Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Identification of Potential DDI Perpetrator Drugs
2.4. Identification of Gene Variants Potentially Enhancing the Effect of DDI Perpetrators
2.5. Statistical Analysis
3. Results
3.1. Identification of the Most Prescribed Drugs in the Study Population
3.2. Identification of Gene Polymorphism Potentially Enhancing the Effect of Perpetrator Drugs
3.3. Currently Available CDSS with Pharmacogenomic Integration in DDIs Checkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronson, J.K. Drug–drug interactions. In ESC CardioMed, 3rd ed.; Camm, A.J., Lüscher, T.F., Maurer, G., Serruys, P.W., Eds.; Oxford Medicine Online 2021; Oxford University Press: Oxford, UK, 2021; Available online: https://oxfordmedicine.com/view/10.1093/med/9780198784906.001.0001/med-9780198784906-chapter-44 (accessed on 28 April 2023).
- Hanlon, J.T.; Perera, S.; Newman, A.B.; Thorpe, J.M.; Donohue, J.M.; Simonsick, E.M.; Shorr, R.I.; Bauer, D.C.; Marcum, Z.A.; Health ABC Study. Potential drug-drug and drug-disease interactions in well-functioning community-dwelling older adults. J. Clin. Pharm. Ther. 2017, 42, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Young, E.H.; Pan, S.; Yap, A.G.; Reveles, K.R.; Bhakta, K. Polypharmacy prevalence in older adults seen in United States physician offices from 2009 to 2016. PLoS ONE 2021, 16, e0255642. [Google Scholar] [CrossRef] [PubMed]
- Johnell, K.; Klarin, I. The relationship between number of drugs and potential drug-drug interactions in the elderly: A study of over 600,000 elderly patients from the Swedish Prescribed Drug Register. Drug Saf. 2007, 30, 911–918. [Google Scholar] [CrossRef]
- Anastasio, G.D.; Cornell, K.O.; Menscer, D. Drug interactions: Keeping it straight. Am. Fam. Physician 1997, 56, 883–888+891–894. [Google Scholar]
- Carpenter, M.; Berry, H.; Pelletier, A.L. Clinically Relevant Drug-Drug Interactions in Primary Care. Am. Fam. Physician 2019, 99, 558–564. [Google Scholar]
- Merel, S.E.; Paauw, D.S. Common Drug Side Effects and Drug-Drug Interactions in Elderly Adults in Primary Care. J. Am. Geriatr. Soc. 2017, 65, 1578–1585. [Google Scholar] [CrossRef]
- Tannenbaum, C.; Sheehan, N.L. Understanding and preventing drug-drug and drug-gene interactions. Expert. Rev. Clin. Pharmacol. 2014, 7, 533–544. [Google Scholar] [CrossRef]
- Peterson, J.F.; Bates, D.W. Preventable medication errors: Identifying and eliminating serious drug interactions. J. Am. Pharm. Assoc. 2001, 41, 159–160. [Google Scholar] [CrossRef]
- Blenkinsopp, A.; Bond, C.; Raynor, D.K. Medication reviews. Br. J. Clin. Pharmacol. 2012, 74, 573–580. [Google Scholar] [CrossRef]
- Van der Sijs, H.; Aarts, J.; Vulto, A.; Berg, M. Overriding of drug safety alerts in computerized physician order entry. J. Am. Med. Inform. Assoc. 2006, 13, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: A systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef] [PubMed]
- Verbeurgt, P.; Mamiya, T.; Oesterheld, J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics 2014, 15, 655–665. [Google Scholar] [CrossRef]
- Cardelli, M.; Marchegiani, F.; Corsonello, A.; Lattanzio, F.; Provinciali, M. A review of pharmacogenetics of adverse drug reactions in elderly people. Drug Saf. 2012, 35 (Suppl. S1), 3–20. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; Pilotto, A.; Panza, F.; Matera, M.G.; Pilotto, A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res. Rev. 2010, 9, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Oshiro, C.; Mangravite, L.; Klein, T.; Altman, R. PharmGKB very important pharmacogene: SLCO1B1. Pharmacogenet. Genom. 2010, 20, 211–216. [Google Scholar] [CrossRef]
- Brixner, D.; Biltaji, E.; Bress, A.; Unni, S.; Ye, X.; Mamiya, T.; Ashcraft, K.; Biskupiak, J. The effect of pharmacogenetic profiling with a clinical decision support tool on healthcare resource utilization and estimated costs in the elderly exposed to polypharmacy. J. Med. Econ. 2016, 19, 213–228. [Google Scholar] [CrossRef]
- Kim, K.; Magness, J.W.; Nelson, R.; Baron, V.; Brixner, D.I. Clinical Utility of Pharmacogenetic Testing and a Clinical Decision Support Tool to Enhance the Identification of Drug Therapy Problems Through Medication Therapy Management in Polypharmacy Patients. J. Manag. Care Spec. Pharm. 2018, 24, 1250–1259. [Google Scholar] [CrossRef]
- Bain, K.T.; Matos, A.; Knowlton, C.H.; McGain, D. Genetic variants and interactions from a pharmacist-led pharmacogenomics service for PACE. Pharmacogenomics 2019, 20, 709–718. [Google Scholar] [CrossRef]
- Hocum, B.T.; White, J.R., Jr.; Heck, J.W.; Thirumaran, R.K.; Moyer, N.; Newman, R.; Ashcraft, K. Cytochrome P-450 gene and drug interaction analysis in patients referred for pharmacogenetic testing. Am. J. Health Syst. Pharm. 2016, 73, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Tornio, A.; Filppula, A.M.; Niemi, M.; Backman, J.T. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin. Pharmacol. Ther. 2019, 105, 1345–1361. [Google Scholar] [CrossRef] [PubMed]
- Flockhart, D.A.; Thacker, D.; McDonald, C.; Desta, Z. The Flockhart Cytochrome P450 Drug-Drug Interaction Table. Division of Clinical Pharmacology, Indiana University School of Medicine. 2021. Available online: https://drug-interactions.medicine.iu.edu/ (accessed on 1 October 2021).
- Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J.R.; Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): Influence of protein expression on drug-drug interactions. J. Med. Chem. 2012, 55, 4740–4763. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.L.; Li, H.; Chen, Q.X.; Hu, Y.; Wu, S.J.; Tang, L.Y.; Gong, W.Y.; Xie, G.H.; Fang, X.M. Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hysterectomy in Chinese Han population. J. Clin. Pharm. Ther. 2012, 37, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, L.R.; Fu, Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur. J. Clin. Pharmacol. 2008, 64, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.F.; Qiu, W.; Liu, Z.Q.; Zhu, L.J.; Liu, Z.Q.; Tu, J.H.; Wang, D.; Li, Z.; He, J.; Zhong, G.P.; et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin. Exp. Pharmacol. Physiol. 2006, 33, 1093–1098. [Google Scholar] [CrossRef]
- Wang, D.; Sadee, W. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet. Genom. 2016, 26, 40–43. [Google Scholar] [CrossRef]
- Gómez-Bravo, M.A.; Apellaniz-Ruiz, M.; Salcedo, M.; Fondevila, C.; Suarez, F.; Castellote, J.; Rufian, S.; Pons, J.A.; Bilbao, I.; Alamo, J.M.; et al. Influence of donor liver CYP3A4*20 loss-of-function genotype on tacrolimus pharmacokinetics in transplanted patients. Pharmacogenet. Genom. 2018, 28, 41–48. [Google Scholar] [CrossRef]
- Lloberas, N.; Hesselink, D.A.; van Schaik, R.H.; Grinyò, J.M.; Colom, H.; Gelder, T.V.; Elens, L. Detection of a rare CYP3A4 variant in a transplant patient characterized by a tacrolimus poor metabolizer phenotype. Pharmacogenomics 2018, 19, 305–310. [Google Scholar] [CrossRef]
- Westlind-Johnsson, A.; Hermann, R.; Huennemeyer, A.; Hauns, B.; Lahu, G.; Nassr, N.; Zech, K.; Ingelman-Sundberg, M.; von Richter, O. Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin. Pharmacol. Ther. 2006, 79, 339–349. [Google Scholar] [CrossRef]
- Apellániz-Ruiz, M.; Inglada-Pérez, L.; Naranjo, M.E.; Sánchez, L.; Mancikova, V.; Currás-Freixes, M.; de Cubas, A.A.; Comino-Méndez, I.; Triki, S.; Rebai, A.; et al. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenom. J. 2015, 15, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Bellia, C.; Pivetti, A.; Agnello, L.; Bazza, F.; Scazzone, C.; Bivona, G.; Lo Sasso, B.; Ciaccio, M. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenom. Pers. Med. 2014, 7, 117–120. [Google Scholar] [CrossRef]
- Dai, D.; Tang, J.; Rose, R.; Hodgson, E.; Bienstock, R.J.; Mohrenweiser, H.W.; Goldstein, J.A. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. 2001, 299, 825–831. [Google Scholar]
- Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. 2006, 45, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Ferraresso, M.; Turolo, S.; Ghio, L.; Tirelli, A.S.; Belingheri, M.; Villa, R.; Groppali, E.; Edefonti, A. Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors. Clin. Exp. Hypertens. 2011, 33, 359–365. [Google Scholar] [CrossRef]
- Magliulo, L.; Dahl, M.L.; Lombardi, G.; Fallarini, S.; Villa, L.M.; Biolcati, A.; Scordo, M.G. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur. J. Clin. Pharmacol. 2011, 67, 47–54. [Google Scholar] [CrossRef]
- Stratta, P.; Quaglia, M.; Cena, T.; Antoniotti, R.; Fenoglio, R.; Menegotto, A.; Ferrante, D.; Genazzani, A.; Terrazzino, S.; Magnani, C. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur. J. Clin. Pharmacol. 2012, 68, 671–680. [Google Scholar] [CrossRef]
- Provenzani, A.; Notarbartolo, M.; Labbozzetta, M.; Poma, P.; Vizzini, G.; Salis, P.; Caccamo, C.; Bertani, T.; Palazzo, U.; Polidori, P.; et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int. J. Mol. Med. 2011, 28, 1093–1102. [Google Scholar] [CrossRef]
- Margaglione, M.; Colaizzo, D.; D’Andrea, G.; Brancaccio, V.; Ciampa, A.; Grandone, E.; Di Minno, G. Genetic modulation of oral anticoagulation with warfarin. Thromb. Haemost. 2000, 84, 775–778. [Google Scholar]
- Mazzaccara, C.; Conti, V.; Liguori, R.; Simeon, V.; Toriello, M.; Severini, A.; Perricone, C.; Meccariello, A.; Meccariello, P.; Vitale, D.F.; et al. Warfarin anticoagulant therapy: A Southern Italy pharmacogenetics-based dosing model. PLoS ONE 2013, 8, e71505. [Google Scholar] [CrossRef]
- Scordo, M.G.; Caputi, A.P.; D’Arrigo, C.; Fava, G.; Spina, E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol. Res. 2004, 50, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, M.; Peyvandi, F.; Pizzotti, D.; Moia, M.; Mannucci, P.M. Warfarin and acenocoumarol dose requirements according to CYP2C9 genotyping in North-Italian patients. J. Thromb. Haemost. 2003, 1, 2252–2253. [Google Scholar] [CrossRef] [PubMed]
- Carano, F.; Sarno, S.; De Fanti, S.; Serventi, P.; Bini, C.; Luiselli, D.; Pelotti, S. Genetic variability of CYP2D6, CYP2B6, CYP2C9 and CYP2C19 genes across the Italian Peninsula. Ann. Hum. Biol. 2018, 45, 66–71. [Google Scholar] [CrossRef]
- Botton, M.R.; Whirl-Carrillo, M.; Del Tredici, A.L.; Sangkuhl, K.; Cavallari, L.H.; Agúndez, J.A.G.; Duconge, J.; Lee, M.T.M.; Woodahl, E.L.; Claudio-Campos, K.; et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 2021, 109, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2021, 79, 103–113. [Google Scholar] [CrossRef]
- De Luca, C.; Scordo, M.G.; Cesareo, E.; Pastore, S.; Mariani, S.; Maiani, G.; Stancato, A.; Loreti, B.; Valacchi, G.; Lubrano, C.; et al. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol. Appl. Pharmacol. 2010, 248, 285–292. [Google Scholar] [CrossRef]
- Serrano, D.; Lazzeroni, M.; Zambon, C.F.; Macis, D.; Maisonneuve, P.; Johansson, H.; Guerrieri-Gonzaga, A.; Plebani, M.; Basso, D.; Gjerde, J.; et al. Efficacy of tamoxifen based on cytochrome P450 2D6, CYP2C19 and SULT1A1 genotype in the Italian Tamoxifen Prevention Trial. Pharmacogenom. J. 2011, 11, 100–107. [Google Scholar] [CrossRef]
- Overby, C.L.; Tarczy-Hornoch, P.; Kalet, I.J.; Thummel, K.E.; Smith, J.W.; Del Fiol, G.; Fenstermacher, D.; Devine, E.B. Developing a prototype system for integrating pharmacogenomics findings into clinical practice. J. Pers. Med. 2012, 2, 241–256. [Google Scholar] [CrossRef]
- Roncato, R.; Dal Cin, L.; Mezzalira, S.; Comello, F.; De Mattia, E.; Bignucolo, A.; Giollo, L.; D’Errico, S.; Gulotta, A.; Emili, L.; et al. FARMAPRICE: A Pharmacogenetic Clinical Decision Support System for Precise and Cost-Effective Therapy. Genes 2019, 10, 276. [Google Scholar] [CrossRef]
- Manzi, S.F.; Fusaro, V.A.; Chadwick, L.; Brownstein, C.; Clinton, C.; Mandl, K.D.; Wolf, W.A.; Hawkins, J.B. Creating a scalable clinical pharmacogenomics service with automated interpretation and medical record result integration—Experience from a pediatric tertiary care facility. J. Am. Med. Inform. Assoc. 2017, 24, 74–80. [Google Scholar] [CrossRef]
- Devine, E.B.; Lee, C.J.; Overby, C.L.; Abernethy, N.; McCune, J.; Smith, J.W.; Tarczy-Hornoch, P. Usability evaluation of pharmacogenomics clinical decision support aids and clinical knowledge resources in a computerized provider order entry system: A mixed methods approach. Int. J. Med. Inform. 2014, 83, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, A.A.; Shirts, B.H.; Dorschner, M.O.; Amendola, L.M.; Smith, J.W.; Jarvik, G.P.; Tarczy-Hornoch, P. Development of clinical decision support alerts for pharmacogenomic incidental findings from exome sequencing. Genet. Med. 2015, 17, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, A.A.; Shirts, B.H.; Salama, J.; Smith, J.W.; Devine, B.; Tarczy-Hornoch, P. Physician perspectives of CYP2C19 and clopidogrel drug-gene interaction active clinical decision support alerts. Int. J. Med. Inform. 2016, 86, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Overby, C.L.; Devine, E.B.; Abernethy, N.; McCune, J.S.; Tarczy-Hornoch, P. Making pharmacogenomic-based prescribing alerts more effective: A scenario-based pilot study with physicians. J. Biomed. Inform. 2015, 55, 249–259. [Google Scholar] [CrossRef]
- Bielinski, S.J.; Olson, J.E.; Pathak, J.; Weinshilboum, R.M.; Wang, L.; Lyke, K.J.; Ryu, E.; Targonski, P.V.; Van Norstrand, M.D.; Hathcock, M.A.; et al. Preemptive genotyping for personalized medicine: Design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin. Proc. 2014, 89, 25–33. [Google Scholar] [CrossRef]
- Caraballo, P.J.; Hodge, L.S.; Bielinski, S.J.; Stewart, A.K.; Farrugia, G.; Schultz, C.G.; Rohrer-Vitek, C.R.; Olson, J.E.; St Sauver, J.L.; Roger, V.L.; et al. Multidisciplinary model to implement pharmacogenomics at the point of care. Genet. Med. 2017, 19, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Skierka, J.M.; Blommel, J.H.; Moore, B.E.; VanCuyk, D.L.; Bruflat, J.K.; Peterson, L.M.; Veldhuizen, T.L.; Fadra, N.; Peterson, S.E.; et al. Preemptive Pharmacogenomic Testing for Precision Medicine: A Comprehensive Analysis of Five Actionable Pharmacogenomic Genes Using Next-Generation DNA Sequencing and a Customized CYP2D6 Genotyping Cascade. J. Mol. Diagn. 2016, 18, 438–445. [Google Scholar] [CrossRef]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar] [CrossRef]
- Peterson, J.F.; Bowton, E.; Field, J.R.; Beller, M.; Mitchell, J.; Schildcrout, J.; Gregg, W.; Johnson, K.; Jirjis, J.N.; Roden, D.M.; et al. Electronic health record design and implementation for pharmacogenomics: A local perspective. Genet. Med. 2013, 15, 833–841. [Google Scholar] [CrossRef]
- Weitzel, K.W.; Elsey, A.R.; Langaee, T.Y.; Burkley, B.; Nessl, D.R.; Obeng, A.O.; Staley, B.J.; Dong, H.J.; Allan, R.W.; Liu, J.F.; et al. Clinical pharmacogenetics implementation: Approaches, successes, and challenges. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166C, 56–67. [Google Scholar] [CrossRef]
- Teng, K.; DiPiero, J.; Meese, T.; Doerr, M.; Leonard, M.; Daly, T.; Lacbawan, F.; Chalmers, J.; Stowe, D.; Knoer, S.; et al. Cleveland Clinic’s Center for personalized healthcare: Setting the stage for value-based care. Pharmacogenomics 2014, 15, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.C.; Caudle, K.E.; Whirl-Carrillo, M.; Gordon, R.J.; Hikino, K.; Prows, C.A.; Gaedigk, A.; Agundez, J.; Sadhasivam, S.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin. Pharmacol. Ther. 2017, 102, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.M.; Haidar, C.E.; Wilkinson, M.R.; Crews, K.R.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Pui, C.H.; Reiss, U.M.; Gaur, A.H.; et al. PG4KDS: A model for the clinical implementation of pre-emptive pharmacogenetics. Am. J. Med. Genet. C. Semin. Med. Genet. 2014, 166C, 45–55. [Google Scholar] [CrossRef]
- Gammal, R.S.; Crews, K.R.; Haidar, C.E.; Hoffman, J.M.; Baker, D.K.; Barker, P.J.; Barker, P.J.; Estepp, J.H.; Pei, D.; Broeckel, U.; et al. Pharmacogenetics for Safe Codeine Use in Sickle Cell Disease. Pediatrics 2016, 138, e20153479. [Google Scholar] [CrossRef]
- Gottesman, O.; Scott, S.A.; Ellis, S.B.; Overby, C.L.; Ludtke, A.; Hulot, J.S.; Hall, J.; Chatani, K.; Myers, K.; Kannry, J.L.; et al. The CLIPMERGE PGx Program: Clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin. Pharmacol. Ther. 2013, 94, 214–217. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.H.; Bush, A.; Spitz, J.; Danahey, K.; Saner, D.; Das, S.; Ratain, M.J. The 1200 patients project: Creating a new medical model system for clinical implementation of pharmacogenomics. Clin. Pharmacol. Ther. 2012, 92, 446–449. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.H.; Danahey, K.; Jacobs, M.; Wadhwa, N.R.; Yuen, S.; Bush, A.; Sacro, Y.; Sorrentino, M.J.; Siegler, M.; Harper, W.; et al. Adoption of a clinical pharmacogenomics implementation program during outpatient care--initial results of the University of Chicago “1200 Patients Project”. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166C, 68–75. [Google Scholar] [CrossRef]
- Hussain, S.; Kenigsberg, B.B.; Danahey, K.; Lee, Y.M.; Galecki, P.M.; Ratain, M.J.; O’Donnell, P.H. Disease-drug database for pharmacogenomic-based prescribing. Clin. Pharmacol. Ther. 2016, 100, 179–190. [Google Scholar] [CrossRef]
- Miñarro-Giménez, J.A.; Blagec, K.; Boyce, R.D.; Adlassnig, K.P.; Samwald, M. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care. PLoS ONE 2014, 9, e93769. [Google Scholar] [CrossRef]
- Blagec, K.; Romagnoli, K.M.; Boyce, R.D.; Samwald, M. Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: A mixed methods study. PeerJ 2016, 4, e1671. [Google Scholar] [CrossRef]
- Blagec, K.; Koopmann, R.; Crommentuijn-van Rhenen, M.; Holsappel, I.; van der Wouden, C.H.; Konta, L.; Xu, H.; Steinberger, D.; Just, E.; Swen, J.J.; et al. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project. J. Am. Med. Inform. Assoc. 2018, 25, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Altar, C.A.; Carhart, J.M.; Allen, J.D.; Hall-Flavin, D.K.; Dechairo, B.M.; Winner, J.G. Clinical validity: Combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes. Pharmacogenom. J. 2015, 15, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.S.; Henderson, J.C.; Neradilek, M.B.; Moyer, N.A.; Ashcraft, K.C.; Thirumaran, R.K. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial. PLoS ONE 2017, 12, e0170905. [Google Scholar] [CrossRef]
- Dawes, M.; Aloise, M.N.; Ang, J.S.; Cullis, P.; Dawes, D.; Fraser, R.; Liknaitzky, G.; Paterson, A.; Stanley, P.; Suarez-Gonzalez, A.; et al. Introducing pharmacogenetic testing with clinical decision support into primary care: A feasibility study. CMAJ Open 2016, 4, E528–E534. [Google Scholar] [CrossRef]
- Hinderer, M.; Boeker, M.; Wagner, S.A.; Lablans, M.; Newe, S.; Hülsemann, J.L.; Neumaier, M.; Binder, H.; Renz, H.; Acker, T.; et al. Integrating clinical decision support systems for pharmacogenomic testing into clinical routine—A scoping review of designs of user-system interactions in recent system development. BMC Med. Inform. Decis. Mak. 2017, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Roosan, D.; Hwang, A.; Law, A.V.; Chok, J.; Roosan, M.R. The inclusion of health data standards in the implementation of pharmacogenomics systems: A scoping review. Pharmacogenomics 2020, 21, 1191–1202. [Google Scholar] [CrossRef]
- Hamzat, H.; Sun, H.; Ford, J.C.; Macleod, J.; Soiza, R.L.; Mangoni, A.A. Inappropriate prescribing of proton pump inhibitors in older patients: Effects of an educational strategy. Drugs Aging 2012, 29, 681–690. [Google Scholar] [CrossRef]
- Pasina, L.; Nobili, A.; Tettamanti, M.; Salerno, F.; Corrao, S.; Marengoni, A.; Iorio, A.; Marcucci, M.; Mannucci, P.M. REPOSI Investigators Prevalence and appropriateness of drug prescriptions for peptic ulcer and gastro-esophageal reflux disease in a cohort of hospitalized elderly. Eur. J. Intern. Med. 2011, 22, 205–210. [Google Scholar] [CrossRef]
- Voukelatou, P.; Vrettos, I.; Emmanouilidou, G.; Dodos, K.; Skotsimara, G.; Kontogeorgou, D.; Kalliakmanis, A. Predictors of Inappropriate Proton Pump Inhibitors Use in Elderly Patients. Curr. Gerontol. Geriatr. Res. 2019, 2019, 7591045. [Google Scholar] [CrossRef]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 2020, 72, 879–895. [Google Scholar] [CrossRef]
- Levin, A.; Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef]
- Marcus, F.I. Drug interactions with amiodarone. Am. Heart J. 1983, 106 Pt 2, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; Becker, M.L.; Haufroid, V.; Hofman, A.; Visser, L.E.; Uitterlinden, A.G.; Stricker, B.C.; van Schaik, R.H. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genom. 2011, 21, 861–866. [Google Scholar] [CrossRef]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hulot, J.S.; Chevalier, B.; Belle, L.; Cayla, G.; Khalife, K.; Funck, F.; Berthier, R.; Piot, C.; Tafflet, M.; Montalescot, G.; et al. Routine CYP2C19 Genotyping to Adjust Thienopyridine Treatment After Primary PCI for STEMI: Results of the GIANT Study. JACC Cardiovasc. Interv. 2020, 13, 621–630. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenom. J. 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Karnes, J.H.; Rettie, A.E.; Somogyi, A.A.; Huddart, R.; Fohner, A.E.; Formea, C.M.; Ta Michael Lee, M.; Llerena, A.; Whirl-Carrillo, M.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing: 2020 Update. Clin. Pharmacol. Ther. 2021, 109, 302–309. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.G.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef]
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef]
- Pirmohamed, M. Pharmacogenomics: Current status and future perspectives. Nat. Rev. Genet. 2023, 24, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Vander Stichele, R.; Kalra, D. Aggregations of Substance in Virtual Drug Models Based on ISO/CEN Standards for Identification of Medicinal Products (IDMP). Stud. Health Technol. Inform. 2022, 294, 377–381. [Google Scholar] [CrossRef] [PubMed]
Disease | Whole Population (n = 290) | Males (n = 164) | Females (n = 126) |
---|---|---|---|
Age | 74 (69–79) | 73 (68–78) | 75 (70–80) |
Prescribed drugs number | 8 (6–10) | 8 (6–10) | 8 (7–10) |
Comorbidities number | 6 (4–8) | 6 (4–7) | 7 (5–9) |
Arterial Hypertension | 185 (63.8) | 88 (53.7) | 97 (77.0) *** |
Type II DM | 112 (38.6) | 58 (35.4) | 54 (42.9) |
Dyslipidemia | 101 (34.8) | 56 (34.1) | 45 (35.7) |
Ischemic Heart Disease | 90 (31.0) | 68 (41.5) | 22 (17.5) *** |
Carotid artery atherosclerosis | 81 (27.9) | 42 (25.6) | 39 (30.9) |
CKD | 71 (24.5) | 38 (23.2) | 33 (26.2) |
Atrial fibrillation | 66 (22.8) | 41 (25.0) | 25 (19.8) |
COPD | 58 (20.0) | 40 (24.4) | 18 (14.3) * |
Benign Prostatic Hyperplasia | 45 (15.5) | 45 (27.5) | -- |
Goiter | 34 (11.7) | 14 (8.5) | 20 (15.9) |
Anemia | 30 (10.3) | 17 (10.4) | 13 (10.3) |
History of cancer | 30 (10.3) | 12 (7.3) | 18 (14.3) |
Diverticulosis | 25 (8.6) | 8 (4.9) | 17 (13.5) ** |
Depression and anxiety | 23 (7.9) | 7 (4.3) | 16 (12.7) ** |
Osteoarthritis | 22 (7.6) | 4 (2.4) | 18 (14.3) *** |
Peripheral artery disease | 21 (7.2) | 20 (12.2) | 1 (0.8) *** |
Chronic hepatitis | 19 (6.6) | 7 (4.3) | 12 (9.5) |
Hepatic cirrhosis | 19 (6.6) | 3 (1.8) | 16 (12.7) *** |
Osteoporosis | 11 (3.8) | 2 (1.2) | 9 (7.1) ** |
GERD | 11 (3.8) | 4 (2.4) | 7 (5.6) |
Angina | 10 (3.4) | 4 (2.4) | 6 (4.8) |
Whole Population | Males | Females | |
---|---|---|---|
Low dose aspirin | 124 (42.8) | 85 (51.8) | 39 (31.0) *** |
Furosemide | 104 (35.9) | 62 (37.8) | 42 (33.3) |
Atorvastatin | 104 (35.9) | 68 (41.5) | 36 (28.6) * |
Esomeprazole | 77 (26.6) | 39 (23.8) | 38 (30.2) |
Pantoprazole | 76 (26.2) | 38 (23.2) | 38 (30.2) |
Clopidogrel | 70 (24.1) | 48 (29.3) | 22 (17.5) * |
Ramipril | 69 (23.8) | 44 (26.8) | 25 (19.8) |
Allopurinol | 60 (20.7) | 36 (22.0) | 24 (19.0) |
Carvedilol | 58 (20.0) | 40 (24.4) | 18 (14.3) * |
Amlodipine | 55 (19.0) | 30 (18.3) | 25 (19.8) |
Metformin | 54 (18.6) | 28 (17.1) | 26 (20.6) |
Omeprazole | 54 (18.6) | 33 (20.1) | 21 (16.7) |
Bisoprolol | 52 (17.9) | 24 (14.6) | 28 (22.2) |
Hydrochlorothiazide | 49 (16.9) | 19 (11.6) | 30 (23.8) ** |
Insulin glargine | 48 (16.6) | 25 (15.2) | 23 (18.3) |
Warfarin | 37 (12.8) | 18 (11.0) | 19 (15.1) |
Potassium canrenoate | 35 (12.1) | 14 (8.5) | 21 (16.7) * |
Insulin Lispro | 33 (11.4) | 18 (11.0) | 15 (11.9) |
Digoxin | 33 (11.4) | 21 (12.8) | 12 (9.5) |
Tiotropium | 31 (10.7) | 19 (11.6) | 12 (9.5) |
Olmesartan | 30 (10.3) | 14 (8.5) | 16 (12.7) |
Irbesartan | 29 (10.0) | 14 (8.5) | 15 (11.9) |
Simvastatin | 28 (9.7) | 17 (10.4) | 11 (8.7) |
Spironolactone | 26 (9.0) | 22 (13.4) | 4 (3.2) ** |
Nebivolol | 22 (7.6) | 11 (6.1) | 11 (8.7) |
Nitroglycerin | 21 (7.2) | 13 (7.9) | 8 (6.3) |
Rosuvastatin | 21 (7.2) | 10 (6.1) | 11 (8.7) |
Folic Acid | 20 (6.9) | 13 (7.9) | 7 (5.6) |
Tamsulosin | 19 (6.6) | 19 (11.6) | -- |
Insulin aspart | 19 (6.6) | 9 (5.5) | 10 (7.9) |
Doxazosin | 18 (6.2) | 8 (4.5) | 10 (7.9) |
Rifaximin | 18 (6.2) | 10 (6.1) | 8 (6.3) |
Ursodeoxycholic acid | 17 (5.9) | 7 (4.3) | 10 (7.9) |
Amiodarone | 17 (5.9) | 14 (8.5) | 3 (2.4) |
Atenolol | 16 (5.5) | 9 (5.5) | 7 (5.6) |
Enoxaparin | 16 (5.5) | 5 (3.0) | 13 (10.3) * |
Telmisartan | 15 (5.2) | 6 (3.7) | 9 (7.1) |
Inhibitors | Inducers | Main Gene Variants | Functional Effect | Prevalence in Europe (1) | Prevalence in Italy | Prevalence in Southern Italy | |
---|---|---|---|---|---|---|---|
CYP3A4/5 | amiodarone, amlodipine, esomeprazole, omeprazole, pantoprazole | warfarin, rifaximin | CYP3A4*22 | LoF | 5% | 3.7% (2) | 3% (3) |
CYP3A4*1G | IM | 8% | 8.4 (2) | N/A | |||
CYP3A5*3 | LoF | 92.4% | 94.9% (2) | 96.6 (4) | |||
CYP2C9 | amiodarone | warfarin, rifaximin | CYP2C9*2 | IM | 12.4% | 17.6% (5) | 13.6% (5) |
CYP2C9*3 | LoF | 7.3% | 9.5% (5) | 10.0% (5) | |||
CYP2C19 | amiodarone, esomeprazole, omeprazole, pantoprazole | rifaximin | CYP2C19*17 | GoF | 21.6% | 17.6 (5) | N/A |
CYP2C19*2 | LoF | 14.5% | 13.8% (5) | 6.4% (5) | |||
CYP2C19*8 | LoF | 0.3% | 0 (2) | N/A | |||
CYP2D6 | amiodarone, amlodipine, omeprazole | ---- | CYP2D6*4 | LoF | 18.5% | 14.9% (5) | 11.82 (5) |
CYP2D6*41 | IM | 9.2% | 15.2% (5) | 18.2 (5) | |||
CYP2D6*5 | LoF | 2.95% | 0.9% (5) | 0.9 (5) | |||
CYP2D6*10 | IM | 1.6% | 2.6% (5) | 3.6 (5) | |||
CYP2D6*9 | IM | 2.8% | 1.7% (5) | 0.9 (5) | |||
CYP2D6*17 | IM | 0.4% | 0.3% (5) | 0 (5) | |||
SLCO1B1 | atorvastatin, digoxin, pantoprazole, rosuvastatin, simvastatin | ---- | SLCO1B1*15 | LoF | 15.0% | N/A | N/A |
SLCO1B1*5 | LoF | 2.0% | N/A | N/A | |||
rs4149056 | LoF | 16.1% | 21.5% (2) | N/A |
Name of the System or of the Institution/Project | Main Features | DDGI | Ref. |
---|---|---|---|
Clinical Pharmacogenomic Service/Boston Children’s Hospital | A software solution developed for internal use at the Boston Children’s Hospital Clinical; fully integrated with the EHR it generates alerts based on PGx-testing results upon drug prescribing. | NO | [52] |
University of Washington, Seattle | A prototype developed at the University of Washington, Seattle to incorporate into the PowerChart®/Cerner Millennium® environment, a semi-active PGx-based CDSS which upon prescription of selected drugs triggers either an alert for ordering PGx testing, or, when PGx data are already available, or displays a link to e-resources to provide information to support clinical decision. | NO | [50,53,54,55,56] |
RIGHT/Mayo Clinic https://www.mayo.edu/research/clinical-trials/cls-20316196 (accessed on 27 January 2023) | A CDSS developed at Mayo Clinic for internal use as a tool of the Right Drug, Right Dose, Right Time project on preemptive PGx testing in precision medicine. The system generates PGx alerts at the time of drug prescription by interacting with a EHR in which data on preemptive genotyping of 85 pharmacogenes are stored. | NO | [57,58,59] |
PREDICT/Vanderbilt University Medical Center https://www.vumc.org/predict-pdx/welcome (accessed on 27 January 2023) | A locally developed EHR supporting the request for PGx testing either preempting or upon prescription of specific drugs. The system stores genomic data until drugs that could generate DGIs are prescribed; at that time PGx-related alert, a list of potential DGIs and advice for therapy adjustments are generated. | NO | [60,61] |
Personalized Medication Program/University of Florida | An EHR modified for the preemptive request of CYP2C19 for patients undergoing cardiovascular procedures at the University of Florida. After storage of patient PGx data the system automatically generate a BPA (best practice advice) whenever a CYP2C19 drug substrate is prescribed. | NO | [62] |
Personalized Medication Program/Cleveland Clinic Health System | A PGx software developed at the Cleveland Clinic as a complement of the My Family prescription tool, which reports family health information in the HER; it prompts clinicians to ordering PGx testing when prescribing selected drugs or, if this information is already available, it displays PGx results together with BPAs (best practice advices) for PGx-guided drug prescription. | NO | [63] |
PG4KDS/St. Jude Children Research Hospital https://www.stjude.org/treatment/clinical-trials/pg4kds-pharmaceutical-science.html (accessed on 10 April 2023) | An automated system developed at the St. Jude Children Research Hospital as part of the PG4KDS project to incorporate into the EHR the results of preemptive testing of 225 pharmacogenes, their clinical interpretation and, when available, direction on drug prescription and dose adjustments according to CPIC guidelines. | NO | [64,65,66] |
CLIPMERGE PGx/The Mount Sinai Hospital | A PGx knowledge platform independent from, but fully integrated with the Mount Sinai’s Epic HER; it has been developed to generate alerts, and suggest specific corrective actions upon drug prescription based on the drug prescribed and the results of patient genetic testing. | NO | [67] |
FARMAPRICE/Centro Oncologico di Aviano | A prototype PGx-based CDSS to identify potential DGIs and suggest therapy adjustment developed at the Centro Oncologico di Aviano and currently tested mainly on oncological patients. | NO | [51] |
GPS/University of Chicago https://cpt.uchicago.edu/gps/ (accessed on 12 April 2023) | A web-based portal developed by the Center for Personalized Therapeutics of the University of Chicago to support PGx-based drug prescription at the Chicago University Medical Center. | NO | [68,69,70] |
Medication Safety Code (MSC)/University of Vienna https://safety-code.org/ (accessed on 14 April 2023) | A research prototype service available upon request that generates a QR code containing the results of patient genetic testing. This QR code is printed onto a plastic card and after scanning provides web-based patient-specific dosing recommendations. | NO | [71,72] |
GIMS (Genetic Information Management Suite/the U-PGx project) https://upgx.eu/ (accessed on 14 April 2023) | A knowledge database developed in the context of the UPGx project to support the implementation of PGx-based drug therapy adjustments in the CDSS already available at the clinical sites participating to the project. | NO | [73] |
GeneSight https://genesight.com/ (accessed on 16 April 2023) | A commercial service that performs genetic testing for patients who have to be given psychotropic drugs and also provides a short report with PGx-oriented recommendations for drug prescription. | NO | [74] |
YouScript https://youscript.com/ (accessed on 10 April 2023) | A commercial CDSS software solution for the combined evaluation of DGIs and DDGIs. It covers not only prescription drugs but also herbal remedies and OTC medicine. Full integration with EHR. | YES | [19,75] |
GenXys https://www.genxys.com/content/ (accessed on 10 April 2023) | A commercial software suite which also includes a tool for precision prescribing based on PGx testing results (TreatGx) and a software for automated medicine review (ReviewGx) which also includes PGx-based recommendations and advice for drug deprescribing. | YES | [76] |
Drug Perpetrator–Gene Combination | Main Victims | Potential Clinical Consequences of DDGIs |
---|---|---|
CYP3A4/5 LoF or IM variants + CYP3A4/5 inhibitors | amlodipine, diltiazem, verapamil | Hypotension, bradyarrhytmias |
atorvastatin, simvastatin | Increased risk of myopathy | |
quetiapine | Increased in drug toxicity (e.g., hypotension, dizziness, drowsiness, QT prolongation, hyperlipidemia, hyperglycemia), loss of antidepressant activity | |
tacrolimus | Increased in drug toxicity (e.g., opportunistic infections, hyperglycemia, hyperlipidemia, hypertension, nephrotoxicity, hepatotoxicity) | |
CYP2C9 LoF or IM variants + CYP2C9 inhibitors | Phenytoin | Ataxia, dizziness, drowsiness, nystagmus, hepatotoxicity, megaloblastic anemia, leukopenia, hepatotoxicity, osteoporosis |
celecoxib, ibuprofen, flurbiprofen, meloxicam | Diarrhea, dyspepsia, vomiting, heartburn, increased risk of peptic ulcer and gastric bleeding, | |
Fluvastatin | Higher myopathy risk | |
Warfarin | Increased risk of bleeding | |
CYP2C19 LoF or IM variants + CYP2C19 inhibitors | Clopidogrel | Loss of clopidogrel efficacy: increased risk of ischemic cardiovascular disease |
omeprazole, lansoprazole, pantoprazole, dexlansoprazole | Increased risk of bone fractures, of gastrointestinal and respiratory tract infections, of vitamin and electrolyte deficiencies, especially hypomagnesemia | |
SSRI (citalopram, escitalopram, sertraline) | Headache, drowsiness, blurred vision, tremor, xerostomia, nausea, vomiting, increased risk of falls, of SIADH, and of serotonin syndrome | |
Voriconazole | Central neurotoxicity (confusion, hallucinations), hepatotoxicity | |
CYP2D6 LoF or IM variants + CYP2D6 inhibitors | SSRI (paroxetine, fluvoxamine) | Headache, drowsiness, blurred vision, tremor, xerostomia, nausea, vomiting, increased risk of falls, of SIADH, and of serotonin syndrome |
SNRI | Tachycardia, hypertension, mydriasis, insomnia, xerostomia, nausea, vomiting, increased risk of falls, of SIADH, and of serotonin syndrome | |
Codeine, tramadol | Loss of codeine and tramadol efficacy: uncontrolled pain | |
β-blockers (metoprolol) | Severe bradycardia | |
Tamoxifen | Loss of tamoxifen efficacy | |
SLCO1B1 LoF variants + SLCO1B1 inhibitors | atorvastatin, rosuvastatin, simvastatin | higher myopathy risk |
Enalaprilat, olmesartan, valsartan | cough |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldi, M.; Celentano, C.; Bencivenga, L.; Arcopinto, M.; Resnati, C.; Manes, A.; Dodani, L.; Comnes, L.; Vander Stichele, R.; Kalra, D.; et al. Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential. Geriatrics 2023, 8, 84. https://doi.org/10.3390/geriatrics8050084
Cataldi M, Celentano C, Bencivenga L, Arcopinto M, Resnati C, Manes A, Dodani L, Comnes L, Vander Stichele R, Kalra D, et al. Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential. Geriatrics. 2023; 8(5):84. https://doi.org/10.3390/geriatrics8050084
Chicago/Turabian StyleCataldi, Mauro, Camilla Celentano, Leonardo Bencivenga, Michele Arcopinto, Chiara Resnati, Annalaura Manes, Loreta Dodani, Lucia Comnes, Robert Vander Stichele, Dipak Kalra, and et al. 2023. "Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential" Geriatrics 8, no. 5: 84. https://doi.org/10.3390/geriatrics8050084
APA StyleCataldi, M., Celentano, C., Bencivenga, L., Arcopinto, M., Resnati, C., Manes, A., Dodani, L., Comnes, L., Vander Stichele, R., Kalra, D., Rengo, G., Giallauria, F., Trama, U., Ferrara, N., Cittadini, A., & Taglialatela, M. (2023). Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential. Geriatrics, 8(5), 84. https://doi.org/10.3390/geriatrics8050084