Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Characteristics
Sample Size
2.2. Fall Risk Assessment
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Fall Risk Assessed by FallSkip®
3.3. Fall Risk Evaluated by the Tinetti Scale
3.4. Association Between FallSkip® and Tinetti Scale to Predict Risk of Falls
3.5. Risk of Falls and Falls in the Previous Year
3.6. Risk of Falls in Diabetic and Non-Diabetic Patients
3.7. Gait and Posture Parameters Measured FallSkip® and Tinetti Scale as Predictors of Falls in the Previous Year
4. Discussion
4.1. Study Limitations
4.2. Strengths of the Study
4.3. Future Lines of Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Henry, N.J.; Krohn, K.J.; Liu, Z.; et al. The global burden of falls: Global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Inj. Prev. 2020, 26 (Suppl. 1), i3–i11. [Google Scholar] [CrossRef] [PubMed]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- Luebbert, S.; Christensen, W.; Finkel, C.; Worsowicz, G. Falls in Senior Adults: Demographics, Cost, Risk Stratification, and Evaluation. Mo. Med. 2022, 119, 158–163. [Google Scholar] [PubMed]
- Coulter, J.S.; Randazzo, J.; Kary, E.E.; Samar, H. Falls in Older Adults: Approach and Prevention. Am. Fam. Physician 2024, 109, 447–456. [Google Scholar]
- Coelho FGde, M.; Stella, F.; de Andrade, L.P.; Barbieri, F.A.; Santos-Galduróz, R.F.; Gobbi, S.; Costa, J.L.R.; Gobbi, L.T.B. Gait and risk of falls associated with frontal cognitive functions at different stages of Alzheimer’s disease. Aging Neuropsychol. Cogn. 2012, 19, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Cezar NOde, C.; Ansai, J.H.; Oliveira MPBde da Silva, D.C.P.; Gomes Wde, L.; Barreiros, B.A.; Langelli, T.C.O.; de Andrade, L.P. Feasibility of improving strength and functioning and decreasing the risk of falls in older adults with Alzheimer’s dementia: A randomized non-diabetic groupled home-based exercise trial. Arch. Gerontol. Geriatr. 2021, 96, 104476. [Google Scholar] [CrossRef]
- Camicioli, R.; Morris, M.E.; Pieruccini-Faria, F.; Montero-Odasso, M.; Son, S.; Buzaglo, D.; Hausdorff, J.M.; Nieuwboer, A. Prevention of Falls in Parkinson’s Disease: Guidelines and Gaps. Mov. Disord. Clin. Pract. 2023, 10, 1459–1469. [Google Scholar] [CrossRef]
- Freire, L.B.; Brasil-Neto, J.P.; da Silva, M.L.; Miranda, M.G.C.; de Mattos Cruz, L.; Martins, W.R.; da Silva Paz, L.P. Risk factors for falls in older adults with diabetes mellitus: Systematic review and meta-analysis. BMC Geriatr. 2024, 24, 201. [Google Scholar] [CrossRef]
- Brognara, L.; Sempere-Bigorra, M.; Mazzotti, A.; Artioli, E.; Julián-Rochina, I.; Cauli, O. Wearable sensors-based postural analysis and fall risk assessment among patients with diabetic foot neuropathy. J. Tissue Viability 2023, 32, 516–526. [Google Scholar] [CrossRef]
- Xu, Q.; Ou, X.; Li, J. The risk of falls among the aging population: A systematic review and meta-analysis. Front. Public Health 2022, 10, 902599. [Google Scholar] [CrossRef]
- Bayrak, M.; Kaşali, K.; Güner, M.; Cadirci, K.; Kılıç, A.F.; Binici, D.N. Risk factors influencing fall risk in geriatric patients with type 2 diabetes: A comprehensive analysis. Aging Male 2025, 28, 2469614. [Google Scholar] [CrossRef]
- Jiménez-Cebrián, A.M.; Ruiz-Sánchez, F.J.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; López-López, D.; Montiel-Luque, A.; de Labra, C.; Saavedra-García, M.Á.; Navarro-Flores, E. Relationship of foot pain with the increased risk of falls in patients with Parkinson’s disease. J. Foot Ankle Res. 2024, 17, e70023. [Google Scholar] [CrossRef]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar]
- Opara, J.; Małecki, A.; Małecka, E.; Socha, T. Motor assessment in Parkinson’s disease. Ann. Agric. Environ. Med. AAEM 2017, 24, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H. Tools for assessing fall risk in the elderly: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2018, 30, 1–16. [Google Scholar] [CrossRef]
- Ortega-Bastidas, P.; Gómez, B.; Aqueveque, P.; Luarte-Martínez, S.; Cano-de-la-Cuerda, R. Instrumented Timed Up and Go Test (iTUG)-More Than Assessing Time to Predict Falls: A Systematic Review. Sensors 2023, 23, 3426. [Google Scholar] [CrossRef] [PubMed]
- Brognara, L.; Mazzotti, A.; Di Martino, A.; Faldini, C.; Cauli, O. Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review. Medicina 2021, 57, 1145. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Sosnoff, J.J. Novel sensing technology in fall risk assessment in older adults: A systematic review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef]
- Herrera Ligero, C.; Vivas Broseta, M.J.; Ferrer Gómez, C.; de Rosario Martínez, H.; Garrido-Lestache López-Belmonte, E.; Bermejo Bosch, I. Variabilidad interobservador del baremo de tráfico (Ley 35/2015) y utilidad de las pruebas biomecánicas en la valoración de las secuelas. Rev. Esp. Med. Leg. 2022, 48, 99–106. [Google Scholar] [CrossRef]
- ResearchGate. FallSkip Valoración del riesgo de Caídas en Personas Mayores (PDF). Available online: https://www.researchgate.net/publication/366030232_FallSkip_Valoracion_del_riesgo_de_caidas_en_personas_mayores (accessed on 29 March 2025).
- Herrera-Ligero, C.; Ruíz García, A.; Garrido Jaen, J.D.; Bermejo Bosch, I.; Andrade Celdrán, J.; Porcar Seder, R.M. FallSkip: Aportaciones al Ámbito Clínico. 2021. Available online: https://riunet.upv.es/handle/10251/187294 (accessed on 29 March 2025).
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Wei, S.H.; Chen, P.Y.; Tsai, M.W.; Cheng, I.C.; Liu, D.H.; Kao, C.L. Can sit-to-stand lower limb muscle power predict fall status? Gait Posture 2014, 40, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Vera-Remartínez, E.J.; Lázaro-Monge, R.; Casado-Hoces, S.V.; Garcés-Pina, E.; Molés-Julio, M.P. Validity and reliability of an android device for the assessment of fall risk in older adult inmates. Nurs. Open 2022, 10, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Serra-Añó, P.; Pedrero-Sánchez, J.F.; Inglés, M.; Aguilar-Rodríguez, M.; Vargas-Villanueva, I.; López-Pascual, J. Assessment of Functional Activities in Individuals with Parkinson’s Disease Using a Simple and Reliable Smartphone-Based Procedure. Int. J. Environ. Res. Public Health 2020, 17, 4123. [Google Scholar] [CrossRef]
- Mollà-Casanova, S.; Pedrero-Sánchez, J.; Inglés, M.; López-Pascual, J.; Muñoz-Gómez, E.; Aguilar-Rodríguez, M.; Sempere-Rubio, N.; Serra-Añó, P. Impact of Parkinson’s Disease on Functional Mobility at Different Stages. Front. Aging Neurosci. 2022, 14, 935841. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ros, P.; Sanchis-Aguado, M.A.; Durá-Gil, J.V.; Martínez-Arnau, F.M.; Belda-Lois, J.M. FallSkip device is a useful tool for fall risk assessment in sarcopenic older community people. Int. J. Older People Nurs. 2022, 17, e12431. [Google Scholar] [CrossRef]
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef]
- Pedrero-Sánchez, J.F.; Belda-Lois, J.M.; Serra-Añó, P.; Inglés, M.; López-Pascual, J. Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network. Biomed. Signal Process. Control 2022, 75, 103617. [Google Scholar] [CrossRef]
- Medina Ripoll, E.; Pedrero Sánchez, J.F.; Garrido Jaén, J.D.; López Pascual, J.; Bermejo Bosch, I.; Pitarch Corresa, S.; Alonso, M.I.S.; Moreno, C.C.; Vilela, J.M.; Celdrán, J.A. FallSkip: Valoración del riesgo de caídas en personas mayores. In Revista de Biomecánica; Instituto de Biomecánica (IBV): Valencia, Spain, 2017; pp. 55–60. [Google Scholar]
- Folch, B.; Donato, C.; Ruivo, M.; Ruiz, A.; Tapia, A.; Palop, V.; Salvador, P.C.; Pedrero, J.F.; David, G.J.J.; Javier, A.C. Innovación Sanitaria en la Gestión del Riesgo de Caídas de Personas Mayores en Atención Primaria. 2019. Available online: https://riunet.upv.es/handle/10251/128736 (accessed on 13 April 2025).
- Corzo, H.; Hernández-Mocholí, M.A.; Triviño-Amigo, N.; Delgado, S.; Olivares, P.R.; Adsuar-Sala, J.C. Fiabilidad de la prueba Fall Risk de la plataforma Biodex Balance System® en las personas mayores institucionalizadas con miedo a caerse mediante test-retest de 12 semanas. Rehabilitación 2013, 47, 64–70. [Google Scholar] [CrossRef]
- Pedrero-Sánchez, J.F.; De-Rosario-Martínez, H.; Medina-Ripoll, E.; Garrido-Jaén, D.; Serra-Añó, P.; Mollà-Casanova, S.; López-Pascual, J. The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment. Sensors 2023, 23, 6567. [Google Scholar] [CrossRef]
- Guevara, C.R.; Lugo, L.H. Validez y confiabilidad de la Escala de Tinetti para población colombiana. Rev. Colomb. Reumatol. 2012, 19, 218–233. [Google Scholar] [CrossRef]
- Tinetti, M.E.; De Leon, C.F.M.; Doucette, J.T.; Baker, D.I. Fear of Falling and Fall-Related Efficacy in Relationship to Functioning Among Community-Living Elders. J. Gerontol. 1994, 49, M140–M147. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Baker, D.I.; Gottschalk, M.; Garrett, P.; McGeary, S.; Pollack, D.; Charpentier, P. Systematic home-based physical and functional therapy for older persons after hip fracture. Arch. Phys. Med. Rehabil. 1997, 78, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Hatton, A.L.; Rome, K. Falls, Footwear, and Podiatric Interventions in Older Adults. Clin. Geriatr. Med. 2019, 35, 161–171. [Google Scholar] [CrossRef]
- Perry, S.D.; Radtke, A.; McIlroy, W.E.; Fernie, G.R.; Maki, B.E. Efficacy and effectiveness of a balance-enhancing insole. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 595–602. [Google Scholar] [CrossRef]
- Javed, A.A.; Aljied, R.; Allison, D.J.; Anderson, L.N.; Ma, J.; Raina, P. Body mass index and all-cause mortality in older adults: A scoping review of observational studies. Obes. Rev. 2020, 21, e13035. [Google Scholar] [CrossRef]
- Jayanama, K.; Theou, O.; Godin, J.; Mayo, A.; Cahill, L.; Rockwood, K. Relationship of body mass index with frailty and all-cause mortality among middle-aged and older adults. BMC Med. 2022, 20, 404. [Google Scholar] [CrossRef]
- Janssen, I.; Mark, A.E. Elevated body mass index and mortality risk in the elderly. Obes. Rev. 2007, 8, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Trisan, R. Balance Problems and Fall Risks in the Elderly. Clin. Geriatr. Med. 2019, 35, 173–183. [Google Scholar] [CrossRef]
- Ang, G.C.; Low, S.L.; How, C.H. Approach to falls among the elderly in the community. Singapore Med. J. 2020, 61, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.; Votova, K.; Scanlan, A.; Close, J. Multifactorial and functional mobility assessment tools for fall risk among older adults in community, home-support, long-term and acute care settings. Age Ageing 2007, 36, 130–139. [Google Scholar] [CrossRef]
- Ajibade, B.O. Falls risk assessment and prevention in older people in healthcare facilities. Br. J. Nurs. Mark. Allen Publ. 2025, 34, 381–385. [Google Scholar] [CrossRef]
- Jahantabi-Nejad, S.; Azad, A. Predictive accuracy of performance oriented mobility assessment for falls in older adults: A systematic review. Med. J. Islam. Repub. Iran. 2019, 33, 38. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, M.M.; Fritz, S.; Middleton, A.; Allison, L.; Wingood, M.; Phillips, E.; Criss, M.; Verma, S.; Osborne, J.; Chui, K.K. Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. J. Geriatr. Phys. Ther. 2017, 40, 1. [Google Scholar] [CrossRef]
- Hars, M.; Audet, M.; Herrmann, F.; De Chassey, J.; Rizzoli, R.; Reny, J.L.; Gold, G.; Ferrari, S.; Trombetti, A. Functional Performances on Admission Predict In-Hospital Falls, Injurious Falls, and Fractures in Older Patients: A Prospective Study. J. Bone Miner. Res. 2018, 33, 852–859. [Google Scholar] [CrossRef]
- Assar, M.E.; Laosa, O.; Rodríguez Mañas, L. Diabetes and frailty. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 52. [Google Scholar] [CrossRef]
- Brognara, L.; Volta, I.; Cassano, V.M.; Navarro-Flores, E.; Cauli, O. The Association between Cognitive Impairment and Diabetic Foot Care: Role of Neuropathy and Glycated Hemoglobin. Pathophysiology 2020, 27, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Berra, C.; De Fazio, F.; Azzolini, E.; Albini, M.; Zangrandi, F.; Mirani, M.; Garbossa, S.; Guardado-Mendoza, R.; Condorelli, G.; Folli, F. Hypoglycemia and hyperglycemia are risk factors for falls in the hospital population. Acta Diabetol. 2019, 56, 931–938. [Google Scholar] [CrossRef]
- Tatulashvili, S.; Fagherazzi, G.; Dow, C.; Cohen, R.; Fosse, S.; Bihan, H. Socioeconomic inequalities and type 2 diabetes complications: A systematic review. Diabetes Metab. 2020, 46, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, K.Z.; Iqbal, A.; Jamil, K.; Haider, M.M.; Khan, S.H.; Chakraborty, N.; Streatfield, P.K. Socioeconomic disparities in diabetes prevalence and management among the adult population in Bangladesh. PLoS ONE 2022, 17, e0279228. [Google Scholar] [CrossRef]
- Bally, E.L.S.; Ye, L.; van Grieken, A.; Tan, S.S.; Mattace-Raso, F.; Procaccini, E.; Alhambra-Borrás, T.; Raat, H. Factors associated with falls among hospitalized and community-dwelling older adults: The APPCARE study. Front. Public Health 2023, 11, 1180914. [Google Scholar] [CrossRef]
- Gazibara, T.; Kurtagic, I.; Kisic-Tepavcevic, D.; Nurkovic, S.; Kovacevic, N.; Gazibara, T.; Pekmezovic, T. Falls, risk factors and fear of falling among persons older than 65 years of age. Psychogeriatrics 2017, 17, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.A.; Ballesteros, M.F.; Mack, K.A.; Rudd, R.A.; DeCaro, E.; Adler, G. Gender differences in seeking care for falls in the aged Medicare population. Am. J. Prev. Med. 2012, 43, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.Y.; Seo, D.C.; Lin, H.C.; Lohrmann, D.K.; Chomistek, A.K. BMI and Central Obesity with Falls Among Community-Dwelling Older Adults. Am. J. Prev. Med. 2018, 54, e59–e66. [Google Scholar] [CrossRef]
- Allet, L.; Armand, S.; Golay, A.; Monnin, D.; de Bie, R.A.; de Bruin, E.D. Gait characteristics of diabetic patients: A systematic review. Diabetes Metab. Res. Rev. 2008, 24, 173–191. [Google Scholar] [CrossRef]
- Patino, C.M.; McKean-Cowdin, R.; Azen, S.P.; Allison, J.C.; Choudhury, F.; Varma, R.; Los Angeles Latino Eye Study Group. Central and peripheral visual impairment and the risk of falls and falls with injury. Ophthalmology 2010, 117, 199–206.e1. [Google Scholar] [CrossRef]
- Vinik, A.I.; Vinik, E.J.; Colberg, S.R.; Morrison, S. Falls risk in older adults with type 2 diabetes. Clin. Geriatr. Med. 2015, 31, 89–99. [Google Scholar] [CrossRef]
- Ouyang, S.; Zhang, X.; Li, H.; Tang, X.; Ning, X.; Li, R.; Ke, P.; Li, Y.; Huang, F.; Liu, B.; et al. Cataract, glaucoma, and diabetic retinopathy are independent risk factors affecting falls in the older adult with eye diseases. Geriatr. Nurs. 2023, 53, 170–174. [Google Scholar] [CrossRef]
- Schwartz, A.V.; Vittinghoff, E.; Sellmeyer, D.E.; Feingold, K.R.; de Rekeneire, N.; Strotmeyer, E.S.; Shorr, R.I.; Vinik, A.I.; Odden, M.C.; Park, S.W.; et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 2008, 31, 391–396. [Google Scholar] [CrossRef] [PubMed]
Low Fall Risk | Moderate−High Fall Risk | p Value | Effect Size Cohen’s D; Effect-Size R | |
---|---|---|---|---|
Posture | Mean ± SD: 78.1 ± 20.1 (Minimum 0–Maximum 99) | Mean ± SD: 77.1 ± 16.0 (Minimum 14–Maximum 100) | p = 0.402 | 0.055; 0.027 |
Gait | Mean ± SD: 72.9 ± 13.3 (Minimum 45–Maximum 100) | Mean ± SD: 62.1 ± 16.5 (Minimum 26–Maximum 100) | p ≤ 0.001 | 0.667; 0.316 |
Reaction time | Mean ± SD: 59.2 ± 19.9 (Minimum 1–Maximum 89) | Mean ± SD: 43.9 ± 22.8 (Minimum 0–Maximum 88) | p ≤ 0.001 | 0.715; 0.337 |
Sit to stand | Mean ± SD: 91.8 ± 13.5 (Minimum 41–Maximum 100) | Mean ± SD: 76.2 ± 17.7 (Minimum 0–Maximum 88) | p ≤ 0.001 | 0.991; 0.444 |
Total time % | Mean ± SD: 73.4 ± 13.2 (Minimum 44–Maximum 97) | Mean ± SD: 46.8 ± 28.8 (Minimum 0–Maximum 98) | p ≤ 0.001 | 0.918; 0.417 |
Total time seconds | Mean ± SD: 14.5 ± 2.3 (Minimum 10.6–Maximum 19.5) | Mean ± SD: 19.4 ± 6.7 (Minimum 0–Maximum 39) | p ≤ 0.001 | −0.978; −0.439 |
No Falls in the Last Year | Falls in the Last Year | p Value | Effect Size Cohen’s D; Effect-Size R | |
---|---|---|---|---|
Posture | Mean ± SD: 79.3 ± 17.2 (Minimum 0–Maximum 100) | Mean ± SD: 74.6 ± 17.2 (Minimum 14- Maximum 100) | p = 0.79 | 0.273; 0.135 |
Gait | Mean ± SD: 69.3 ± 15.4 (Minimum 34–Maximum 100) | Mean ± SD: 59.7 ± 15.9 (Minimum 26- Maximum 100) | p = 0.01 | 0.613; 0.293 |
Reaction time | Mean ± SD: 54.7 ± 21.5 (Minimum 0–Maximum 89) | Mean ± SD: 39.6 ± 22.2 (Minimum 0- Maximum 88) | p ≤ 0.01 | 0.691; 0.326 |
Sit to stand | Mean ± SD: 85.2 ± 16.5 (Minimum 37–Maximum 100) | Mean ± SD: 74.9 ± 18.5 (Minimum 41–Maximum 100) | p = 0.005 | 0.588; 0.282 |
Total time (%) | Mean ± SD: 63.7 ± 24.1 (Minimum 0–Maximum 97) | Mean ± SD: 42.1 ± 28.1 (Minimum 0–Maximum 98) | p ≤ 0.01 | 0.825; 0.381 |
Total time (seconds) | Mean ± SD: 16.4 ± 5.0 (Minimum 10.6–Maximum 38.9) | Mean ± SD: 20.0 ± 7.0 (Minimum 0–Maximum 39) | p ≤ 0.01 | −0.592; −0.284 |
Beta (B) Coefficients | Standard Error | Wald | Gl | p Value | Exp (B) | 95% C.I. for EXP (B) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Posture | –0.023 | 0.014 | 2.429 | 1 | 0.119 | 0.978 | 0.950 | 1.006 |
Gait | –0.012 | 0.020 | 0.370 | 1 | 0.543 | 0.988 | 0.951 | 1.027 |
Reaction time | 0.003 | 0.015 | 0.038 | 1 | 0.845 | 1.003 | 0.975 | 1.032 |
Sit to stand | –0.012 | 0.016 | 0.576 | 1 | 0.448 | 0.988 | 0.957 | 1.020 |
Total time % | 0.000 | 0.026 | 0.000 | 1 | 0.997 | 1.000 | 0.950 | 1.053 |
Total time (seconds) | –0.082 | 0.100 | 0.670 | 1 | 0.413 | 0.921 | 0.757 | 1.121 |
Tinetti gait | –0.001 | 0.175 | 0.000 | 1 | 0.996 | 0.999 | 0.709 | 1.408 |
Tinetti balance | –0.066 | 0.097 | 0.464 | 1 | 0.496 | 0.936 | 0.775 | 1.132 |
BMI | 1.535 | 3 | 0.674 | |||||
BMI (1) | –0.912 | 1.460 | 0.390 | 1 | 0.532 | 0.402 | 0.023 | 7.024 |
BMI (2) | –0.721 | 0.744 | 0.940 | 1 | 0.332 | 0.486 | 0.113 | 2.090 |
BMI (3) | 0.114 | 0.576 | 0.039 | 1 | 0.843 | 1.121 | 0.362 | 3.467 |
Gender (women versus men) | 1.286 | 0.596 | 4.664 | 1 | 0.031 | 3.620 | 1.126 | 11.632 |
Use of aid for walking | 10.993 | 2 | 0.004 | |||||
Walking stick (1) | 2.965 | 0.924 | 10.301 | 1 | 0.001 | 19.397 | 3.172 | 118.608 |
Walker (2) | 2.654 | 0.984 | 7.268 | 1 | 0.007 | 14.210 | 2.064 | 97.846 |
Diabetics versus non diabetic l (1) | –0.346 | 0.598 | 0.335 | 1 | 0.563 | 0.707 | 0.219 | 2.285 |
Constant | 3.218 | 3.805 | 0.715 | 1 | 0.398 | 24.971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Montesinos, A.; Brognara, L.; Mafla-España, A.; Cauli, O. Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes. Geriatrics 2025, 10, 109. https://doi.org/10.3390/geriatrics10040109
Castillo-Montesinos A, Brognara L, Mafla-España A, Cauli O. Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes. Geriatrics. 2025; 10(4):109. https://doi.org/10.3390/geriatrics10040109
Chicago/Turabian StyleCastillo-Montesinos, Azahar, Lorenzo Brognara, Alejandra Mafla-España, and Omar Cauli. 2025. "Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes" Geriatrics 10, no. 4: 109. https://doi.org/10.3390/geriatrics10040109
APA StyleCastillo-Montesinos, A., Brognara, L., Mafla-España, A., & Cauli, O. (2025). Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes. Geriatrics, 10(4), 109. https://doi.org/10.3390/geriatrics10040109