Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Handgrip Strength Measurements
2.2.1. Maximal Handgrip Strength
2.2.2. Radial and Ulnar Digit Grip Strength
2.2.3. Submaximal Handgrip Strength Force Control
2.2.4. Handgrip Strength Fatigability
2.2.5. Neuromuscular Handgrip Strength Steadiness
2.2.6. Handgrip Strength Asymmetry
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; De Carvalho, I.A.; Bautmans, I.; Bernabei, R.; et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice. Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufner, T.J.; Fitzgerald, J.S.; Lang, J.J.; Tomkinson, G.R. Temporal Trends in the Handgrip Strength of 2,592,714 Adults from 14 Countries Between 1960 and 2017: A Systematic Analysis. Sports Med. 2020. [online ahead of print]. [Google Scholar] [CrossRef]
- McGrath, R.P.; Kraemer, W.J.; Al Snih, S.; Peterson, M.D. Handgrip Strength and Health in Aging Adults. Sports Med. 2018, 48, 1993–2000. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.S.Y.; Reijnierse, E.M.; Trappenburg, M.C.; Hogrel, J.-Y.; McPhee, J.S.; Piasecki, M.; Sipilä, S.; Salpakoski, A.; Butler-Browne, G.; Pääsuke, M.; et al. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J. Am. Med. Dir. Assoc. 2018, 19, 703–709. [Google Scholar] [CrossRef]
- McGrath, R.; Johnson, N.; Klawitter, L.; Mahoney, S.; Trautman, K.; Carlson, C.; Rockstad, E.; Hackney, K.J. What are the association patterns between handgrip strength and adverse health conditions? A topical review. SAGE Open Med. 2020, 8, 2050312120910358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.S.Y.; Reijnierse, E.M.; Trappenburg, M.C.; Blauw, G.J.; Meskers, C.G.M.; Maier, A.B. Knee extension strength measurements should be considered as part of the comprehensive geriatric assessment. BMC Geriatr. 2018, 18, 130. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Are hand-grip and knee extension strength reflective of a common construct? Percept. Mot. Skills. 2012, 114, 514–518. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R. Are we maximizing the utility of handgrip strength assessments for evaluating muscle function? Aging Clin. Exp. Res. 2020, 1–3. [Google Scholar] [CrossRef]
- McGrath, R.P.; Vincent, B.M.; Jurivich, D.A.; Hackney, K.J.; Tomkinson, G.R.; Dahl, L.J.; Clark, B.C. Handgrip Strength Asymmetry and Weakness Together Are Associated With Functional Disability in Aging Americans. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2020, 100, [online ahead of print]. [Google Scholar] [CrossRef]
- McGrath, R.; Tomkinson, G.R.; Laroche, D.P.; Vincent, B.; Bond, C.W.; Hackney, K.J. Handgrip Strength Asymmetry and Weakness May Accelerate Time to Mortality in Aging Americans. J. Am. Med Dir. Assoc. 2020. S1525-8610(20)30360-1 [In press]. [Google Scholar] [CrossRef] [PubMed]
- Wiles, J.D.; Boyson, H.; Balmer, J.; Bird, S.R. Validity and reliability of a new isometric hand dynamometer. Sports Eng. 2001, 4, 147–152. [Google Scholar] [CrossRef]
- Clark, B.C.; Pierce, J.R.; Manini, T.M.; Ploutz-Snyder, L.L. Effect of prolonged unweighting of human skeletal muscle on neuromotor force control. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 100, 53–62. [Google Scholar] [CrossRef]
- Lou, J.-S. Techniques in Assessing Fatigue in Neuromuscular Diseases. Phys. Med. Rehabil. Clin. North Am. 2012, 23, 11–22. [Google Scholar] [CrossRef]
- Moran, J.; McGovern, A.; Kelly, R.; Fallon, A.; Rafferty, T.; Guinan, E. The ability of the Actigraph wGT3X-BT to accurately measure body position. Physiother 2016, 102, e119–e120. [Google Scholar] [CrossRef]
- McGrath, R.P.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Clark, B.C. Handgrip Strength Asymmetry and Weakness Are Associated with Lower Cognitive Function: A Panel Study. J. Am. Geriatr. Soc. 2020, 68, 2051–2058. [Google Scholar] [CrossRef]
- Martins, T.; Annichino-Bizzacchi, J.M.; Romano, A.V.C.; Filho, R.M. Principal Component Analysis on Recurrent Venous Thromboembolism. Clin. Appl. Thromb. 2019, 25, 1076029619895323. [Google Scholar] [CrossRef]
- Rencher, A.C. Methods of Multivariate Analysis; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Krijnen, W.P. Some Results on Mean Square Error for Factor Score Prediction. Psychometrika 2006, 71, 395–409. [Google Scholar] [CrossRef]
- Matsunaga, M. How to factor-analyze your data right: Do’s, don’ts, and how-to’s. Int. J. Psychol. Res. 2010, 3, 97–110. [Google Scholar] [CrossRef]
- Kilbreath, S.L.; Gorman, R.B.; Raymond, J.; Gandevia, S.C. Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. J. Physiol. 2002, 543, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C. Neuromuscular Changes with Aging and Sarcopenia. J. Frailty Aging 2019, 8, 7–9. [Google Scholar]
- Carson, R.G. Get a grip: Individual variations in grip strength are a marker of brain health. Neurobiol. Aging 2018, 71, 189–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methot, J.; Chinchalkar, S.J.; Richards, R.S. Contribution of the ulnar digits to grip strength. Can. J. Plast. Surg. 2010, 18, e10–e14. [Google Scholar] [CrossRef]
- Crawford, P.; Zimmerman, E.E. Tremor: Sorting Through the Differential Diagnosis. Am. Fam. Physician 2018, 97, 180–186. [Google Scholar]
- Becker, R.E.; Manna, B. Anatomy, Shoulder and Upper Limb, Ulnar Nerve; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Liao, T.; Li, L.; Wang, Y. “Tai” Effects of Functional Strength Training Program on Movement Quality and Fitness Performance Among Girls Aged 12–13 Years. J. Strength Cond. Res. 2019, 33, 1534–1541. [Google Scholar] [CrossRef]
- Kang, N.; Cauraugh, J.H. Paretic hand unimanual force control: Improved submaximal force production and regularity. Neurosci. Res. 2015, 94, 79–86. [Google Scholar] [CrossRef]
- Struble, L. Tremors. Available online: https://nursing.ceconnection.com/ovidfiles/00006205-201006000-00008.pdf (accessed on 14 October 2020).
- Workman, C.D.; Fietsam, A.C.; Rudroff, T. Associations of lower limb joint asymmetry with fatigue and disability in people with multiple sclerosis. Clin. Biomech. 2020, 75, 104989. [Google Scholar] [CrossRef]
- Contessa, P.; Adam, A.; De Luca, C.J. Motor unit control and force fluctuation during fatigue. J. Appl. Physiol. 2009, 107, 235–243. [Google Scholar] [CrossRef] [Green Version]
Variables | n = 13 |
---|---|
Age (years) | 70.9 ± 4.0 |
Female (n (%)) | 7 (53.9) |
Height (centimeters) | 171.0 ± 10.4 |
Body Mass (kilograms) | 81.1 ± 21.0 |
Body Mass Index (kilograms per meters-squared) | 27.4 ± 4.8 |
Married (n (%)) | 10 (76.9) |
Retired (n (%)) | 9 (69.2) |
Completed College (n (%)) | 9 (69.2) |
Right Hand Dominant (n (%)) | 13 (100.0) |
Self-Rated Health (n (%)) | |
Excellent or Very Good | 6 (46.2) |
Good, Fair, or Poor | 7 (53.8) |
Maximal Handgrip Strength (kilograms) | 22.6 ± 7.4 |
Maximal Ulnar Digit Strength (kilograms) | 8.0 ± 2.5 |
Maximal Radial Digit Strength (kilograms) | 13.1 ± 4.1 |
Submaximal Handgrip Strength Force Control (coefficient of variation) | 21.9 ± 4.2 |
Handgrip Strength Fatigability Index | 16.4 ± 7.1 |
Handgrip Strength Asymmetry Ratio | 1.1 ± 0.1 |
Maximal HGS Steadiness (vector magnitude) | 7.5 ± 13.7 |
Maximal Ulnar Digit Strength Steadiness (vector magnitude) | 12.0 ± 16.1 |
Maximal Radial Digit Strength Steadiness (vector magnitude) | 8.2 ± 16.3 |
Handgrip Strength Fatigability Steadiness (vector magnitude) | 0.4 ± 0.5 |
Variables | Maximal Strength | Ulnar Digit Strength | Radial Digit Strength | Submaximal Force Control | Fatigability | Asymmetry |
---|---|---|---|---|---|---|
Maximal Strength | - | - | - | - | - | - |
Ulnar Digit Strength | r = 0.91; p < 0.01 | - | - | - | - | - |
Radial Digit Strength | r = 0.94; p < 0.01 | r = 0.93; p < 0.01 | - | - | - | - |
Submaximal Force Control | r = −0.55; p = 0.04 | r = −0.45; p = 0.12 | r = −0.50; p = 0.07 | - | - | - |
Fatigability | r = 0.43; p = 0.13 | r = 0.19; p = 0.51 | r = 0.28; p = 0.35 | r = −0.72; p < 0.01 | - | - |
Asymmetry | r = 0.43; p = 0.13 | r = 0.44; p = 0.12 | r = 0.29; p = 0.32 | r = −0.21; p = 0.48 | r = 0.07; p = 0.80 | - |
Maximal Steadiness | r = 0.55; p = 0.04 | r = 0.55; p = 0.04 | r = 0.52; p = 0.06 | r = −0.10; p = 0.72 | r = 0.15; p = 0.61 | r = −0.10; p = 0.72 |
Ulnar Digit Strength Steadiness | r = 0.26; p = 0.37 | r = 0.26; p = 0.38 | r = 0.25; p = 0.39 | r = 0.19; p = 0.51 | r = −0.06; p = 0.83 | r = −0.15; p = 0.61 |
Radial Digit Strength Steadiness | r = 0.56; p = 0.04 | r = 0.56; p = 0.04 | r = 0.48; p = 0.09 | r = −0.13; p = 0.66 | r = 0.17; p = 0.56 | r = −0.01; p = 0.98 |
Fatigability Steadiness | r = −0.51; p = 0.07 | r = −0.41; p = 0.16 | r = −0.32; p = 0.27 | r = 0.24; p = 0.42 | r = −0.32; p = 0.28 | r = −0.75; p < 0.01 |
Variables | Maximal Strength Steadiness | Ulnar Digit Strength Steadiness | Radial Digit Strength Steadiness | Fatigability Steadiness | ||
Ulnar Digit Strength Steadiness Radial Digit Strength Steadiness Fatigability Steadiness | r = 0.79; p < 0.01 | - | - | - | ||
r = 0.94; p < 0.01 | r = 0.70; p < 0.01 | - | - | |||
r = −0.13; p = 0.67 | r = −0.13; p = 0.66 | r = −0.15; p = 0.60 | - |
Variables | Principal Component 1 | Principal Component 2 | Principal Component 3 |
---|---|---|---|
Maximal Handgrip Strength | 0.44 * | −0.11 | −0.01 |
Maximal Ulnar Digit Strength | 0.42 * | −0.05 | 0.10 |
Maximal Radial Digit Strength | 0.41 * | −0.05 | −0.03 |
Submaximal Handgrip Strength Force Control | −0.25 | 0.34 | 0.48 |
Handgrip Strength Fatigability | 0.20 | −0.26 | −0.52 * |
Handgrip Strength Asymmetry | 0.18 | −0.39 | 0.53 * |
Maximal Handgrip Strength Steadiness | 0.33 | 0.42 * | −0.06 |
Maximal Ulnar Digit Strength Steadiness | 0.21 | 0.49 * | 0.14 |
Maximal Radial Digit Strength Steadiness | 0.34 | 0.38 | −0.03 |
Handgrip Strength Fatigability Steadiness | −0.25 | 0.28 | −0.42 * |
Variance Explained | 47.2% | 23.1% | 13.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahoney, S.; Klawitter, L.; Hackney, K.J.; Dahl, L.; Herrmann, S.D.; Edwards, B.; McGrath, R. Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study. Geriatrics 2020, 5, 86. https://doi.org/10.3390/geriatrics5040086
Mahoney S, Klawitter L, Hackney KJ, Dahl L, Herrmann SD, Edwards B, McGrath R. Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study. Geriatrics. 2020; 5(4):86. https://doi.org/10.3390/geriatrics5040086
Chicago/Turabian StyleMahoney, Sean, Lukus Klawitter, Kyle J. Hackney, Lindsey Dahl, Stephen D. Herrmann, Bradley Edwards, and Ryan McGrath. 2020. "Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study" Geriatrics 5, no. 4: 86. https://doi.org/10.3390/geriatrics5040086
APA StyleMahoney, S., Klawitter, L., Hackney, K. J., Dahl, L., Herrmann, S. D., Edwards, B., & McGrath, R. (2020). Examining Additional Aspects of Muscle Function with a Digital Handgrip Dynamometer and Accelerometer in Older Adults: A Pilot Study. Geriatrics, 5(4), 86. https://doi.org/10.3390/geriatrics5040086