ethnic Correlates Among Older Adults. J. Am. Med. Dir. Assoc. 2019, 20, 1224–1229. [Google Scholar] [CrossRef]
Overall (n = 12,427) | |
---|---|
Age (years) | 72.7 ± 6.9 |
Age Category (n (%)) | |
Young-Old (n (%)) | 8214 (66.1) |
Middle-Old (n (%)) | 3258 (26.2) |
Old-Old (n (%)) | 955 (7.7) |
Sex (n (%)) | |
Male (n (%)) | 5301 (42.7) |
Female (n (%)) | 7126 (57.3) |
Race and Ethnicity (n (%)) | |
Hispanic | 1120 (9.0) |
Non-Hispanic Black | 1648 (13.3) |
Non-Hispanic Other | 270 (2.1) |
Non-Hispanic White | 9389 (75.6) |
Health Conditions | 2.3 ± 1.4 |
Walk Speed (seconds) | 3.6 ± 2.1 |
Variable | Weighted Frequency | Weighted Prevalence (%) | 95% Confidence Interval | ∆% † |
---|---|---|---|---|
Age Group | ||||
Young-Old | ||||
2006–2008 Waves | 5,403,022 | 36.5 | 35.0, 38.1 | - |
2010–2012 Waves | 5,880,135 | 34.5 | 32.7, 36.2 | −2.0 |
2014–2016 Waves | 7,384,681 | 35.1 | 33.2, 37.0 | −1.4 |
Middle-Old | ||||
2006–2008 Waves | 5,539,249 | 59.1 | 57.1, 61.1 | - |
2010–2012 Waves | 5,398,282 | 53.7 | 51.7, 55.6 | −5.4 |
2014–2016 Waves | 5,707,398 | 54.9 | 52.9, 56.9 | −4.2 |
Old-Old | ||||
2006–2008 Waves | 2,221,729 | 76.1 | 72.8, 79.4 | - |
2010–2012 Waves | 2,519,977 | 74.8 | 71.6, 77.9 | −1.3 |
2014–2016 Waves | 3,047,428 | 79.1 | 76.3, 81.9 | 3.0 |
Race & Ethnicity | ||||
Hispanic | ||||
2006–2008 Waves | 1,061,208 | 63.6 | 59.2, 68.1 | - |
2010–2012 Waves | 1,028,953 | 57.7 | 52.3, 63.1 | −5.9 |
2014–2016 Waves | 1,560,875 | 64.2 | 59.4, 69.0 | 0.6 |
Non-Hispanic Black | ||||
2006–2008 Waves | 1,304,420 | 69.4 | 65.9, 72.8 | - |
2010–2012 Waves | 1,654,638 | 74.5 | 71.2, 77.8 | 5.1 |
2014–2016 Waves | 1,890,268 | 73.1 | 69.5, 76.6 | 3.7 |
Non-Hispanic Other | ||||
2006–2008 Waves | 255,375 | 51.7 | 41.9, 61.5 | - |
2010–2012 Waves | 296,928 | 45.5 | 36.3, 54.7 | −6.2 |
2014–2016 Waves | 437,165 | 46.4 | 37.6, 55.1 | −5.3 |
Non-Hispanic White | ||||
2006–2008 Waves | 10,542,997 | 45.8 | 44.5, 47.1 | - |
2010–2012 Waves | 10,817,875 | 41.9 | 40.5, 43.3 | −3.9 |
2014–2016 Waves | 12,251,199 | 41.7 | 40.2, 43.2 | −4.1 |
Gender | ||||
Females | ||||
2006–2008 Waves | 8,402,444 | 54.0 | 52.4, 55.6 | - |
2010–2012 Waves | 8,732,664 | 51.2 | 49.5, 52.9 | −2.8 |
2014–2016 Waves | 10,002,946 | 51.2 | 49.4, 53.0 | −2.8 |
Males | ||||
2006–2008 Waves | 4,761,556 | 41.3 | 39.5, 43.1 | - |
2010–2012 Waves | 5,065,730 | 37.7 | 35.8, 39.7 | −3.6 |
2014–2016 Waves | 6,136,561 | 38.9 | 36.9, 41.0 | −2.4 |
Estimate | 95% Confidence Interval | p-Value | |
---|---|---|---|
Overall Model | |||
Intercept | −0.40 | −0.80, −0.01 | 0.04 |
Wave | 0.18 | −0.01, 0.36 | 0.06 |
Model 1 | |||
Intercept | −0.45 | −0.54, −0.35 | <0.001 |
Wave | 0.01 | −0.04, 0.06 | 0.65 |
Middle-Old | 0.77 | 0.62, 0.92 | <0.001 |
Old-Old | 1.66 | 1.42, 1.89 | <0.001 |
Wave*Middle-Old | −0.03 | −0.10, 0.04 | 0.44 |
Wave*Old-Old | −0.02 | −0.12, 0.09 | 0.71 |
Model 2 | |||
Intercept | 0.87 | 0.36, 1.39 | <0.001 |
Wave | 0.13 | −0.11, 0.37 | 0.28 |
Male | −2.90 | −3.70, −2.20 | <0.001 |
Wave*Male | 0.08 | −0.29, 0.45 | 0.69 |
Model 3 | |||
Intercept | −1.20 | −1.60, −0.76 | <0.001 |
Wave | 0.03 | −0.18, 0.24 | 0.79 |
Hispanic | 4.23 | 2.77, 5.69 | <0.001 |
Non-Hispanic Black | 5.36 | 4.13, 6.60 | <0.001 |
Non-Hispanic Other | 0.78 | −2.20, 3.71 | 0.60 |
Wave*Hispanic | −0.02 | −0.68, 0.64 | 0.94 |
Wave*Non-Hispanic Black | 0.40 | −0.17, 0.97 | 0.16 |
Wave*Non-Hispanic Other | 0.08 | −1.20, 1.38 | 0.90 |
Variable | Weighted Frequency | Weighted Prevalence (%) | 95% Confidence Interval | ∆% † |
---|---|---|---|---|
Age Group | ||||
Young-Old | ||||
2006–2008 Waves | 2,000,914 | 13.5 | 12.4, 14.6 | |
2010–2012 Waves | 1,848,315 | 10.8 | 9.7, 11.9 | −2.7 |
2014–2016 Waves | 2,342,180 | 11.1 | 9.9, 12.3 | −2.4 |
Middle-Old | ||||
2006–2008 Waves | 2,500,642 | 26.7 | 24.9, 28.5 | |
2010–2012 Waves | 2,312,662 | 23.0 | 21.3, 24.6 | −3.7 |
2014–2016 Waves | 2,500,728 | 24.0 | 22.3, 25.7 | −2.7 |
Old-Old | ||||
2006–2008 Waves | 1,280,654 | 43.9 | 40.1, 47.6 | |
2010–2012 Waves | 1,478,506 | 43.8 | 40.1, 47.5 | −0.1 |
2014–2016 Waves | 1,940,661 | 50.3 | 46.8, 53.9 | 6.4 |
Race & Ethnicity | ||||
Hispanic | ||||
2006–2008 Waves | 569,762 | 34.1 | 30.0, 38.3 | |
2010–2012 Waves | 503,120 | 28.2 | 23.3, 33.1 | −5.9 |
2014–2016 Waves | 739,686 | 30.4 | 25.9, 34.9 | −3.7 |
Non-Hispanic Black | ||||
2006–2008 Waves | 725,509 | 38.6 | 34.9, 42.2 | - |
2010–2012 Waves | 829,684 | 37.3 | 33.6, 41.0 | −1.3 |
2014–2016 Waves | 978,070 | 37.8 | 33.8, 41.7 | −0.8 |
Non-Hispanic Other | ||||
2006–2008 Waves | 112,414 | 22.7 | 13.9, 31.5 | - |
2010–2012 Waves | 142,702 | 21.8 | 13.8, 29.9 | −0.9 |
2014–2016 Waves | 209,409 | 22.2 | 15.0, 29.4 | −0.5 |
Non-Hispanic White | ||||
2006–2008 Waves | 4,374,525 | 19.0 | 17.9, 20.0 | - |
2010–2012 Waves | 4,163,977 | 16.1 | 15.1, 17.1 | −2.9 |
2014–2016 Waves | 4,856,404 | 16.5 | 15.5, 17.6 | −2.5 |
Gender | ||||
Females | ||||
2006–2008 Waves | 3,969,203 | 25.5 | 24.1, 26.9 | - |
2010–2012 Waves | 3,839,996 | 22.5 | 21.1, 23.9 | −3.0 |
2014–2016 Waves | 4,446,626 | 22.7 | 21.3, 24.2 | −2.8 |
Males | ||||
2006–2008 Waves | 1,813,007 | 15.7 | 14.4, 17.0 | - |
2010–2012 Waves | 1,799,487 | 13.4 | 12.1, 14.7 | −2.3 |
2014–2016 Waves | 2,336,943 | 14.8 | 13.4, 16.2 | −0.9 |
Estimate | 95% Confidence Interval | p-Value | |
---|---|---|---|
Overall Model | |||
Intercept | −6.6 | −7.0, −6.3 | <0.001 |
Wave | 0.04 | −0.12, 0.20 | 0.61 |
Model 1 | |||
Intercept | −1.7 | −1.9, −1.6 | <0.001 |
Wave | −0.03 | −0.09, 0.02 | 0.25 |
Middle-Old | 0.69 | 0.50, 0.88 | <0.001 |
Old-Old | 1.54 | 1.24, 1.83 | <0.001 |
Wave*Middle-Old | 0.02 | −0.07, 0.11 | 0.63 |
Wave*Old-Old | 0.06 | −0.07, 0.20 | 0.37 |
Model 2 | |||
Intercept | −5.6 | −6.0, −5.1 | <0.001 |
Wave | −0.05 | −0.25, 0.16 | 0.66 |
Male | −2.6 | −3.3, −1.9 | <0.001 |
Wave*Male | 0.19 | −0.14, 0.52 | 0.25 |
Model 3 | |||
Intercept | −7.5 | −7.8, −7.1 | <0.001 |
Wave | −0.03 | −0.21, 0.16 | 0.77 |
Hispanic | 4.00 | 2.75, 5.26 | <0.001 |
Non-Hispanic Black | 5.19 | 4.14, 6.23 | <0.001 |
Non-Hispanic Other | 0.45 | −2.10, 3.04 | 0.73 |
Wave*Hispanic | −0.19 | −0.75, 0.38 | 0.51 |
Wave*Non-Hispanic Black | −0.09 | −0.57, 0.39 | 0.72 |
Wave*Non-Hispanic Other | 0.36 | −0.79, 1.51 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stover, E.; Andrew, S.; Batesole, J.; Berntson, M.; Carling, C.; FitzSimmons, S.; Hoang, T.; Nauer, J.; McGrath, R. Prevalence and Trends of Slow Gait Speed in the United States. Geriatrics 2023, 8, 95. https://doi.org/10.3390/geriatrics8050095
Stover E, Andrew S, Batesole J, Berntson M, Carling C, FitzSimmons S, Hoang T, Nauer J, McGrath R. Prevalence and Trends of Slow Gait Speed in the United States. Geriatrics. 2023; 8(5):95. https://doi.org/10.3390/geriatrics8050095
Chicago/Turabian StyleStover, Emily, Sarah Andrew, Joshua Batesole, Maren Berntson, Chloe Carling, Samantha FitzSimmons, Tyler Hoang, Joseph Nauer, and Ryan McGrath. 2023. "Prevalence and Trends of Slow Gait Speed in the United States" Geriatrics 8, no. 5: 95. https://doi.org/10.3390/geriatrics8050095