Effect of Anti-Diabetic Medication Use on Sepsis Risk in Type 2 Diabetes Mellitus: A Multivariate Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Variables
2.3. Statistical Analysis
2.4. Ethical Approval and Informed Consent
3. Results
3.1. Baseline Characters of the Patients
3.2. Comparison of Patients With and Without Sepsis
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACT | Anatomical therapeutic chemical |
CI | Confidence interval |
CVD | Cardiovascular diseases |
DPP-4 | Dipeptidyl peptidase-4 inhibitors |
GLP-1 RA | Glucagon-like peptide-1 (GLP-1) receptor agonists |
ICD-10 | International Classification of Diseases-10 |
OR | Odds ratio |
SGLT-2i | Sodium-glucose cotransporter-2 inhibitors |
T2DM | Type 2 diabetes mellitus |
References
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Singh, A.; Shadangi, S.; Gupta, P.K.r.; Rana, S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr. Physiol. 2025, 15, e70003. [Google Scholar] [CrossRef]
- Costantini, E.; Carlin, M.; Porta, M.; Brizzi, M.F. Type 2 diabetes mellitus and sepsis: State of the art, certainties and missing evidence. Acta Diabetol. 2021, 58, 1139–1151. [Google Scholar] [CrossRef]
- Vincent, J.-L. Emerging paradigms in sepsis. eBioMedicine 2022, 86, 104398. [Google Scholar] [CrossRef]
- Trevelin, S.C.; Carlos, D.; Beretta, M.; Da Silva, J.S.; Cunha, F.Q. Diabetes Mellitus and Sepsis: A Challenging Association. Shock 2017, 47, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef]
- Stein, S.A.; Lamos, E.M.; Davis, S.N. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin. Drug Saf. 2013, 12, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Ghazaee, S.P.; Tumanov, V.; Voloshyna, N.; Marchenko-Tolsta, K.; Hameed, M. A Review of the Novel Antidiabetic Medications: Efficacy, Safety andInnovation. New Emir. Med. J. 2023, 4, e300123213248. [Google Scholar] [CrossRef]
- Zapata-Bravo, E.; Douros, A.; Yu, Y.O.H.; Filion, K.B. Comparative risk of infection of medications used for type 2 diabetes. Expert Opin. Drug Saf. 2024, 23, 1079–1091. [Google Scholar] [CrossRef]
- Taher, I.; El-Masry, E.; Abouelkheir, M.; Taha, A. Anti-inflammatory effect of metformin against an experimental model of LPS-induced cytokine storm. Exp. Ther. Med. 2023, 26, 415. [Google Scholar] [CrossRef]
- Niekerk, V.G.; Christowitz, C.; Conradie, D.; Engelbrecht, A.-M. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev. 2020, 52, 34–44. [Google Scholar] [CrossRef]
- Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic Control and Risk of Infections Among People with Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef]
- Sethi, S.M.; Khanum, I.; Javed, U.; Sabir, S. Impact of Infection on Glycemic Control in Diabetic Patients; a Hospital-based Cohort Study in Pakistan. Afro-Egypt. J. Infect. Endem. Dis. 2022, 12, 321–328. [Google Scholar] [CrossRef]
- Choudhury, A.; Kumar, S.; Kumar, N.; Bairwa, M. Management of critically ill septic patients with diabetes. Int. J. Res. Med. Sci. 2022, 10, 2710. [Google Scholar] [CrossRef]
- Vught, V.L.A.; Scicluna, B.P.; Hoogendijk, A.J.; Wiewel, M.A.; Klouwenberg, K.P.M.; Cremer, O.L.; Horn, J.; Nürnberg, P.; Bonten, M.M.J.; Schultz, M.J.; et al. Association of diabetes and diabetes treatment with the host response in critically ill sepsis patients. Crit. Care 2016, 20, 252. [Google Scholar] [CrossRef]
- Shih, C.-J.; Wu, Y.-L.; Chao, P.-W.; Kuo, S.-C.; Yang, C.-Y.; Li, S.-Y.; Ou, S.-M.; Chen, Y.-T. Association between Use of Oral Anti-Diabetic Drugs and the Risk of Sepsis: A Nested Case-Control Study. Sci. Rep. 2015, 5, 15260. [Google Scholar] [CrossRef] [PubMed]
- Stata Statistical Software; StataCorp LLC: College Station, TX, USA, 2023.
- Li, H.; Zu, Y.; Wang, Q.; Zi, T.; Qin, X.; Zhao, Y.; Jiang, W.; Wang, X.; Xu, C.; Chen, X.; et al. Risk factor analysis and nomogram development for predicting 28-day mortality in elderly ICU patients with sepsis and type 2 diabetes mellitus. Eur. J. Inflamm. 2024, 22, 1721727X241282483. [Google Scholar] [CrossRef]
- Ritzema, J.; Young, P. Admitting elderly patients to ICU: Is it just about survival? N. Z. Med. J. 2017, 130, 8. [Google Scholar]
- Ahlberg, C.D.; Wallam, S.; Tirba, L.A.; Itumba, S.N.; Gorman, L.; Galiatsatos, P. Linking Sepsis with Chronic Arterial Hypertension, Diabetes Mellitus, and Socioeconomic Factors in the United States: A Scoping Review. Am. J. Respir. Crit. Care Med. 2023, 77, A3413. [Google Scholar] [CrossRef]
- Frydrych, L.M.; Bian, G.; O’Lone, D.E.; Ward, P.A.; Delano, M.J. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J. Leukoc. Biol. 2018, 104, 525–534. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef]
- Schuetz, P.; Castro, P.; Shapiro, N.I. Diabetes and Sepsis: Preclinical Findings and Clinical Relevance. Diabetes Care 2011, 34, 771–778. [Google Scholar] [CrossRef]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- Angriman, F.; Lawler, P.R.; Shah, B.R.; Martin, C.M.; Scales, D.C.; Network, S.C. Prevalent diabetes and long-term cardiovascular outcomes in adult sepsis survivors: A population-based cohort study. Crit Care 2023, 27, 302. [Google Scholar] [CrossRef]
- Fünfstück, R.; Nicolle, L.E.; Hanefeld, M.; Naber, K.G. Urinary tract infection in patients with diabetes mellitus. Clin. Nephrol. 2012, 77, 40. [Google Scholar] [CrossRef]
- Kamel, M.I.; Elhenawy, Y.I.; Saudi, W.M. Relation between cutaneous and extracutaneous complications in pediatric patients with type 1 diabetes. Derm.-Endocrinol. 2018, 10, e1467717. [Google Scholar] [CrossRef]
- Coentrão, L.; Van Biesen, W.; Nistor, I.; Tordoir, J.; Gallieni, M.; Marti Monros, A.; Bolignano, D. Preferred Haemodialysis Vascular Access for Diabetic Chronic Kidney Disease Patients: A Systematic Literature Review. J. Vasc. Access 2015, 16, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Kurien, S.; Manohar, V.R.; Kumar, K.S.; Ravindran, A. Cost Consequence Analysis of Diabetic Nephropathy Management in a Tertiary Care Hospital. Asian J. Pharm. Clin. Res. 2022, 16, 81–85. [Google Scholar] [CrossRef]
- Ulambayar, B.; Ghanem, A.S.; Chau, N.M.; Faludi, E.V.; Móré, M.; Nagy, A.C. Evaluation of Cardiovascular Disease Risk in Patients with Type 2 Diabetes Mellitus Using Clinical Laboratory Markers. J. Clin. Med. 2024, 13, 3561. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef]
- Nyström, T.; Bodegard, J.; Nathanson, D.; Thuresson, M.; Norhammar, A.; Eriksson, J.W. Second line initiation of insulin compared with DPP-4 inhibitors after metformin monotherapy is associated with increased risk of all-cause mortality, cardiovascular events, and severe hypoglycemia. Diabetes Res. Clin. Pract. 2017, 123, 199–208. [Google Scholar] [CrossRef]
- Korayem, G.B.; Alshaya, O.A.; Alghamdi, A.A.; Alanazi, S.S.; Almutib, R.T.; Alsaileek, M.; Alrashidi, A.; Aldosari, N.; Sheraim, N.B.; Al Yami, M.S.; et al. The prescribing pattern of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in patient with type two diabetes mellitus: A two-center retrospective cross-sectional study. Front. Public Health 2022, 10, 1031306. [Google Scholar] [CrossRef]
- Ng, P.Y.; Ng, A.K.Y.; Ip, A.; Wu, M.Z.; Guo, R.; Yiu, K.H. Risk of ICU Admission and Related Mortality in Patients with Sodium-Glucose Cotransporter 2 Inhibitors and Dipeptidyl Peptidase-4 Inhibitors: A Territory-Wide Retrospective Cohort Study. Crit. Care Med. 2023, 51, 1074–1085. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Gao, F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes 2014, 5, 89. [Google Scholar] [CrossRef]
- Nogami, K.; Muraki, I.; Imano, H.; Iso, H. Risk of disseminated intravascular coagulation in patients with type 2 diabetes mellitus: Retrospective cohort study. BMJ Open 2017, 7, e013894. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Li, Y.; Hou, A.; Ge, Y.; Xu, Y.; Xiong, G.; Yang, X.; Acevedo, S.A.; Shi, L.; Xu, H. A Retrospective Cohort Study of Patients with Type 2 Diabetes in China: Associations of Hypoglycemia with Health Care Resource Utilization and Associated Costs. Diabetes Ther. 2018, 9, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Silver, B.; Ramaiya, K.; Andrew, S.B.; Fredrick, O.; Bajaj, S.; Kalra, S.; Charlotte, B.M.; Claudine, K.; Makhoba, A. EADSG Guidelines: Insulin Therapy in Diabetes. Diabetes Ther. 2018, 9, 449–492. [Google Scholar] [CrossRef]
- Pattayil, S.; Vadakkekuttical, R.J.; Radhakrishnan, C.; Kanakkath, H.; Hrishi, T.S. Proportional relationship between periodontal inflamed surface area, clinical attachment loss, and glycated hemoglobin level in patients with type 2 diabetes mellitus on insulin therapy and on oral antidiabetic therapy. J. Periodontol. 2023, 94, 31–40. [Google Scholar] [CrossRef]
- Henney, A.E.; Riley, D.R.; Hydes, T.J.; Anson, M.; Ibarburu, G.H.; Frost, F.; Alam, U.; Cuthbertson, D.J. Comparative estimate of glucose-lowering therapies on risk of incident pneumonia and severe sepsis: An analysis of real-world cohort data. Thorax 2025, 80, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Salmen, T.; Pietroșel, V.-A.; Mihai, B.-M.; Bica, I.C.; Teodorescu, C.; Păunescu, H.; Coman, O.A.; Mihai, D.A.; Stoian, P.A. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines 2022, 10, 2624. [Google Scholar] [CrossRef]
- Yang, F.; Zeng, F.; Luo, X.; Lei, Y.; Li, J.; Lu, S.; Huang, X.; Lan, Y.; Liu, R. GLP-1 Receptor: A New Target for Sepsis. Front. Pharmacol. 2021, 12, 706908. [Google Scholar] [CrossRef] [PubMed]
- Zobel, E.H.; Ripa, R.S.; Von Scholten, B.J.; Curovic, V.R.; Kjaer, A.; Hansen, T.W.; Rossing, P.; Størling, J. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes. Sci. Rep. 2021, 11, 18522. [Google Scholar] [CrossRef]
- Arakawa, M.; Mita, T.; Azuma, K.; Ebato, C.; Goto, H.; Nomiyama, T.; Fujitani, Y.; Hirose, T.; Kawamori, R.; Watada, H. Inhibition of Monocyte Adhesion to Endothelial Cells and Attenuation of Atherosclerotic Lesion by a Glucagon-like Peptide-1 Receptor Agonist, Exendin-4. Diabetes 2010, 59, 1030–1037. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, F.; Zhong, X.; Du, Y.; Fan, X.; Su, H.; Pan, T. Dulaglutide provides protection against sepsis-induced lung injury in mice by inhibiting inflammation and apoptosis. Eur. J. Pharmacol. 2023, 949, 175730. [Google Scholar] [CrossRef]
- Maki, T.; Maeno, S.; Maeda, Y.; Yamato, M.; Sonoda, N.; Ogawa, Y.; Wakisaka, M.; Inoguchi, T. Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: A possible role of SGLT2 in mesangial cells. Sci. Rep. 2019, 9, 4703. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Feng, S.-T.; Wen, Y.; Tang, T.-T.; Wang, B.; Liu, B.-C. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. EBioMedicine 2022, 83, 104215. [Google Scholar] [CrossRef]
- Bao, L.; Gao, X.; Xie, K.; Li, Y. Is There a Diabetes–Kidney–Heart Continuum? Perspectives From the Results of the Cardiovascular and Renal Outcome Clinical Trials with SGLT2 Inhibitors. Front. Cardiovasc. Med. 2021, 8, 716083. [Google Scholar] [CrossRef]
- Castoldi, G.; Carletti, R.; Barzaghi, F.; Meani, M.; Zatti, G.; Perseghin, G.; Di Gioia, C.; Zerbini, G. Sodium Glucose Cotransporter-2 Inhibitors in Non-Diabetic Kidney Disease: Evidence in Experimental Models. Pharmaceuticals 2024, 17, 362. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, S.; He, Y.; Yan, L.; Lv, F.; Liang, Q.; Gan, Y.; Han, L.; Xu, H.; Li, Y.; et al. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann. Rheum. Dis. 2023, 82, 1–13. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Zheng, C.-M.; Yen, T.-H.; Lu, K.-C. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int. J. Mol. Sci. 2020, 21, 7833. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Z.; Chandramouli, C.; Wong, P.-F.; Chan, Y.-H.; Li, H.-L.; Yu, S.-Y.; Tse, Y.-K.; Ren, Q.-W.; Yu, S.-Y.; Tse, H.-F.; et al. Risk of sepsis and pneumonia in patients initiated on SGLT2 inhibitors and DPP-4 inhibitors. Diabetes Metab. 2022, 48, 101367. [Google Scholar] [CrossRef]
- Melnick, S.; Rajagopalan, P.; Lynn, T.; Donato, A. Perioperative genitourinary infection associated with sodium-glucose co-transporter 2 inhibitor use. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Halimi, S.; Vergès, B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab. 2014, 40, S28–S34. [Google Scholar] [CrossRef]
- Fisher, A.; Fralick, M.; Filion, K.B.; Dell’Aniello, S.; Douros, A.; Tremblay, É.; Shah, B.R.; Ronksley, P.E.; Alessi-Severini, S.; Hu, N.; et al. Sodium-glucose co-transporter-2 inhibitors and the risk of urosepsis: A multi-site, prevalent new-user cohort study. Diabetes Obes. Metab. 2020, 22, 1648–1658. [Google Scholar] [CrossRef]
- Reyes-Farias, C.I.; Reategui-Diaz, M.; Romani-Romani, F.; Prokop, L. The effect of sodium-glucose cotransporter 2 inhibitors in patients with chronic kidney disease with or without type 2 diabetes mellitus on cardiovascular and renal outcomes: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0295059. [Google Scholar] [CrossRef]
- Nagy, A.C.; Tóth, Á.; Bak, N.; Ulambayar, B.; Ghanem, A.S.; Sztanek, F. Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis. J. Clin. Med. 2024, 13, 7093. [Google Scholar] [CrossRef]
- Tang, H.; Cui, W.; Li, D.; Wang, T.; Zhang, J.; Zhai, S.; Song, Y. Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2017, 19, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Blonde, L.; Rosenstock, J.; Frias, J.; Birkenfeld, A.L.; Niemoeller, E.; Souhami, E.; Ji, C.; Del Prato, S.; Aroda, V.R. Durable Effects of iGlarLixi Up to 52 Weeks in Type 2 Diabetes: The LixiLan-G Extension Study. Diabetes Care 2021, 44, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Balena, R.; Hensley, I.E.; Miller, S.; Barnett, A.H. Combination therapy with GLP-1 receptor agonists and basal insulin: A systematic review of the literature. Diabetes Obes. Metab. 2013, 15, 485–502. [Google Scholar] [CrossRef]
- Ramalan, M.A.; Maiyaki, M.B.; Gezawa, I.D.; Uloko, A.E. Efficacy of a fixed-ratio combination of glucagon-like peptide-1 receptor agonist and basal insulin therapy for the treatment of type 2 diabetes: A protocol for systematic review and meta-analysis of randomized clinical trials. medRxiv 2024. preprint. [Google Scholar] [CrossRef]
Variable | Baseline (% (n)) | |
---|---|---|
Age * | 66 (60–74) | |
Gender | Female | 50.9 (2550) |
Male | 49.1 (2459) | |
BMI * | 30.4 (26.1–35.7) | |
Comorbidities | Hypertension | 62.7 (3141) |
Ischemic heart disease | 39.1 (1956) | |
Dyslipidemia | 29.2 (1463) | |
Atherosclerosis | 27.7 (1388) | |
Nephropathy | 22.3 (1113) | |
Neuropathy | 12.4 (622) | |
Antidiabetic medications | Biguanides (metformin) | 34.9 (1747) |
Insulin | 23.5 (1179) | |
SGLT-2 inhibitors | 4.7 (219) | |
GLP-1 RAs | 3.9 (198) | |
Median blood glucose (mmol/L) * | 7.8 (6.4–10.2) | |
Median HbA1C (%) * | 7.2 (6.5–8.3) | |
Median C-reactive protein (mg/L) * | 4.4 (2–11.1) | |
Median total cholesterol (mmol/L) * | 4.6 (3.8–5.5) | |
Median triglycerides (mmol/L) * | 1.6 (1.2–2.4) | |
Median creatinine (µmol/L) * | 80 (65–101) |
Variable | Category | Patients Without Sepsis | Patients With Sepsis | p-Value |
---|---|---|---|---|
Median age (IQR) | 66 (60–73) | 72 (64–79) | <0.001 ** | |
Gender | Male | 2362 (96.2%) | 97 (3.8%) | 0.916 * |
Female | 2450 (96.1%) | 100 3.9%) | ||
Median BMI (IQR) | 30.4 (26.1–35.6) | 34.5 (32.1–41.5) | 0.006 ** | |
Hypertension | Yes | 2963 (94.3%) | 178 (5.7%) | <0.001 * |
No | 1849 (98.8%) | 19 (1.2%) | ||
Ischemic heart disease | Yes | 1861 (95.1%) | 95 (4.9%) | 0.007 * |
No | 2951 (96.6%) | 102 (3.4%) | ||
Dyslipidemia | Yes | 1414 (96.6%) | 49 (3.4%) | 0.172 * |
No | 3398 (95.8%) | 148 (4.2%) | ||
Atherosclerosis | Yes | 1314 (94.7) | 74 (5.3%) | 0.002 * |
No | 3498 (96.6%) | 123 (3.4%) | ||
Nephropathy | Yes | 1001 (89.9) | 112 (10.1%) | <0.001 * |
No | 3811 (97.8%) | 85 (2.2%) | ||
Neuropathy | Yes | 603 (96.9%) | 19 (3.1%) | 0.229 * |
No | 4209 (95.9%) | 178 (4.1%) | ||
Metformin | Yes | 1691 (96.8%) | 56 (3.2%) | 0.053 * |
No | 3121 (95.7%) | 141 (4.3%) | ||
Insulin | Yes | 1093 (92.7%) | 86 (7.3%) | <0.001 * |
No | 3719 (97.1%) | 111 (2.9%) | ||
SGLT-2 inhibitors | Yes | 214 (97.7%) | 5 (2.3%) | 0.199 * |
No | 4598 (95.9%) | 192 (4.1%) | ||
GLP-1 RA | Yes | 198 (100%) | 0 | 0.004 |
No | 4614 (95.9%) | 197 (4.1%) | ||
Median blood glucose (IQR), mmol/L | 7.8 (6.3–10.1) | 8.2 (6.4–10.7) | 0.006 ** | |
Median HbA1C (IQR), % | 7.2 (6.5–8.3) | 7.1 (6.1–8.5) | 0.720 ** | |
Median C-reactive protein (IQR), mg/L | 4.1 (1.9–9.8) | 60.1 (32.3–103.9) | <0.001 ** | |
Median total cholesterol (IQR), mmol/L | 4.6 (3.8–5.5) | 4.1 (3.3–5.5) | <0.001 ** | |
Median triglycerides (IQR), mmol/L | 1.6 (1.2–2.4) | 1.4 (1.0–1.9) | <0.001 ** | |
Median creatinine (IQR), µmol/L | 80 (65.5–100) | 99 (67–161) | <0.001 ** |
Variable | Odds Ratio [95% CI] | p-Value |
---|---|---|
Gender (female/male) | 1.13 [0.89–1.44] | 0.289 |
Age (years) | 1.02 [1.01–1.03] | 0.002 |
Hypertension (no/yes) | 3.4 [2.1–5.5] | <0.001 |
Ischemic heart disease (no/yes) | 1.56 [1.22–2.0] | 0.001 |
Nephropathy (no/yes) | 1.98 [1.50–2.61] | <0.001 |
Metformin (no/yes) | 1.07 [0.83–1.39] | 0.587 |
Insulin (no/yes) | 2.6 [2.09–3.34] | <0.001 |
SGLT-2 inhibitors (no/yes) | 0.56 [0.34–0.91] | 0.02 |
GLP-1 RAs (no/yes) | 0.39 [0.19–0.79] | 0.009 |
Median blood glucose (mmol/L) | 1.07 [1.03–1.1] | <0.001 |
Median HbA1C (%) | 0.88 [0.86–1.06] | 0.136 |
Median C-reactive protein (mg/L) | 1.04 [1.03–1.05] | <0.001 |
Median creatinine (µmol/L) | 1.02 [1.01–1.03] | <0.001 |
Year: 2017/2016 | 1.13 [0.8–1.58] | 0.471 |
Year: 2018/2016 | 0.97 [0.68–1.38] | 0.876 |
Year: 2019/2016 | 1.06 [0.74–1.52] | 0.724 |
Year: 2020/2016 | 1.32 [0.89–1.96] | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulambayar, B.; Ghanem, A.S.; Nagy, A.C. Effect of Anti-Diabetic Medication Use on Sepsis Risk in Type 2 Diabetes Mellitus: A Multivariate Analysis. Geriatrics 2025, 10, 108. https://doi.org/10.3390/geriatrics10040108
Ulambayar B, Ghanem AS, Nagy AC. Effect of Anti-Diabetic Medication Use on Sepsis Risk in Type 2 Diabetes Mellitus: A Multivariate Analysis. Geriatrics. 2025; 10(4):108. https://doi.org/10.3390/geriatrics10040108
Chicago/Turabian StyleUlambayar, Battamir, Amr Sayed Ghanem, and Attila Csaba Nagy. 2025. "Effect of Anti-Diabetic Medication Use on Sepsis Risk in Type 2 Diabetes Mellitus: A Multivariate Analysis" Geriatrics 10, no. 4: 108. https://doi.org/10.3390/geriatrics10040108
APA StyleUlambayar, B., Ghanem, A. S., & Nagy, A. C. (2025). Effect of Anti-Diabetic Medication Use on Sepsis Risk in Type 2 Diabetes Mellitus: A Multivariate Analysis. Geriatrics, 10(4), 108. https://doi.org/10.3390/geriatrics10040108