Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Sample and Setting
2.3. Measures and Procedure
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Feasibility
3.3. Reliability
3.4. Factors Associated with Monitor Wear Time
3.5. Acceptance
4. Discussion
Contributions and Implications
5. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the american college of cardiology Foundation/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2013, 62, 1495–1539. [Google Scholar] [CrossRef]
- Abebe, T.B.; Gebreyohannes, E.A.; Tefera, Y.G.; Abegaz, T.M. Patients with HFpEF and HFrEF have different clinical characteristics but similar prognosis: A retrospective cohort study. BMC Cardiovasc. Disord. 2016, 16, 232. [Google Scholar] [CrossRef] [PubMed]
- Nadruz, W., Jr.; West, E.; Santos, M.; Skali, H.; Groarke, J.D.; Forman, D.E.; Shah, A.M. Heart failure and midrange ejection fraction: Implications of recovered ejection fraction for exercise tolerance and outcomes. Circ. Heart Fail. 2016, 9, e002826. [Google Scholar] [CrossRef] [PubMed]
- Asrar Ul Haq, M.; Goh, C.Y.; Levinger, I.; Wong, C.; Hare, D.L. Clinical utility of exercise training in heart failure with reduced and preserved ejection fraction. Clin. Med. Insights Cardiol. 2015, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Höllriegel, R.; Winzer, E.B.; Linke, A.; Adams, V.; Mangner, N.; Sandri, M.; Bowen, T.S.; Hambrecht, R.; Schuler, G.; Erbs, S. Long-term exercise training in patients with advanced chronic heart failure: SUSTAINED BENEFITS ON LEFT VENTRICULAR PERFORMANCE AND EXERCISE CAPACITY. J. Cardiopulm. Rehabil. Prev. 2016, 36, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Laoutaris, I.D.; Adamopoulos, S.; Manginas, A.; Panagiotakos, D.B.; Kallistratos, M.S.; Doulaptsis, C.; Kouloubinis, A.; Voudris, V.; Pavlides, G.; Cokkinos, D.V.; et al. Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study. Int. J. Cardiol. 2013, 167, 1967–1972. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Sagar, V.A.; Davies, E.J.; Briscoe, S.; Coats, A.; Dalal, H.; Lough, F.; Rees, K.; Singh, S. Exercise-based rehabilitation for heart failure. Cochrane Database Syst. Rev. 2014, 4. [Google Scholar] [CrossRef]
- Ethisan, P.; Somrongthong, R.; Ahmed, J.; Kumar, R.; Chapman, R.S. Factors related to physical activity among the elderly population in rural thailand. J. Prim. Care Community Health 2017, 8, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Saleh, Z.T.; Lennie, T.A.; Mudd-Martin, G.; Bailey, A.L.; Novak, M.J.; Biddle, M.; Khalil, A.A.; Darawad, M.; Moser, D.K. Decreasing sedentary behavior by 30 min per day reduces cardiovascular disease risk factors in rural americans. Heart Lung J. Acute Crit. Care 2015, 44, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Hertzog, M.; Barnason, S. Effects of a home-based activation intervention on self-management adherence and readmission in rural heart failure patients: The PATCH randomized controlled trial. BMC Cardiovasc. Disord. 2016, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Menotti, A.; Puddu, P.; Lanti, M.; Maiani, G.; Catasta, G.; Fidanza, A.A. Lifestyle habits and mortality from all and specific causes of death: 40-year follow-up in the italian rural areas of the seven countries study. J. Nutr. Health Aging 2014, 18, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Samawi, H.M. Daily walking and life expectancy of elderly people in the iowa 65 rural health study. Front. Public Health 2013, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Conraads, V.M.; Deaton, C.; Piotrowicz, E.; Santaularia, N.; Tierney, S.; Piepoli, M.F.; Pieske, B.; Schmid, J.P.; Dickstein, K.; Ponikowski, P.P.; et al. Adherence of heart failure patients to exercise: Barriers and possible solutions. Eur. J. Heart Fail. 2012, 14, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.; Chen, H.; Garet, M.; Wang, R. Predictors of physical activity in patients with heart failure: A questionnaire study. J. Cardiovasc. Nurs. 2014, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Nave-Leal, E.; Pais-Ribeiro, J.; Oliveira, M.M.; Da Silva, N.; Soares, R.; Fragata, J.; Ferreira, R. Psychometric properties of the portuguese version of the kansas city cardiomyopathy questionnaire in dilated cardiomyopathy with congestive heart failure. Rev. Port. Cardiol. 2010, 29, 353–372. [Google Scholar] [PubMed]
- Zainol, A.N.; Brown, W.; Clark, B.; Che, M.A.; Singh, R. Physical activity measurement by accelerometry among older malay adults living in semi-rural areas-feasibility study. J. Aging Phys. Act. 2016, 24, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Bollen, J.C.; Dean, S.G.; Siegert, R.J.; Howe, T.E.; Goodwin, V.A. A systematic review of measures of self-reported adherence to unsupervised home-based rehabilitation exercise programmes, and their psychometric properties. BMJ Open 2014, 4, e005044. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.; Rhodes, R.; Naylor, P.J.; Tuokko, H.; MacDonald, S. Direct and indirect measurement of physical activity in older adults: A systematic review of the literature. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Jaarsma, T.; Klompstra, L.; Ben Gal, T.; Boyne, J.; Vellone, E.; Bäck, M.; Dickstein, K.; Fridlund, B.; Hoes, A.; Piepoli, M.F.; et al. Increasing exercise capacity and quality of life of patients with heart failure through wii gaming: The rationale, design and methodology of the HF-Wii study; a multicentre randomized controlled trial. Eur. J. Heart Fail. 2015, 17, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Klompstra, L.; Jaarsma, T.; Strömberg, A. Exergaming to increase the exercise capacity and daily physical activity in heart failure patients: A pilot study. BMC Geriatr. 2014, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Cipriano, G.; Lima, A.; Campos, F.; Cahalin, L.; Arena, R.; Tavernard, L. Relationship between physical activity patterns and key cardiopulmonary exercise testing variables in patients with heart failure. Am. J. Respir. Crit. Care Med. 2014, 189, A5852. [Google Scholar]
- Jehn, M.; Schmidt-Trucksass, A.; Hanssen, H.; Schuster, T.; Halle, M.; Koehler, F. Association of physical activity and prognostic parameters in elderly patients with heart failure. J. Aging Phys. Act. 2011, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.C.; Vittinghoff, E.; Iyer, S.; Tandon, D.; Kuhar, P.; Madsen, K.A.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Accuracy and usability of a self-administered 6-minute walk test smartphone application. Circ. Heart Fail. 2015, 8, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Welk, G.J.; Beyler, N.K.; Bartee, R.T.; Heelan, K.A. Calibration of self-report tools for physical activity research: The physical activity questionnaire (PAQ). BMC Public Health 2014, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Bingham, D.D.; Costa, S.; Clemes, S.A.; Routen, A.C.; Moore, H.J.; Barber, S.E. Accelerometer data requirements for reliable estimation of habitual physical activity and sedentary time of children during the early years-a worked example following a stepped approach. J. Sports Sci. 2016, 34, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.; Traynor, J.; Shilliday, I.; Rush, R.; Mercer, T. Minimum recommended accelerometer wear time for reliable estimation of physical activity of people receiving maintenance haemodialysis. Physiotherapy 2016, 102, e205. [Google Scholar] [CrossRef]
- Borson, S.; Scanlan, J.; Brush, M.; Vitaliano, P.; Dokmak, A. The mini-cog: A cognitive 'vital signs' measure for dementia screening in multi-lingual elderly. Int. J. Geriatr. Psychiatry 2000, 15, 1021–1027. [Google Scholar] [CrossRef]
- Löwe, B.; Kroenke, K.; Gräfe, K. Detecting and monitoring depression with a two-item questionnaire (PHQ-2). J. Psychosom. Res. 2005, 58, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Huberty, J.; Ehlers, D.K.; Kurka, J.; Ainsworth, B.; Buman, M. Feasibility of three wearable sensors for 24 hour monitoring in middle-aged women. BMC Womens Health 2015, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Aadland, E.; Ylvisåker, E. Reliability of the actigraph GT3X accelerometer in adults under free-living conditions. PLoS ONE 2015, 10, e0134606. [Google Scholar] [CrossRef] [PubMed]
- Byrom, B.; Rowe, D.A. Measuring free-living physical activity in COPD patients: Deriving methodology standards for clinical trials through a review of research studies. Contemp. Clin. Trials 2016, 47, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Garatachea, N.; Torres Luque, G.; Gonzalez Gallego, J. Physical activity and energy expenditure measurements using accelerometers in older adults. Nutr. Hosp. 2010, 25, 224–230. [Google Scholar] [PubMed]
- Santos-Lozano, A.; Santin-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailon, R.; Bergmeir, C.; Ruiz, J.R.; Lucia, A.; Garatachea, N. Actigraph GT3X: Validation and determination of physical activity intensity cut points. Int. J. Sports Med. 2013, 34, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Peach, D.; Van Hoomissen, J.; Callender, H.L. Exploring the ActiLife® filtration algorithm: Converting raw acceleration data to counts. Physiol. Meas. 2014, 35, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Brashear, M.M.; Johnson, W.D.; Katzmarzyk, P.T. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese US men and women. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Deka, P.; Pozehl, B.; Williams, M.A.; Yates, B. Adherence to recommended exercise guidelines in patients with heart failure. Heart Fail. Rev. 2017, 22, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Shrout, P.E. Measurement reliability and agreement in psychiatry. Stat. Methods Med. Res. 1998, 7, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.J.; Fraser, S.J.; Brown, W.J.; Burton, N.W. The feasibility and acceptability of questionnaires and accelerometry for measuring physical activity and sedentary behaviour in adults with mental illness. J. Ment. Health 2015, 24, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Hassett, L.; Moseley, A.; Harmer, A.; van der Ploeg, H.P. The reliability, validity, and feasibility of physical activity measurement in adults with traumatic brain injury: An observational study. J. Head Trauma Rehabil. 2015, 30, E55–E61. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T. Factors associated with participant compliance in studies using accelerometers. Gait Posture 2013, 38, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Peyrot, M.; Rubin, R.R.; Kruger, D.F.; Travis, L.B. Correlates of insulin injection omission. Diabetes Care 2010, 33, 240–245. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 100 ) | Intervention Group (n = 51) | Control Group (n = 49) |
---|---|---|---|
Demographic data | |||
Age (years) | 70.2 ± 12.2 | 68.7 ± 11.8 | 71.8 ± 12.6 |
Male | 36 (36) | 24 (47.1) | 12 (24.5) |
Education (years) | 12.9 ± 2.3 | 13 ± 2.4 | 12.8 ± 2.1 |
Caucasian | 95 (95) | 48 (94.1) | 47 (95.9) |
Married/living with partner | 50 (50) | 31 (60.8) | 19 (38.8) |
Currently employed outside home | 29 (29) | 16 (30.8) | 13 (26.5) |
Annual family income (<$30,000) | 51 (51) | 24 (47.10) | 27 (55.1) |
Risk factor profile | |||
Body mass index (kg/m²) | 32.3 ± 7.1 | 33.4 ± 7.4 | 31.2 ± 6.8 |
Clinical data | |||
Number of comorbidities | 8 ± 2.6 | 7.8 ± 2.5 | 8.0 ± 2.7 |
Hypertension | 99 (99) | 51 (100.0) | 48 (98.0) |
Coronary artery disease | 94 (94) | 46 (90.2) | 48 (98) |
Arthritis degenerative joint disease | 89 (89) | 43 (84.3) | 44 (89.8) |
Hypercholesterolemia | 84 (84) | 43 (84.3) | 41 (83.7) |
Diabetes mellitus with or without complications | 41 (41) | 41 (80.4) | 33 (67.4) |
Dyspepsia | 50 (50) | 24 (47.1) | 26 (53.1) |
Peripheral vascular disease or lower extremity edema | 45 (45) | 22 (43.1) | 23 (46.9) |
Chronic obstructive pulmonary disease | 38 (38) | 22 (43.1) | 16 (32.7) |
Chronic renal disease | 23 (23) | 12 (23.5) | 11 (22.4) |
Number of medications taking per day | 16.2 (±8.8) | 16.4 ± 10.0 | 15.9 ± 7.4 |
Cardiac function | |||
Functional class (NYHA) | |||
II | 49 (49) | 15 (29.4) | 34 (69.4) |
III | 42 (42) | 29 (56.9) | 13 (26.5) |
Ejection fraction a | 55.7 ± 11.1 | 53.4 ± 12.9 | 58.3 ± 8.1 |
Ejection fraction <50% a | 16 (16) | 12 (23.5) | 4 (8.2) |
Time Point | Overall Mean (±SD) | Weekdays Mean (±SD) | n | Weekends Mean (±SD) | n |
---|---|---|---|---|---|
Baseline | 15.4 (±3.6) | 15.4 (±3.8) | 92 | 16.0 (±3.8) | 81 |
3 months | 16.1 (±3.2) | 16.1 (±3.1) | 98 | 16.3 (±3.8) | 90 |
6 months | 15.4 (±3.1) | 15.6 (±3.1) | 95 | 15.2 (±3.4) | 84 |
Time Point | 7 Days | ≥6 Days | ≥5 Days |
---|---|---|---|
Baseline | 54% | 69% | 76% |
Month 3 | 56% | 80% | 87% |
Month 6 | 45% | 65% | 82% |
Variables | Baseline | 3 Months | 6 Months |
---|---|---|---|
n | 54 | 57 | 45 |
Activity calories | 0.966 | 0.940 | 0.955 |
Activity counts (vector magnitude) | 0.964 | 0.939 | 0.937 |
Minutes in moderate intensity or above PA | 0.914 | 0.912 | 0.879 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, L.; Hertzog, M.; Barnason, S. Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients. Geriatrics 2017, 2, 23. https://doi.org/10.3390/geriatrics2030023
Young L, Hertzog M, Barnason S. Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients. Geriatrics. 2017; 2(3):23. https://doi.org/10.3390/geriatrics2030023
Chicago/Turabian StyleYoung, Lufei, Melody Hertzog, and Susan Barnason. 2017. "Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients" Geriatrics 2, no. 3: 23. https://doi.org/10.3390/geriatrics2030023
APA StyleYoung, L., Hertzog, M., & Barnason, S. (2017). Feasibility of Using Accelerometer Measurements to Assess Habitual Physical Activity in Rural Heart Failure Patients. Geriatrics, 2(3), 23. https://doi.org/10.3390/geriatrics2030023