Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition
Abstract
:1. Aging-Related Hypogonadism in Men
2. Diagnostic Challenges of Male Hypogonadism in the Elderly
3. Cognitive Impairment in the Elderly
4. Testosterone Deficiency and Cognition
5. Testosterone Replacement Therapy and Cognition
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethics Approval
Abbreviations
DHT | Dihydrotestosterone |
ED | Erectile dysfunction |
LOH | Late-onset hypogonadism |
LH | Luteinizing hormone |
MCI | Mild cognitive impairment |
SHBG | Sex-hormone-binding globulin |
T | Testosterone |
TRT | Testosterone replacement therapy |
References
- Tajar, A.; Huhtaniemi, I.T.; Neill, T.W.; Finn, J.D.; Pye, S.R.; Lee, D.M.; Bartafi, G.; Boonen, S.; Casanueva, F.F.F.; Forti, G.; et al. Characteristics of androgen deficiency in late-onset hypogonadism: Results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 2012, 97, 1508–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handelsman, D.J.; Yeap, B.; Flicker, L.; Martin, S.; Wittert, G.A.; Ly, L.P. Age-specific population centiles for androgen status in men. Eur. J. Endocrinol. 2015, 173, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seftel, A.D.; Sun, P.; Swindle, R. The prevalence of hypertension, hyperlipidemia, diabetes mellitus and depression in men with erectile dysfunction. J. Urol. 2004, 171, 2341–2345. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Araujo, A.B.; Martin, S.; O’Loughlin, P.; Wittert, G.A. Longitudinal changes in testosterone over five years in community-dwelling men. J. Clin. Endocrinol. Metab. 2013, 98, 3289–3297. [Google Scholar] [CrossRef] [Green Version]
- Sartorius, G.; Spasevska, S.; Idan, A.; Turner, L.; Forbes, E.; Zamojska, A.; Allan, C.A.; Ly, L.P.; Conway, A.J.; McLachlan, R.I.; et al. Serum testosterone, dihydrotestosterone and estradiol concentrations in older men self-reporting very good health: The healthy man study. Clin. Endocrinol. 2012, 98, 98–755. [Google Scholar] [CrossRef]
- Schneider, H.J.; Sievers, C.; Klotsche, J.; Böhler, S.; Pittrow, D.; Lehnert, H.; Wittchen, H.U.; Stalla, G.K. Prevalence of low male testosterone concentrations in primary care in Germany: Cross-sectional results from the DETECT study. Clin. Endocrinol. 2009, 70, 446–454. [Google Scholar] [CrossRef]
- Haring, R.; Ittermann, T.; Völzke, H.; Krebs, A.; Zygmunt, M.; Felix, S.B.; Grabe, H.J.; Nauck, M.; Wallaschofski, H. Prevalence, incidence and risk factors of testosterone deficiency in a population-based cohort of men: Results from the study of health in Pomerania. Aging Male 2010, 13, 247–257. [Google Scholar] [CrossRef]
- Pivonello, R.; Menafra, D.; Riccio, E.; Garifalos, F.; Mazzella, M.; de Angelis, C.; Colao, A. Metabolic Disorders and Male Hypogonadotropic Hypogonadism. Front. Endocrinol. 2019, 10, 345. [Google Scholar] [CrossRef]
- Surampudi, P.N.; Wang, C.; Swerdloff, R. Hypogonadism in the aging male diagnosis, potential benefits, and risks of testosterone replacement therapy. Int. J. Endocrinol. 2012, 2012, 625434. [Google Scholar] [CrossRef] [Green Version]
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, W.J.; Mckinlay, J.B. Age Trends in the Level of Serum Testosterone and Other Hormones in Middle-Aged Men: Longitudinal Results from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 2002. [Google Scholar] [CrossRef] [PubMed]
- Tajar, A.; Forti, G.; O’Neill, T.W.; Lee, D.M.; Silman, A.J.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Giwercman, A.; et al. Characteristics of Secondary, Primary, and Compensated Hypogonadism in Aging Men: Evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 2010, 95, 1810–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giagulli, V.A.; Castellana, M.; Lisco, G.; Triggiani, V. Critical evaluation of different available guidelines for late-onset hypogonadism. Andrology 2020. [Google Scholar] [CrossRef] [PubMed]
- Giagulli, V.A.; Moghetti, P.; Kaufman, J.M.; Guastamacchia, E.; Iacoviello, M.; Triggiani, V. Managing erectile dysfunction in heart failure. Endocr. Metab. Immune. Disord. Drug Targets 2013, 13, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Blute, M.; Hakimian, P.; Kashanian, J.; Shteynshluyger, A.; Lee, M.; Shabsigh, R. Erectile dysfunction and testosterone deficiency. Front. Horm. Res. 2009, 37, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Celsis, P. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer’s disease? Ann. Med. 2000, 32, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Unverzagt, F.W.; Gao, S.; Baiyewu, O.; Ogunniyi, A.O.; Gureje, O.; Perkins, A.; Emsley, C.L.; Dickens, J.; Evans, R.; Musick, B.; et al. Prevalence of cognitive impairment: Data from the Indianapolis Study of Health and Aging. Neurology 2001, 57, 1655–1662. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Gillis, C.; Mirzaei, F.; Potashman, M.; Ikram, M.A.; Maserejian, M. The incidence of mild cognitive impairment: A systematic review and data synthesis. Alzheimers Dement. 2019, 11, 248–256. [Google Scholar] [CrossRef]
- Norman, P.E.; Flicker, L.; Almeida, O.P.; Hankey, G.J.; Hyde, Z.; Jamrozik, K. Cohort Profile: The Health In Men Study (HIMS). Int. J. Epidemiol. 2009, 38, 48–52. [Google Scholar] [CrossRef]
- Hedges, D.W.; Farrer, T.J.; Brown, B.L. Association between C-reactive protein and cognitive deficits in elderly men and women: A meta-analysis. Int. Psychogeriatr. 2012, 24, 1387–1392. [Google Scholar] [CrossRef]
- Siervo, M.; Harrison, S.L.; Jagger, C.; Robinson, L.; Stephan, B.C. Metabolic syndrome and longitudinal changes in cognitive function: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 41, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Lipnicki, D.M.; Kochan, N.A.; Crawford, J.D.; Thalamuthu, A.; Andrews, G.; Brayne, C.; Matthews, F.E.; Stephan, B.C.; Lipton, R.B.; et al. The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS ONE 2015, 10, e0142388. [Google Scholar] [CrossRef] [Green Version]
- Goodwill, A.M.; Szoeke, C. A Systematic Review and Meta-Analysis of the Effect of Low Vitamin D on Cognition. J. Am. Geriatr. Soc. 2017, 65, 2161–2168. [Google Scholar] [CrossRef]
- Harrison, S.L.; de Craen, A.J.; Kerse, N.; The, R.; Granic, A.; Davies, K.; Wesnes, K.A.; den Elzen, W.P.; Gussekloo, J.; Kirkwood, T.B.; et al. Predicting Risk of Cognitive Decline in Very Old Adults Using Three Models: The Framingham Stroke Risk Profile; the Cardiovascular Risk Factors, Aging, and Dementia Model; and Oxi-Inflammatory Biomarkers. J. Am. Geriatr. Soc. 2017, 65, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Lipnicki, D.M.; Crawford, J.D.; Dutta, R.; Thalamuthu, A.; Kochan, N.A.; Andrews, G.; Lima-Costa, M.F.; Castro-Costa, E.; Brayne, C.; Matthews, F.E.; et al. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: A collaborative cohort study. PLoS Med. 2017, 14, e1002261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipnicki, D.M.; Makkar, S.R.; Crawford, J.D.; Thalamuthu, A.; Kochan, N.A.; Lima-Costa, M.F.; Castro-Costa, E.; Ferri, C.P.; Brayne, C.; Stephan, B.; et al. Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: A COSMIC collaboration cohort study. PLoS Med. 2019, 16, e1002853. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Jiang, C.; Su, C.; Tan, Y.; Wu, J. Anticoagulation in atrial fibrillation and cognitive decline: A systematic review and meta-analysis. Medicine 2019, 98, e14499. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Judge, C.; Murphy, R.; Loughlin, E.; Costello, M.; Whiteley, W.; Bosch, J.; O’Donnell, M.J.; Canavan, M. Association of Blood Pressure Lowering With Incident Dementia or Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA 2020, 323, 1934–1944. [Google Scholar] [CrossRef]
- Peters, R.; Yasar, S.; Anderson, C.S.; Andrews, S.; Antikainen, R.; Arima, H.; Beckett, N.; Beer, J.C.; Bertens, A.S.; Booth, A.; et al. Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology 2020, 94, e267–e281. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Edwards, D.; Ding, C.; Yan, L.; Brayne, C.; Mant, J. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 57, 100962. [Google Scholar] [CrossRef]
- Ford, A.H.; Almeida, O.P. Effect of Vitamin B Supplementation on Cognitive Function in the Elderly: A Systematic Review and Meta-Analysis. Drugs Aging 2019, 36, 419–434. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, Y. Sleep-disordered breathing and the risk of cognitive decline: A meta-analysis of 19,940 participants. Sleep Breath 2018, 22, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Myung, S.K.; Lee, S.M.; Park, Y.C. Korean Meta-Analysis (KORMA) Study Group. Longer Duration of Sleep and Risk of Cognitive Decline: A Meta-Analysis of Observational Studies. Neuroepidemiology 2016, 47, 171–180. [Google Scholar] [CrossRef]
- Fiore, V.; De Rosa, A.; Falasca, P.; Marci, M.; Guastamacchia, E.; Licchelli, B.; Giagulli, V.A.; De Pergola, G.; Poggi, A.; Triggiani, V. Focus on the Correlations between Alzheimer’s Disease and Type 2 Diabetes. Endocr. Metab. Immune. Disord. Drug Targets 2019, 19, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, R.L.; Lumia, A.R.; McGinnis, M.Y. Androgen receptors, sex behavior, and aggression. Neuroendocrinology 2012, 96, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Hines, M. Early androgen influences on human neural and behavioural development. Early Hum. Dev. 2008, 84, 805–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Estay, V.; Carreño, D.V.; San Francisco, I.F.; Sotomayor, P.; Godoy, A.S.; Smith, G.J. Androgen receptor in human endothelial cells. J. Endocrinol. 2015, 224, R131–R137. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromol. Med. 2010, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Norstrom, E. Metabolic processing of the amyloid precursor protein—New pieces of the Alzheimer’s puzzle. Discov. Med. 2017, 23, 269–276. [Google Scholar]
- Gouras, G.K.; Xu, H.; Gross, R.S.; Greenfield, J.P.; Hai, B.; Wang, R.; Greengard, P. Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc. Natl. Acad. Sci. USA 2000, 97, 1202–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.F.; Ho, Y.S.; Hung, C.H.; Wuwongse, S.; Poon, C.H.; Chiu, K.; Yang, X.; Chu, L.W.; Chang, R.C. Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. Biomed. Res. Int. 2014, 2014, 103906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, C.J.; Carroll, J.C.; Rosario, E.R.; Barron, A.M. Protective actions of sex steroid hormones in Alzheimer’s disease. Front. Neuroendocrinol. 2009, 30, 239–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, M.; Nguyen, T.V.; Rosario, E.R.; Ramsden, M.; Pike, C.J. Androgens regulate neprilysin expression: Role in reducing beta-amyloid concentrations. J. Neurochem. 2008, 105, 2477–2488. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Matsumoto, A.M.; Amory, J.K.; Asthana, S.; Bremner, W.; Peskind, E.R.; Raskind, M.A.; Craft, S. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 2005, 64, 2063–2068. [Google Scholar] [CrossRef]
- Itti, E.; Gaw Gonzalo, I.T.; Pawlikowska-Haddal, A.; Boone, K.B.; Mlikotic, A.; Itti, L.; Mishkin, F.S.; Swerdloff, R.S. The structural brain correlates of cognitive deficits in adults with Klinefelter’s syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1423–1427. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Campone, B.; Castellana, M.; Salzano, C.; Fisher, A.D.; de Angelis, C.; Pivonello, R.; Colao, A.; Pasquali, D.; Maggi, M.; et al. Neuropsychiatric Aspects in Men with Klinefelter Syndrome. Endocr. Metab. Immune. Disord. Drug Targets 2019, 19, 109–115. [Google Scholar] [CrossRef]
- Hsu, B.; Cumming, R.G.; Waite, L.M.; Blyth, F.M.; Naganathan, V.; Le Couteur, D.G.; Seibel, M.J.; Handelsman, D.J. Longitudinal Relationships between Reproductive Hormones and Cognitive Decline in Older Men: The Concord Health and Ageing in Men Project. J. Clin. Endocrinol. Metab. 2015, 100, 2223–2230. [Google Scholar] [CrossRef]
- Yeap, B.B. Hormonal changes and their impact on cognition and mental health of ageing men. Maturitas 2014, 79, 227–235. [Google Scholar] [CrossRef]
- Welk, B.; McArthur, E.; Ordon, M.; Morrow, S.A.; Hayward, J.; Dixon, S. The risk of dementia with the use of 5 alpha reductase inhibitors. J. Neurol. Sci. 2017, 379, 109–111. [Google Scholar] [CrossRef]
- Eendebak, R.J.A.H.; Ahern, T.; Swiecicka, A.; Pye, S.R.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Maggi, M.; Forti, G.; Giwercman, A.; et al. Elevated luteinizing hormone despite normal testosterone concentrations in older men-natural history, risk factors and clinical features. Clin. Endocrinol. (Oxf.) 2018, 88, 479–490. [Google Scholar] [CrossRef]
- Janowsky, J.S.; Chavez, B.; Orwoll, E. Sex steroids modify working memory. J. Cogn. Neurosci. 2000, 12, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Pompili, A.; Iorio, C.; Gasbarri, A. Effects of sex steroid hormones on memory. Acta Neurobiol. Exp. (Wars) 2020, 80, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Du, N.; Liu, Y.; Fan, X.; Wang, Y.; Jia, X.; Hou, X.; Wang, B. Low Testosterone Level and Risk of Alzheimer’s Disease in the Elderly Men: A Systematic Review and Meta-Analysis. Mol. Neurobiol. 2016, 53, 2679–2684. [Google Scholar] [CrossRef]
- Heinemann, L.A.J.; Zimmermann, T.; Vermeulen, A.; Thiel, C.; Hummel, W. A new ‘aging males’ symptoms’ rating scale. Aging Male 1999, 2, 105–114. [Google Scholar] [CrossRef]
- Morley, J.E.; Charlton, E.; Patrick, P.; Kaiser, F.E.; Cadeau, P.; McCready, D.; Perry, H.M. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism 2000, 49, 1239–1242. [Google Scholar] [CrossRef]
- Smith, K.W.; Feldman, H.A.; McKinlay, J.B. Construction and field validation of a self-administered screener for testosterone de- ficiency (hypogonadism) in ageing men. Clin. Endocrinol. (Oxf.) 2000, 53, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Mannucci, E.; Petrone, L.; Balercia, G.; Fisher, A.D.; Chiarini, V.; Forti, G.; Maggi, M. ANDROTEST: A structured interview for the screening of hypogonadism in patients with sexual dysfunction. J. Sex. Med. 2006, 3, 706–715. [Google Scholar] [CrossRef]
- Resnick, S.M.; Matsumoto, A.M.; Stephens-Shields, A.J.; Ellenberg, S.S.; Gill, T.M.; Shumaker, S.A.; Pleasants, D.D.; Barrett-Connor, E.; Bhasin, S.; Cauley, J.A.; et al. Testosterone Treatment and Cognitive Function in Older Men With Low Testosterone and Age-Associated Memory Impairment. JAMA 2017, 317, 717–727. [Google Scholar] [CrossRef]
- Huang, G.; Wharton, W.; Bhasin, S.; Harman, S.M.; Pencina, K.M.; Tsitouras, P.; Li, Z.; Hally, K.A.; Asthana, S.; Storer, T.W.; et al. Effects of long-term testosterone administration on cognition in older men with low or low-to-normal testosterone concentrations: A prespecified secondary analysis of data from the randomised, double-blind, placebo-controlled TEAAM trial. Lancet Diabetes Endocrinol. 2016, 4, 657–665. [Google Scholar] [CrossRef]
- Wahjoepramono, E.J.; Asih, P.R.; Aniwiyanti, V.; Taddei, K.; Dhaliwal, S.S.; Fuller, S.J.; Foster, J.; Carruthers, M.; Verdile, G.; Sohrabi, H.R.; et al. The Effects of Testosterone Supplementation on Cognitive Functioning in Older Men. CNS Neurol. Disord. Drug Targets 2016, 15, 337–343. [Google Scholar] [CrossRef]
- Asih, P.R.; Wahjoepramono, E.J.; Aniwiyanti, V.; Wijaya, L.K.; de Ruyck, K.; Taddei, K.; Fuller, S.J.; Sohrabi, H.; Dhaliwal, S.S.; Verdile, G.; et al. Testosterone replacement therapy in older male subjective memory complainers: Double-blind randomized crossover placebo-controlled clinical trial of physiological assessment and safety. CNS Neurol. Disord. Drug Targets 2015, 14, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Cherrier, M.M.; Anderson, K.; Shofer, J.; Millard, S.; Matsumoto, A.M. Testosterone treatment of men with mild cognitive impairment and low testosterone concentrations. Am. J. Alzheimers Dis. Other Demen. 2015, 30, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Young, L.A.; Neiss, M.B.; Samuels, M.H.; Roselli, C.E.; Janowsky, J.S. Cognition is not modified by large but temporary changes in sex hormones in men. J. Clin. Endocrinol. Metab. 2010, 95, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmelot-Vonk, M.H.; Verhaar, H.J.; Nakhai Pour, H.R.; Aleman, A.; Lock, T.M.; Bosch, J.L.; Grobbee, D.E.; van der Schouw, Y.T. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: A randomized controlled trial. JAMA 2008, 299, 39–52. [Google Scholar] [CrossRef]
- Maki, P.M.; Ernst, M.; London, E.D.; Mordecai, K.L.; Perschler, P.; Durso, S.C.; Brandt, J.; Dobs, A.; Resnick, S.M. Intramuscular testosterone treatment in elderly men: Evidence of memory decline and altered brain function. J. Clin. Endocrinol. Metab. 2007, 92, 4107–4114. [Google Scholar] [CrossRef] [Green Version]
- Cherrier, M.M.; Matsumoto, A.M.; Amory, J.K.; Johnson, M.; Craft, S.; Peskind, E.R.; Raskind, M.A. Characterization of verbal and spatial memory changes from moderate to supraphysiological increases in serum testosterone in healthy older men. Psychoneuroendocrinology 2007, 32, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, C.; Goldstein, F.C.; Tenover, J.L. Exogenous testosterone alone or with finasteride does not improve measurements of cognition in healthy older men with low serum testosterone. J. Androl. 2007, 28, 875–882. [Google Scholar] [CrossRef]
- Gray, P.B.; Singh, A.B.; Woodhouse, L.J.; Storer, T.W.; Casaburi, R.; Dzekov, J.; Dzekov, C.; Sinha-Hikim, I.; Bhasin, S. Dose-dependent effects of testosterone on sexual function, mood, and visuospatial cognition in older men. J. Clin. Endocrinol. Metab. 2005, 90, 3838–3846. [Google Scholar] [CrossRef] [Green Version]
- Cherrier, M.M.; Matsumoto, A.M.; Amory, J.K.; Ahmed, S.; Bremner, W.; Peskind, E.R.; Raskind, M.A.; Johnson, M.; Craft, S. The role of aromatization in testosterone supplementation: Effects on cognition in older men. Neurology 2005, 64, 290–296. [Google Scholar] [CrossRef]
- Haren, M.T.; Wittert, G.A.; Chapman, I.M.; Coates, P.; Morley, J.E. Effect of oral testosterone undecanoate on visuospatial cognition, mood and quality of life in elderly men with low-normal gonadal status. Maturitas 2005, 50, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Mac, R.P.; Lee, M.; Yarasheski, K.E.; Sinha-Hikim, I.; Dzekov, C.; Dzekov, J.; et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J. Clin. Endocrinol. Metab. 2005, 90, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Kenny, A.M.; Fabregas, G.; Song, C.; Biskup, B.; Bellantonio, S. Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherrier, M.M.; Plymate, S.; Mohan, S.; Asthana, S.; Matsumoto, A.M.; Bremner, W.; Peskind, E.; Raskind, M.; Latendresse, S.; Haley, A.P.; et al. Relationship between testosterone supplementation and insulin-like growth factor-I concentrations and cognition in healthy older men. Psychoneuroendocrinology 2004, 29, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Kenny, A.M.; Bellantonio, S.; Gruman, C.A.; Acosta, R.D.; Prestwood, K.M. Effects of transdermal testosterone on cognitive function and health perception in older men with low bioavailable testosterone concentrations. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M321–M325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherrier, M.M.; Asthana, S.; Plymate, S.; Baker, L.; Matsumoto, A.M.; Peskind, E.; Raskind, M.A.; Brodkin, K.; Bremner, W.; Petrova, A.; et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology 2001, 57, 80–88. [Google Scholar] [CrossRef]
- Ly, L.P.; Jimenez, M.; Zhuang, T.N.; Celermajer, D.S.; Conway, A.J.; Handelsman, D.J. A double-blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J. Clin. Endocrinol. Metab. 2001, 86, 4078–4088. [Google Scholar] [CrossRef]
- Wolf, O.T.; Preut, R.; Hellhammer, D.H.; Kudielka, B.M.; Schürmeyer, T.H.; Kirschbaum, C. Testosterone and cognition in elderly men: A single testosterone injection blocks the practice effect in verbal fluency, but has no effect on spatial or verbal memory. Biol. Psychiatry 2000, 47, 650–654. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Castellana, M.; Murro, I.; Pelusi, C.; Guastamacchia, E.; Triggiani, V.; De Pergola, G. The Role of Diet and Weight Loss in Improving Secondary Hypogonadism in Men with Obesity with or without Type 2 Diabetes Mellitus. Nutrients 2019, 11, 2975. [Google Scholar] [CrossRef] [Green Version]
- Giagulli, V.A.; Castellana, M.; Carbone, M.D.; Pelusi, C.; Ramunni, M.I.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. Weight loss more than glycemic control may improve testosterone in obese type 2 diabetes mellitus men with hypogonadism. Andrology 2020, 8, 654–662. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Castellana, M.; Pelusi, C.; Triggiani, V. Androgens, Body Composition, and Their Metabolism Based on Sex. Front. Horm. Res. 2019, 53, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Giagulli, V.A.; Silvestrini, A.; Bruno, C.; Triggiani, V.; Mordente, A.; Mancini, A. Is There Room for SERMs or SARMs as Alternative Therapies for Adult Male Hypogonadism? Int. J. Endocrinol. 2020, 2020, 9649838. [Google Scholar] [CrossRef] [PubMed]
- Giagulli, V.A.; Carbone, M.D.; Ramunni, M.I.; Licchelli, B.; De Pergola, G.; Sabbà, C.; Guastamacchia, E.; Triggiani, V. Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology 2015, 3, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Iacoviello, M.; Triggiani, V. Testosterone deficiency in male: A risk factor for heart failure. Endocr. Metab. Immune. Disord. Drug Targets 2013, 13, 92–99. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Guastamacchia, E.; Magrone, T.; Jirillo, E.; Lisco, G.; De Pergola, G.; Triggiani, V. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology 2020. [Google Scholar] [CrossRef]
- Saad, F.; Röhrig, G.; von Haehling, S.; Traish, A. Testosterone Deficiency and Testosterone Treatment in Older Men. Gerontology 2017, 63, 144–156. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Guastamacchia, E.; Licchelli, B.; Triggiani, V. Serum Testosterone and Cognitive Function in Ageing Male: Updating the Evidence. Recent Pat. Endocr. Metab Immune. Drug Discov. 2016, 10, 22–30. [Google Scholar] [CrossRef]
- Corona, G.; Torres, L.O.; Maggi, M. Testosterone Therapy: What We Have Learned From Trials. J. Sex. Med. 2020, 17, 447–460. [Google Scholar] [CrossRef]
- Buskbjerg, C.R.; Gravholt, C.H.; Dalby, H.R.; Amidi, A.; Zachariae, R. Testosterone Supplementation and Cognitive Functioning in Men-A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2019, 3, 1465–1484. [Google Scholar] [CrossRef]
- Lašaitė, L.; Čeponis, J.; Preikša, R.T.; Žilaitienė, B. Effects of two-year testosterone replacement therapy on cognition, emotions and quality of life in young and middle-aged hypogonadal men. Andrologia 2017, 49. [Google Scholar] [CrossRef]
- Sterling, J.; Bernie, A.M.; Ramasamy, R. Hypogonadism: Easy to define, hard to diagnose, and controversial to treat. Can. Urol. Assoc. J. 2015, 9, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Giagulli, V.A.; Triggiani, V.; Corona, G.; Carbone, D.; Licchelli, B.; Tafaro, E.; Resta, F.; Sabbà, C.; Maggi, M.; Guastamacchia, E. Evidence-based medicine update on testosterone replacement therapy (TRT) in male hypogonadism: Focus on new formulations. Curr. Pharm. Des. 2011, 17, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Plank, E.; Jungwirth, B.; Hapfelmeier, A.; Podtschaske, A.; Kagerbauer, S.M. Weak correlations between serum and cerebrospinal fluid concentrations of estradiol, progesterone and testosterone in males. BMC Neurosci. 2019, 20, 53. [Google Scholar] [CrossRef]
- Tan, S.; Sohrabi, H.R.; Weinborn, M.; Tegg, M.; Bucks, R.S.; Taddei, K.; Carruthers, M.; Martins, R.N. Effects of Testosterone Supplementation on Separate Cognitive Domains in Cognitively Healthy Older Men: A Meta-analysis of Current Randomized Clinical Trials. Am. J. Geriatr. Psychiatry 2019, 27, 1232–1246. [Google Scholar] [CrossRef]
- Hua, J.T.; Hildreth, K.L.; Pelak, V.S. Effects of Testosterone Therapy on Cognitive Function in Aging: A Systematic Review. Cogn. Behav. Neurol. 2016, 29, 122–138. [Google Scholar] [CrossRef]
- Kaufman, J.-M.; Lapauw, B. Role of testosterone in cognition and mobility of aging men. Andrology 2020. [Google Scholar] [CrossRef]
- Corona, G.; Guaraldi, F.; Rastrelli, G.; Sforza, A.; Maggi, M. Testosterone Deficiency and Risk of Cognitive Disorders in Aging Males. World J. Mens Health 2020. [Google Scholar] [CrossRef] [Green Version]
Authors (Year) | Population | Intervention | End-Points | Main Results |
---|---|---|---|---|
Resnick et al. (2017) [59] | 788 men (493 with AAMI); age > 65 years (mean 72 years); at least 2 morning T < 275 ng/dL; sexual dysfunction; AAMI; reduced physical function and vitality | Randomization (1:1) to T vs. P for 12 months (247 T; 246 P) | Mean change in delayed paragraph recall (0 to 50); visual memory (Benton Visual Retention Test: 0 to −26), executive function (−290 to 290), and spatial ability (−80 to 80). | No difference between the two groups at 6 and 12 months. |
Huang et al. (2016) [60] | Age > 60 years (mean 67 years); T = 100–400 ng/dL; healthy men | Randomization (1:1) to T gel 1% 7.5 mg vs. P for 3 years (156 T vs. 153 P) | Mean change in visual ability (complex figure test); phonemic or category verbal fluence (phonemic and categorical fluency test); verbal memory (paragraph recall test); manual dexterity (Grooved Pegboard test); attention and executive function (Stroop Interference test). | No difference between the two group at 6, 18, and 36 months (both intention-to-treat and per-protocol analysis). |
Wahjoepramono et al. (2016) [61] | Age > 50 years; T = 300–600 ng/dL; normal baseline cognition (MMSE > 24); no relevant co-morbidities; education > 6 years | Crossover study; 50 recruited patients; randomization to T cream 50 mg ➔ P (A) or P ➔ T cream 50 mg (B); 24 weeks of active treatment for each (T or P) with 4 weeks of washout (52 weeks cumulatively) | Mean change in MMSE; Rey Auditory Verbal Learning test; intermediate and delayed recall; GDS. | TRT induced a slight but significant amelioration of MMSE score. The amelioration occurred when patients treated with placebo were shifted to T (B) and persisted when those started with T were shifted to P (A). Depression symptoms followed the aforementioned trend. Other outcomes remained unchanged. |
Asih et al. (2015) [62] | Mean age 61 years; subjective memory complaints; low-to-normal gonadal status | 44 patients, randomization (1:1), with crossover, to transdermal T 50 mg (24 weeks) then converted to P (24 weeks) after 4 weeks of washout and vice versa | Mean difference in androgens and estradiol serum concentration; biomarkers of efficacy/safety of TRT (red blood cells count, hemoglobin, PSA; plasmatic insulin concentration; body mass index and body fat mass); plasma amyloid beta protein concentration (biomarkers of dementia). | No difference in concentrations of plasma amyloid-beta protein concentrations. |
Cherrier et al. (2015) [63] | Age 60–90 years (mean 70.5 years); mild cognitive impairment (Peterson criteria); T < 300 ng/dL; mild-to-moderate urinary symptoms (AUA symptom score <19) | 22 eligible patients (10 T vs. 12 P) for 6 months | Mean change in attention or spatial ability; spatial and visual memory test, verbal fluency and working memory. | No difference between the two groups at 3 and 6 months. |
Borst et al. (2014) [64] | Age > 60 years (mean 67 years); total T < 300 ng/dL or bioavailable T < 70 ng/dL; MCI | 60 patients randomized to (2 × 2 design): vehicle–placebo (16) or T enanthate–placebo (14) or T enanthate–finasteride (17) or vehicle–finasteride (13) | Mean change in depression symptoms (GDS); visual–spatial processing (the Trail Making Test A and B, and the Benton Judgment of Line Orientation); psychological well-being (Life Satisfaction Index A and B); recognition and memory performance (the Rey–Osterrieth complex figure test at 0, 5, and 30 min recall test). | T reduced depressive symptoms (−0.74 point on GDS), and improved memory (+2.87 on a 36-point scale of the Rey–Osterrieth complex figure test at 30 min). |
Young et al. (2010) [65] | Healthy younger (n = 22; 25–35 years) and older (n = 62; 60–80 years, 68 years in mean); no sign of cognitive decline (MMSE < 25) or depression (GDS < 10); normal functional intelligence (WAIS-R > 8); Total T = 241–827 ng/dL | Double-blind randomization in 4 groups: 1. GnRH agonist + T gel; 2. GnRH agonist + T gel + aromatase inhibitor; 3. GnRH agonist alone (inducing hypogonadism); 4. Placebo only. Follow-up visits 10, with a cumulative period of observation of 12 weeks | Mean change in Trail Making Test A (only numbers), B (numbers and letters) and Self-Ordered Pointing Test (working memory); number of words generated in 1 min starting from a letter of alphabet (verbal fluency); Mental Rotation Task and Figure Discrimination Task (spatial cognition); Paragraph Recall Test (verbal memory). | Hormonal concentrations did not alter cognition. However, free T concentrations were found to be positively related to spatial cognition and estrogen concentrations were negatively related with working memory performance. |
Emmelot-Vonk et al. (2008) [66] | Healthy men; age 60–80 years (mean 67 years); T concentrations < 395 ng/dL | 237 men were finally eligible; randomization (1:1) to T undecanoate (Andriol Testocaps) 80 mg twice-daily vs. placebo for 6 months. | Mean change in functional mobility, cognitive function, bone mineral density, body composition and anthropometry, blood pressure, safety. Cognitive assessment: the Dutch version of the Rey Auditory Verbal Learning Test immediate and delated recall (verbal memory); Digit–Symbol Substitution test; Trail-Making test; Benton Judgment of Line Orientation test; Vandenberg and Kuse adaptation of the 3-Dimensional Shepard Mental Rotation test. | No change in cognitive function tests. |
Maki et al. (2007) [67] | Normal cognition; age 66–86 years (mean 74 years); T > 240 ng/dL | 50 patients, T enanthate 200 mg i.m. weekly for 90 days vs. placebo | Change in verbal learning and memory (primary end-point); short-term memory of geometric figures (Benton Visual Retention test); working memory (Digit Span, α -Span); speeded manual dexterity (Grooved Pegboard test); attention, visuomotor scanning, and cognitive flexibility (Trail-Making Test); mood (and 6) Positive and Negative Affect Schedule). Glucose uptake on brain (frontal and temporal areas) positron emission tomography was also carried out. | No improvements. Supraphysiologic T supplementation in elderly had a potentially detrimental effect on verbal memory. |
Cherrier et al. (2007) [68] | 50–90 years (mean 67 years); community-dwelling volunteer men; low-normal gonadal status; education 12–19 years; normal cognition for age | 57 patients; randomized to T enanthate (50, 100 or 300 mg) weekly i.m. or placebo for 6 weeks | Mean change in verbal and spatial memory (Puget Sound Route Learning Test and Word List Recall). | Only patients who exhibited a moderate increase (402 ➔ 1184 ng/dL) in T concentrations compared to those achieved low improvement (366 ➔ 436 ng/dL) or high improvement (355 ➔ 3141 ng/dL), improved both verbal and spatial memory. |
Vaughan et al. (2007) [69] | Healthy men; no evidence of cognitive impairment; age 65–83 years (mean 70 years); 2 morning serum T concentrations < 350 ng/dL; IPSS < 8 | Randomization (1:1:1) to T enanthate 200 mg every two weeks + P orally, or T enanthate 200 mg every two weeks + finasteride 5 mg/day orally or P alone (injection + pill) for 36 months | Mean change in Digit Span Memory Test; Benton Judgment of Line Orientation test and Benton Visual Retention test (working memory); Selective Reminding Test (verbal memory); Beck Depression Inventory (depression); Spielberger State–Trait Anxiety Questionnaire. | No clinically significant effect on tests of cognitive function. |
Gray et al. (2005) [70] | Healthy men; 60–75 years (mean 67 years); low-normal gonadal status; AUA symptom score < 7 | 60 men randomized to 5 groups: 1. T enanthate 25 mg a week (n = 13); 2. T enanthate 50 mg a week (n = 12); 3. T enanthate 125 mg a week (n = 12); 4. T enanthate 300 mg a week (n = 13); 5. T enanthate 600 mg a week (n = 10) for 20 weeks | Data set analysis: 1. Allocated 13, completed 13, and analyzed 10; 2. Allocated 12, completed 12, and analyzed 11; 3. Allocated 12, completed 11, and analyzed 9; 4. Allocated 13, completed 10, and analyzed 8; 5. Allocated 10, completed 6, and analyzed 6; mean change in sexual outcomes (number of erections, masturbation, sexual activity, etc.); Hamilton’s Depression Rating Scale; Young’s Mania Scale; a computer-based checkerboard visual–spatial test. | No changed in mood were found. A slight but significative improvement in visual–spatial cognition was observed regardless of T posology. |
Cherrier et al. (2005) [71] | Healthy men; age 50–90 years (mean 65 years); no cognitive impairment normalized for age (Mattis Dementia Rating Score > 130) | 61 men randomized (1:1:1) to: 1. T enanthate 100 mg a week i.m. + anastrozole 1 mg each day; 2. T enanthate 100 mg a week i.m. + P pill each day; 3. P only (injection + pills) for 6 weeks | Mean change at 3, 6, and 12 weeks in route test (spatial memory); story recall (verbal memory); Self-Ordered Pointing Test (working memory); Stroop Color–Word Interference Task (selective attention); verbal fluency. | Spatial memory improved in groups 1 and 2. Verbal memory improved only in group 1. Authors concluded that verbal memory improvement, induced by T administration, depended on aromatization of T to estradiol, whereas improvement in spatial memory occurred in the absence of increases in estradiol. |
Haren et al. (2005) [72] | Healthy men; age > 60 years (mean 68.5 years); total T > 230 ng/dL; free testosterone index of 0.3–0.5 (low-to-normal T concentrations) | 76 men randomized (1:1) to T undecanoate 80 mg twice a day, orally, vs. P for 12 months | Mean change in Trail-Making Test (Part B), Visuospatial Block Design Test, MMSE, GDS, a 5-Point Likert and a 10-Point Visual Analogue Quality of Life Scale, along with serum hormone measurements. Data were obtained at baseline, 6, and 12 months. | No difference in scores between the two groups. |
Bashin et al. (2005) [73] | Low-normal gonadal and healthy men; mean age 66 years | 60 older (60–75 years) and 61 youngers (19–35 years); all patients received GnRH agonist to suppress endogenous T production and were finally randomized to: 1. T enanthate 25 mg/weekly (n = 13); 2. T enanthate 50 mg/weekly (n = 12); 3. T enanthate 125 mg/weekly (n = 12); 4. T enanthate 300 mg/weekly (n = 14); 5. T enanthate 600 mg/weekly (n = 10). Study protocol: 4 weeks control period; 20 weeks of active treatment; 16 weeks recovery | Mean change in fat-free mass, fat mass, muscle strength, sexual function, mood (Hamilton’s Depression Rating Scale; Young’s Mania Scale), visuospatial cognition (a computer-based checkerboard visual–spatial test), hormone concentrations, and safety measures were evaluated before, during, and after treatment of 60 older men who were randomized, 52 completed the study. | Mood and visuospatial cognition did not change significantly in either group. |
Kenny et al. (2004) [74] | Age 73–87 years (mean age 80 years); bioavailable T concentrations < 128 ng/dL; mild-to-moderate cognitive impairment (MMSE score 14–28) | 11 men randomized (1:1) to T enanthate 200 mg every 3 weeks vs. P for 12 weeks | Mean change in sex hormones (testosterone, bioavailable testosterone, sex hormone binding globulin, estradiol, and estrone), Behave AD Questionnaire (aggressive behavior), Katz Activities of Daily Living (behavior), GDS (mood), Digit Span (attention and recognition), Clock Face Drawing (visuo-construction), Clock Face Perception (visuo-perception), Verbal Fluency, Trail-Making B (executive function), IPSS at baseline, 4, and 10 weeks. | This pilot study did not find any modifications in cognitive function. |
Cherrier et al. (2004) [75] | Healthy community dwelling volunteers, age 50–80 years | 25 men randomized (1:1) to T enanthate 100 mg weekly vs. P (saline infusion) for 6 weeks | Mean change in spatial memory, spatial reasoning, and verbal fluency. Assessment at baseline, 3, and 6 weeks. | Increased serum T concentrations from treatment were positively associated with improvement in spatial reasoning performance, whereas estradiol was associated with a decline in divided attention performance. |
Kenny et al. (2002) [76] | Age 65–87 years (mean 76 years); bioavailable T < 128 ng/dL; no cognitive decline | 67 men randomized to transdermal T patch 2–2.5 mg every day vs. P for 12 months | Mean change in sex hormones (testosterone, bioavailable testosterone, sex-hormone-binding globulin (SHBG), estradiol, and estrone); Digit Symbol, Digit Span, Trail-Making A and B, Medical Outcome Survey Short-form 36 (health perception); lower extremity muscle strength and power; calcium intake. | 34% of patients did not tolerate the treatment. T supplementation induced mild improvement in physical activity and vitality as well as in cognitive flexibility (Tail-Making B). |
Cherrier et al. (2001) [77] | Healthy volunteers; age 50–80 years (mean 65 years); no cognitive impairment at baseline | 25 men randomized (1:1) to T enanthate 100 mg every week i.m. vs. P for 6 weeks | Mean change in: recall of a walking route (spatial memory); block construction (spatial ability), recall of a short story (verbal memory). Assessment was performed at baseline, 3, and 6 weeks. | Improvement in spatial memory, spatial ability, and verbal memory. |
Ly et al. (2001) [77] | Community-dwelling men healthy men; age > 60 years (mean 68 years); T concentrations <433 ng/dL; no baseline cognitive impairment | 37 men randomized (1:1) to DHT transdermal gel 70 mg daily vs. P for 3 months | Mean change in modified MMSE: temporal and spatial orientations; registration of three words; attention and calculation/mental reversal; three-word recall; language in five components (naming, repeating, following a three-stage command, reading and obeying, and writing); visual construction (copying two pentagons). Assessment were performed at baseline, at 1, 2, 3, and 4 months. | DHT seems to slightly impair cognitive function according to the results of the modified MMSE. |
Wolf et al. (2000) [78] | Healthy men; T concentrations < 350 ng/dL; mean age 69 years; no relevant co-morbidities | 30 patients randomized to T enanthate 250 mg i.m. (n = 17) or P (n = 13). | Mean change in: verbal fluency (many words as possible pronounced in 1 min); spatial memory (memorize a route marked in a city map within 2 min); verbal memory (six-paired words were read to the patient and an immediate and delayed recall was carried out to evaluate the number of remembered words); Stroop and mental rotation. Tests were performed at baseline and 5 days after the randomization. | An acute administration of T did not provide any relevant improvement or deterioration of the explored cognitive functions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisco, G.; Giagulli, V.A.; De Tullio, A.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition. Geriatrics 2020, 5, 76. https://doi.org/10.3390/geriatrics5040076
Lisco G, Giagulli VA, De Tullio A, De Pergola G, Guastamacchia E, Triggiani V. Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition. Geriatrics. 2020; 5(4):76. https://doi.org/10.3390/geriatrics5040076
Chicago/Turabian StyleLisco, Giuseppe, Vito Angelo Giagulli, Anna De Tullio, Giovanni De Pergola, Edoardo Guastamacchia, and Vincenzo Triggiani. 2020. "Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition" Geriatrics 5, no. 4: 76. https://doi.org/10.3390/geriatrics5040076
APA StyleLisco, G., Giagulli, V. A., De Tullio, A., De Pergola, G., Guastamacchia, E., & Triggiani, V. (2020). Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition. Geriatrics, 5(4), 76. https://doi.org/10.3390/geriatrics5040076