Morbidity and Mortality Analysis in the Treatment of Intertrochanteric Hip Fracture with Two Fixation Systems: Dynamic Hip Screw (DHS) or Trochanteric Fixation Nail Advance (TFNA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Treatment
2.2. Data Collection and Statistical Analysis
3. Results
3.1. Demographic Distribution
3.2. Blood Loss and Transfusions
3.3. Post-Operative Mechanical Complications
3.4. Functional Outcomes and Weight-Bearing
3.5. Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saez-Lopez, P.; Ojeda-Thies, C.; Alarcon, T.; Munoz Pascual, A.; Mora-Fernandez, J.; Gonzalez de Villaumbrosia, C.; Molina Hernandez, M.J.; Montero-Fernandez, N.; Cancio Trujillo, J.M.; Diez Perez, A.; et al. Spanish National Hip Fracture Registry (RNFC): First-year results and comparison with other registries and prospective multi-centric studies from Spain. Rev. Esp. Salud Publica 2019, 93, e201911072. [Google Scholar]
- Huffman, F.G.; Vaccaro, J.A.; Zarini, G.G.; Vieira, E.R. Osteoporosis, Activities of Daily Living Skills, Quality of Life, and Dietary Adequacy of Congregate Meal Participants. Geriatrics 2018, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberio, R.L.; Rusconi, M.; Martinetti, L.; Monzeglio, D.; Grassi, F.A. Total Hip Arthroplasty (THA) for Femoral Neck Fractures: Comparison between Standard and Dual Mobility Implants. Geriatrics 2021, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Wibowo, D.B.; Kurdi, O.; Tauviqirrahman, M.; Jamari, J. Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability 2022, 14, 13413. [Google Scholar] [CrossRef]
- Cancio, J.M.; Vela, E.; Santaeugenia, S.; Cleries, M.; Inzitari, M.; Ruiz, D. Long-term Impact of Hip Fracture on the Use of Healthcare Resources: A Population-Based Study. J. Am. Med. Dir. Assoc. 2019, 20, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Lutnick, E.; Kang, J.; Freccero, D.M. Surgical Treatment of Femoral Neck Fractures: A Brief Review. Geriatrics 2020, 5, 22. [Google Scholar] [CrossRef]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and Dislocation Classification Compendium-2018. J. Orthop. Trauma 2018, 32, S1–S170. [Google Scholar] [CrossRef]
- Mohan, H.; Kumar, P. Surgical Treatment of Type 31-A1 Two-part Intertrochanteric Femur Fractures: Is Proximal Femoral Nail Superior to Dynamic Hip Screw Fixation? Cureus 2019, 11, e4110. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Wang, X.; Zhang, X. Comparing surgical interventions for intertrochanteric hip fracture by blood loss and operation time: A network meta-analysis. J. Orthop. Surg. Res. 2018, 13, 157. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Leung, F.; Xiang, Z.; Tan, P.Y.; Yang, J.; Wei, D.Q.; Yu, X. Proximal femoral nail versus dynamic hip screw fixation for trochanteric fractures: A meta-analysis of randomized controlled trials. Sci. World J. 2013, 2013, 805805. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.L.; Wang, X.; Luan, F.J.; Xu, H.T.; Fang, Y.; Min, J.; Luan, H.X.; Yang, F.; Zheng, H.; He, S.J. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: A meta-analysis. Orthop. Traumatol. Surg. Res. 2014, 100, 859–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.J.; Handoll, H.H. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst. Rev. 2010, 9, CD000093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.Q.; Sun, J.; Liu, C.Y.; Zhao, H.Y.; Sun, Y.F. Comparing the Intramedullary Nail and Extramedullary Fixation in Treatment of Unstable Intertrochanteric Fractures. Sci. Rep. 2018, 8, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambers, A.; Rieger, B.; Kop, A.; D’Alessandro, P.; Yates, P. Implant Fracture Analysis of the TFNA Proximal Femoral Nail. J. Bone Joint Surg. Am. 2019, 101, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Permana, M.S.; Winarni, T.I.; van der Heide, E. Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon 2022, 8, e12050. [Google Scholar] [CrossRef]
- Freitas, M.M.; Antunes, S.; Ascenso, D.; Silveira, A. Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients. Geriatrics 2021, 6, 83. [Google Scholar] [CrossRef]
- Negrini, S.; Imperio, G.; Villafane, J.H.; Negrini, F.; Zaina, F. Systematic reviews of physical and rehabilitation medicine Cochrane contents. Part 1. Disabilities due to spinal disorders and pain syndromes in adults. Eur. J. Phys. Rehabil. Med. 2013, 49, 597–609. [Google Scholar]
- Villafane, J.H.; Pirali, C.; Isgro, M.; Vanti, C.; Buraschi, R.; Negrini, S. Effects of Action Observation Therapy in Patients Recovering from Total Hip Arthroplasty Arthroplasty: A Prospective Clinical Trial. J. Chiropr. Med. 2016, 15, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Verettas, D.A.; Ifantidis, P.; Chatzipapas, C.N.; Drosos, G.I.; Xarchas, K.C.; Chloropoulou, P.; Kazakos, K.I.; Trypsianis, G.; Ververidis, A. Systematic effects of surgical treatment of hip fractures: Gliding screw-plating vs intramedullary nailing. Injury 2010, 41, 279–284. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, H.P.; Dou, Q.J.; He, X.B.; Yang, X.F. Efficacy of femoral nail anti-rotation of helical blade in unstable intertrochanteric fracture. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 6–11. [Google Scholar]
- Li, H.; Wang, Q.; Dai, G.G.; Peng, H. PFNA vs. DHS helical blade for elderly patients with osteoporotic femoral intertrochanteric fractures. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sethi, A.; Sharma, S. Treatment of stable intertrochanteric fractures of the femur with proximal femoral nail versus dynamic hip screw: A comparative study. Rev. Bras. Ortop. 2018, 53, 477–481. [Google Scholar] [CrossRef]
- Villafane, J.H.; Valdes, K.; Pedersini, P.; Berjano, P. Osteoarthritis: A call for research on central pain mechanism and personalized prevention strategies. Clin. Rheumatol. 2019, 38, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Sinatti, P.; Sanchez Romero, E.A.; Martinez-Pozas, O.; Villafane, J.H. Effects of Patient Education on Pain and Function and Its Impact on Conservative Treatment in Elderly Patients with Pain Related to Hip and Knee Osteoarthritis: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 6194. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, T.; Jamari, J.; Bayuseno, A.P.; Ismail, R.; Tauviqirrahman, M.; Saputra, E. Short communication: Running-in behavior on single-mobility total hip arthroplasty. Med. Eng. Phys. 2022, 104, 103806. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Anwar, I.B.; Saputra, E.; van der Heide, E. Range of Motion Simulation of Hip Joint Movement During Salat Activity. J. Arthroplasty 2017, 32, 2898–2904. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.; Sirka, A.; Liu, Y.; Tarasevicius, S.; Belickas, J.; Tagil, M.; Lidgren, L.; Isaksson, H.; Raina, D.B. Augmenting a dynamic hip screw with a calcium sulfate/hydroxyapatite biomaterial. Med. Eng. Phys. 2021, 92, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Arshad, Z.; Thahir, A.; Rawal, J.; Hull, P.D.; Carrothers, A.D.; Krkovic, M.; Chou, D.T.S. Dynamic hip screw fixation of subtrochanteric femoral fractures. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1435–1441. [Google Scholar] [CrossRef]
- Palm, H.; Jacobsen, S.; Sonne-Holm, S.; Gebuhr, P.; Hip Fracture Study, G. Integrity of the lateral femoral wall in intertrochanteric hip fractures: An important predictor of a reoperation. J. Bone Joint Surg. Am. 2007, 89, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Weiser, L.; Ruppel, A.A.; Nuchtern, J.V.; Sellenschloh, K.; Zeichen, J.; Puschel, K.; Morlock, M.M.; Lehmann, W. Extra- vs. intramedullary treatment of pertrochanteric fractures: A biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch. Orthop. Trauma Surg. 2015, 135, 1101–1106. [Google Scholar] [CrossRef]
- Baumgaertner, M.R.; Curtin, S.L.; Lindskog, D.M.; Keggi, J.M. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Joint Surg. Am. 1995, 77, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Radaideh, A.M.; Qudah, H.A.; Audat, Z.A.; Jahmani, R.A.; Yousef, I.R.; Saleh, A.A.A. Functional and Radiological Results of Proximal Femoral Nail Antirotation (PFNA) Osteosynthesis in the Treatment of Unstable Pertrochanteric Fractures. J. Clin. Med. 2018, 7, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, A.; Donnelly, K.J.; Rowan, C.; McDonald, S.; Foster, A.P. Is the Best Plate a Nail? A Review of 3230 Unstable Intertrochanteric Fractures of the Proximal Femur. J. Orthop. Trauma 2018, 32, 53–60. [Google Scholar] [CrossRef]
- Whale, C.S.; Hulet, D.A.; Beebe, M.J.; Rothberg, D.L.; Zhang, C.; Presson, A.P.; Stuart, A.R.; Kubiak, E.N. Cephalomedullary nail versus sliding hip screw for fixation of AO 31 A1/2 intertrochanteric femoral fracture: A 12-year comparison of failure, complications, and mortality. Curr. Orthop. Pract. 2016, 27, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, X.; Zhu, X.; Yu, Z.; Xu, Y.; Zha, G.; Hu, J.; Yi, J.; Liu, Y. Proximal femoral nails anti-rotation versus dynamic hip screws for treatment of stable intertrochanteric femur fractures: An outcome analyses with a minimum 4 years of follow-up. BMC Musculoskelet. Disord. 2016, 17, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Zhang, N.; Zeng, D.; Zhang, L.; Xu, P.; Cao, L.; Yu, W.; Zhan, K.; Zhang, X. Proximal femoral nail antirotation versus dynamic hip screw fixation for treatment of osteoporotic type 31-A1 intertrochanteric femoral fractures in elderly patients. J. Int. Med. Res. 2017, 45, 1109–1123. [Google Scholar] [CrossRef] [Green Version]
- Duymus, T.M.; Aydogmus, S.; Ulusoy, I.; Kececi, T.; Adiyeke, L.; Dernek, B.; Mutlu, S. Comparison of Intra- and Extramedullary Implants in Treatment of Unstable Intertrochanteric Fractures. J. Clin. Orthop. Trauma 2019, 10, 290–295. [Google Scholar] [CrossRef]
- Barahona, M.; Barrientos, C.; Cavada, G.; Branes, J.; Martinez, A.; Catalan, J. Survival analysis after hip fracture: Higher mortality than the general population and delayed surgery increases the risk at any time. Hip Int. 2020, 30, 54–58. [Google Scholar] [CrossRef]
- Maheshwari, K.; Planchard, J.; You, J.; Sakr, W.A.; George, J.; Higuera-Rueda, C.A.; Saager, L.; Turan, A.; Kurz, A. Early Surgery Confers 1-Year Mortality Benefit in Hip-Fracture Patients. J. Orthop. Trauma 2018, 32, 105–110. [Google Scholar] [CrossRef]
- Rosso, F.; Dettoni, F.; Bonasia, D.E.; Olivero, F.; Mattei, L.; Bruzzone, M.; Marmotti, A.; Rossi, R. Prognostic factors for mortality after hip fracture: Operation within 48 hours is mandatory. Injury 2016, 47, S91–S97. [Google Scholar] [CrossRef]
- Queally, J.M.; Harris, E.; Handoll, H.H.; Parker, M.J. Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst. Rev. 2014, 9, CD004961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantzen, C.; Madsen, C.M.; Abrahamsen, B.; Van Der Mark, S.; Duus, B.R.; Howland, J.; Lauritzen, J.B.; Jorgensen, H.L. Pre-fracture medication use as a predictor of 30-day mortality in hip fracture patients: An analysis of 141,201 patients. Hip Int. 2020, 30, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Karres, J.; Heesakkers, N.A.; Ultee, J.M.; Vrouenraets, B.C. Predicting 30-day mortality following hip fracture surgery: Evaluation of six risk prediction models. Injury 2015, 46, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.J.; Anand, J.K. What is the true mortality of hip fractures? Public Health 1991, 105, 443–446. [Google Scholar] [CrossRef]
- Glassner, P.J.; Tejwani, N.C. Failure of proximal femoral locking compression plate: A case series. J. Orthop. Trauma 2011, 25, 76–83. [Google Scholar] [CrossRef]
- Rainoldi, L.; Zaina, F.; Villafañe, J.H.; Donzelli, S.; Negrini, S. Quality of life in normal and idiopathic scoliosis adolescents before diagnosis: Reference values and discriminative validity of the SRS-22. A cross-sectional study of 1,205 pupils. Spine. J. 2015, 15, 662–667. [Google Scholar] [CrossRef]
- Schneider, K.; Oh, J.K.; Zderic, I.; Stoffel, K.; Richards, R.G.; Wolf, S.; Gueorguiev, B.; Nork, S.E. What is the underlying mechanism for the failure mode observed in the proximal femoral locking compression plate? A biomechanical study. Injury 2015, 46, 1483–1490. [Google Scholar] [CrossRef]
- Streubel, P.N.; Moustoukas, M.J.; Obremskey, W.T. Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures. J. Orthop. Trauma 2013, 27, 22–28. [Google Scholar] [CrossRef]
- Wirtz, C.; Abbassi, F.; Evangelopoulos, D.S.; Kohl, S.; Siebenrock, K.A.; Kruger, A. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury 2013, 44, 751–756. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Geng, D.C.; Mao, H.Q.; Zhu, X.S.; Yang, H.L. A comparison of the proximal femoral nail antirotation device and dynamic hip screw in the treatment of unstable pertrochanteric fracture. J. Int. Med. Res. 2010, 38, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Makridis, K.G.; Badras, L.S.; Badras, S.L.; Karachalios, T.S. Searching for the ‘winner’ hip fracture patient: The effect of modifiable and non-modifiable factors on clinical outcomes following hip fracture surgery. Hip Int. 2021, 31, 115–124. [Google Scholar] [CrossRef] [PubMed]
Variables | TFNA (n = 74) | % | DHS (n = 78) | % | p-Value |
---|---|---|---|---|---|
Gender | |||||
Female | 59 | 79.7 | 67 | 85.9 | 0.313 |
Male | 15 | 20.3 | 11 | 14.1 | |
Age | |||||
<80 yrs | 17 | 23.0 | 17 | 21.8 | 0.862 |
≥80 yrs | 57 | 77.0 | 61 | 78.2 | |
Charlson Index | |||||
0 | 39 | 52.7 | 37 | 48.1 | 0.677 |
1 | 21 | 28.4 | 27 | 35.1 | |
≥2 | 14 | 18.9 | 13 | 16.9 | |
AO classification | |||||
31A1 | 31 | 41.9 | 41 | 52.6 | 0.035 |
31A2 | 33 | 44.6 | 35 | 44.9 | |
31A3 | 10 | 13.5 | 2 | 2.6 | |
Preoperative mobility | |||||
Without aids 1 | 42 | 56.8 | 30 | 38.5 | |
crutch | 18 | 24.3 | 21 | 26.9 | 0.095 |
2 crutches/walking frame | 9 | 12.2 | 22 | 28.2 | |
Not walking | 5 | 6.8 | 5 | 6.4 | |
Days to surgery | 2.74 | 4.18 | 0.005 |
Variables | TFNA (n = 74) | % | DHS (n = 78) | % | p-Value |
---|---|---|---|---|---|
Pre-operative hemoglobin (g/dL) | 12.33 | 12.11 | 26.9 | 0.095 | |
Anemization (g/dL) | 2.89 | 2.82 | 0.711 | ||
Transfusion (n) | 18 | 24.3 | 17 | 21.8 | 0.711 |
Complications (n) | 2 | 5 | 1.0 | ||
Weight-bearing at hospital discharge (n) | 50 | 67.6 | 35 | 44.9 | 0.005 |
Impairment of the gait (n) | 49 | 66.2 | 42 | 53.8 | 0.120 |
Death (n) | 1 | 1.4 | 16 | 20.5 | <0.001 |
Pre-Fracture Gait | Gait after Follow-Up | |
---|---|---|
Without support | 72 (47.4%) | 26 (17.1%) |
One crutch | 39 (25.7%) | 28 (18.4%) |
Two crutches | 13 (8.6%) | 11 (7.2%) |
Orthopedic walker | 18 (11.8%) | 50 (32.9%) |
Not walking | 10 (6.6%) | 37 (24.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hualda, A.; Arruti-Pérez, E.; Bebea-Zamorano, F.N.; Sosa-Reina, M.D.; Villafañe, J.H.; Martínez-Martin, J. Morbidity and Mortality Analysis in the Treatment of Intertrochanteric Hip Fracture with Two Fixation Systems: Dynamic Hip Screw (DHS) or Trochanteric Fixation Nail Advance (TFNA). Geriatrics 2023, 8, 66. https://doi.org/10.3390/geriatrics8030066
López-Hualda A, Arruti-Pérez E, Bebea-Zamorano FN, Sosa-Reina MD, Villafañe JH, Martínez-Martin J. Morbidity and Mortality Analysis in the Treatment of Intertrochanteric Hip Fracture with Two Fixation Systems: Dynamic Hip Screw (DHS) or Trochanteric Fixation Nail Advance (TFNA). Geriatrics. 2023; 8(3):66. https://doi.org/10.3390/geriatrics8030066
Chicago/Turabian StyleLópez-Hualda, Alvaro, Elsa Arruti-Pérez, Fátima N. Bebea-Zamorano, María Dolores Sosa-Reina, Jorge Hugo Villafañe, and Javier Martínez-Martin. 2023. "Morbidity and Mortality Analysis in the Treatment of Intertrochanteric Hip Fracture with Two Fixation Systems: Dynamic Hip Screw (DHS) or Trochanteric Fixation Nail Advance (TFNA)" Geriatrics 8, no. 3: 66. https://doi.org/10.3390/geriatrics8030066
APA StyleLópez-Hualda, A., Arruti-Pérez, E., Bebea-Zamorano, F. N., Sosa-Reina, M. D., Villafañe, J. H., & Martínez-Martin, J. (2023). Morbidity and Mortality Analysis in the Treatment of Intertrochanteric Hip Fracture with Two Fixation Systems: Dynamic Hip Screw (DHS) or Trochanteric Fixation Nail Advance (TFNA). Geriatrics, 8(3), 66. https://doi.org/10.3390/geriatrics8030066