Relationship Between Metabolic Syndrome Indicators Within Reference Ranges and Sarcopenia in Older Women—A 4-Year Longitudinal Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Examination Procedure
2.3. Measurement of Metabolic Syndrome Indicators
2.4. Criteria for Possible Sarcopenia
2.5. Statistical Analysis
3. Results
3.1. Comparisons of Physical Characteristics and Metabolic Syndrome Indicators
3.2. Relationship Between Baseline Metabolic Syndrome Indicators and the Presence or Absence of Possible Sarcopenia
3.3. Relationship Between Changes in Metabolic Syndrome Indicators over Four Years and the Presence or Absence of Possible Sarcopenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Murayama, H.; Kobayashi, E.; Okamoto, S.; Fukaya, T.; Ishizaki, T.; Liang, J.; Shinkai, S. National prevalence of frailty in the older Japanese population: Findings from a nationally representative survey. Arch. Gerontol. Geriatr. 2020, 91, 104220. [Google Scholar] [CrossRef] [PubMed]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. Frailty, Sarcopenia, and Malnutrition Frequently (Co-)occur in Hospitalized Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef]
- Grimmer, M.; Riener, R.; Walsh, C.J.; Seyfarth, A. Mobility related physical and functional losses due to aging and disease. J. Neuroeng. Rehabil. 2019, 16, 2, Erratum in J. Neuroeng. Rehabil. 2020, 17, 26. https://doi.org/10.1186/s12984-020-0648-z. [Google Scholar] [CrossRef]
- García-Esquinas, E.; Graciani, A.; Guallar-Castillón, P.; López-García, E.; Rodríguez-Mañas, L.; Rodríguez-Artalejo, F. Diabetes and risk of frailty and its potential mechanisms: A prospective cohort study of older adults. J. Am. Med. Dir. Assoc. 2015, 16, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Tian, J.; Xue, Q.L.; Walston, J.; Cappola, A.R.; Fried, L.P.; Brancati, F.L.; Blaum, C.S. Hyperglycemia and incidence of frailty and lower extremity mobility limitations in older women. J. Am. Geriatr. Soc. 2012, 60, 1701–1707. [Google Scholar] [CrossRef]
- Penninx, B.W.; Nicklas, B.J.; Newman, A.B.; Harris, T.B.; Goodpaster, B.H.; Satterfield, S.; de Rekeneire, N.; Yaffe, K.; Pahor, M.; Kritchevsky, S.B.; et al. Metabolic syndrome and physical decline in older persons: Results from the Health, Aging And Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 96–102. [Google Scholar] [CrossRef]
- Volpato, S.; Ble, A.; Metter, E.J.; Lauretani, F.; Bandinelli, S.; Zuliani, G.; Fellin, R.; Ferrucci, L.; Guralnik, J.M. High-density lipoprotein cholesterol and objective measures of lower extremity performance in older nondisabled persons: The InChianti study. J. Am. Geriatr. Soc. 2008, 56, 621–629. [Google Scholar] [CrossRef]
- O’Brien, R.G.; Muller, K.E. Unified power analysis for t-tests through multivariate hypotheses. In Applied Analysis of Variance in Behavioral Science; Marcel Dekker: New York, NY, USA, 1993; pp. 297–344. [Google Scholar]
- Nagashima, K. A Sample Size Determination Tool for the Paired t-Test. Available online: https://nshi.jp/contents/js/pairedmean/ (accessed on 5 April 2025). (In Japanese).
- Iida, T.; Aoi, S.; Kunishige, M.; Kawane, Y.; Obata, Y.; Nishigaki, M.; Kodama, M. A Cross-Sectional Study on Metabolic Syndrome Parameters, the Nutritional Index, and Physical Status Associated with or Without the Possible Diagnosed Sarcopenia in Older Women Using A Propensity Score Matching Method. J. Frailty Sarcopenia Falls 2024, 9, 142–150. [Google Scholar] [CrossRef]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J. Atheroscler. Thromb. 2024, 31, 641–853. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Bi, B.; Dong, X.; Yan, M.; Zhao, Z.; Liu, R.; Li, S.; Wu, H. Dyslipidemia is associated with sarcopenia of the elderly: A meta-analysis. BMC Geriatr. 2024, 24, 181. [Google Scholar] [CrossRef]
- Xu, Z.; You, W.; Chen, W.; Zhou, Y.; Nong, Q.; Valencak, T.G.; Wang, Y.; Shan, T. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J. Cachexia Sarcopenia Muscle 2021, 12, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Pedrero-Chamizo, R.; Albers, U.; Palacios, G.; Pietrzik, K.; Meléndez, A.; González-Gross, M. Health Risk, Functional Markers and Cognitive Status in Institutionalized Older Adults: A Longitudinal Study. Int. J. Environ. Res. Public. Health 2020, 17, 7303. [Google Scholar] [CrossRef]
- Park, H.Y.; Jung, W.S.; Kim, S.W.; Lim, K. Relationship Between Sarcopenia, Obesity, Osteoporosis, and Cardiometabolic Health Conditions and Physical Activity Levels in Korean Older Adults. Front. Physiol. 2021, 12, 706259. [Google Scholar] [CrossRef]
- Amagasa, S.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Oka, K.; Inoue, S. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.L.; Bandeen-Roche, K.; Varadhan, R.; Zhou, J.; Fried, L.P. Initial manifestations of frailty criteria and the development of frailty phenotype in the Women’s Health and Aging Study II. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 984–990. [Google Scholar] [CrossRef]
- Wang, G.X.; Li, J.T.; Liu, D.L.; Chu, S.F.; Li, H.L.; Zhao, H.X.; Fang, Z.B.; Xie, W. The correlation between high-density lipoprotein cholesterol and bone mineral density in adolescents: A cross-sectional study. Sci. Rep. 2023, 13, 5792. [Google Scholar] [CrossRef]
- Mathews, L.; Subramanya, V.; Zhao, D.; Ouyang, P.; Vaidya, D.; Guallar, E.; Yeboah, J.; Herrington, D.; Hays, A.G.; Budoff, M.J.; et al. Endogenous Sex Hormones and Endothelial Function in Postmenopausal Women and Men: The Multi-Ethnic Study of Atherosclerosis. J. Womens Health (Larchmt) 2019, 28, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; Folsom, A.R.; Schreiner, P.J.; Boerwinkle, E.; Ballantyne, C.M. T Low-density lipoprotein and high-density lipoprotein cholesterol levels in relation to genetic polymorphisms and menopausal status: The Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 2008, 200, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Luo, T.J. Research progress on risk factors and pathogenesis of sarcopenia. Practical Geriatr. 2020, 34, 81–85. [Google Scholar] [CrossRef]
- Ji, M.; Kim, Y.; Lee, S. Skeletal Muscle Mass is Associated with HDL Cholesterol Levels and the Ratio of LDL to HDL Cholesterol in Young Men: A Pilot Study. J. Mens. Health 2022, 18, 171. [Google Scholar] [CrossRef]
- Giacona, J.M.; Petric, U.B.; Kositanurit, W.; Wang, J.; Saldanha, S.; Young, B.E.; Khan, G.; Connelly, M.A.; Smith, S.A.; Rohatgi, A.; et al. HDL-C and apolipoprotein A-I are independently associated with skeletal muscle mitochondrial function in healthy humans. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H916–H922. [Google Scholar] [CrossRef]
- Hua, N.; Qin, C.; Wu, F.; Wang, A.; Chen, J.; Zhang, Q. High-density lipoprotein cholesterol level and risk of muscle strength decline and sarcopenia in older adults. Clin. Nutr. 2024, 43, 2289–2295. [Google Scholar] [CrossRef]
- Merchant, R.A.; Seetharaman, S.; Au, L.; Wong, M.W.K.; Wong, B.L.L.; Tan, L.F.; Chen, M.Z.; Ng, S.E.; Soong, J.T.Y.; Hui, R.J.Y.; et al. Relationship of Fat Mass Index and Fat Free Mass Index With Body Mass Index and Association With Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front. Endocrinol. 2021, 12, 765415. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, B.; Zhang, K.; Zhu, W.; Lian, X.; Xu, Y.; Chen, Z.; Liu, L.; Guo, Z. The association of lipid metabolism and sarcopenia among older patients: A cross-sectional study. Sci. Rep. 2023, 13, 17538. [Google Scholar] [CrossRef]
- Perna, S.; Guido, D.; Grassi, M.; Rondanelli, M. Association between muscle mass and adipo-metabolic profile: A cross-sectional study in older subjects. Clin. Interv. Aging 2015, 10, 499–504. [Google Scholar] [CrossRef]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Rondanelli, M.; Opizzi, A.; Faliva, M.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Giacosa, A. Metabolic management in overweight subjects with naive impaired fasting glycaemia by means of a highly standardized extract from cynara scolymus: A double-blind, placebo-controlled, randomized clinical trial. Phytother. Res. 2014, 28, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, O.; Abe, S. Medium-chain triglycerides (8:0 and 10:0) increase muscle mass and function in frail older adults: A combined data analysis of clinical trials. Front. Nutr. 2023, 10, 1284497. [Google Scholar] [CrossRef] [PubMed]
- Pyka, B.; Zieleń-Zynek, I.; Kowalska, J.; Nowak, J.; Będkowska-Szczepańska, A. Should weight loss in elderly people be recommended? Ann. Acad. Med. Siles 2019, 73, 293–304. [Google Scholar] [CrossRef]
- Public Welfare Statistics Handbook. Mean of Height, the Weight, Sex, Annual × Age Distinction. Ministry of Health, Labour and Welfare. 2017. Available online: https://www.mhlw.go.jp/toukei/youran/indexyk_2_1.html (accessed on 5 April 2025).
- Salpeter, S.R.; Walsh, J.M.; Greyber, E.; Salpeter, E.E. Brief report: Coronary heart disease events associated with hormone therapy in younger and older women. A meta-analysis. J. Gen. Intern. Med. 2006, 21, 363–366. [Google Scholar] [CrossRef]
- Nagata, C.; Matsushita, Y.; Shimizu, H. Prevalence of hormone replacement therapy and user’s characteristics: A community survey in Japan. Maturitas 1996, 25, 201–207. [Google Scholar] [CrossRef]
- Dzięgielewska-Gęsiak, S.; Bielawska, L.; Zowczak-Drabarczyk, M.; Hoffmann, K.; Cymerys, M.; Muc-Wierzgoń, M.; Wysocka, E.; Bryl, W. The impact of high-density lipoprotein on oxidant-antioxidant balance in healthy elderly people. Pol. Arch. Med. Wewn. 2016, 126, 731–738. [Google Scholar] [CrossRef]
Baseline | 4 Years Later | ||||
---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | p-Value | |
Age (years) | 70.2 | (5.9) | 74.2 | (5.9) | <0.001 |
Height (cm) | 151.5 | (5.8) | 150.6 | (6.1) | <0.001 |
Weight (kg) | 51.3 | (7.4) | 50.8 | (7.4) | 0.004 |
BMI (kg/m2) | 22.4 | (3.1) | 22.4 | (3.2) | 0.556 |
Triglycerides (mg/dL) | 101.8 | (47.4) | 102.4 | (51.5) | 0.832 |
HDL cholesterol (mg/dL) | 67.1 | (14.9) | 72.0 | (16.6) | <0.001 |
LDL cholesterol (mg/dL) | 132.3 | (29.8) | 127.7 | (32.8) | 0.026 |
Systolic blood pressure (mmHg) | 124.4 | (14.4) | 134.3 | (18.2) | <0.001 |
Diastolic blood pressure (mmHg) | 71.8 | (8.9) | 74.6 | (9.6) | <0.001 |
HbA1c (%) | 5.5 | (0.4) | 5.7 | (0.5) | <0.001 |
Odds Ratio | 95%Cl | p-Value | |||
---|---|---|---|---|---|
Triglycerides (mg/dL) *1 | 1.010 | 0.999 | - | 1.030 | 0.070 |
HDL cholesterol (mg/dL) *1 | 0.966 | 0.938 | - | 0.995 | 0.022 |
LDL cholesterol (mg/dL) *1 | 1.010 | 0.977 | - | 1.040 | 0.582 |
Systolic blood pressure (mmHg) *1 | 0.968 | 0.920 | - | 1.020 | 0.198 |
Diastolic blood pressure (mmHg) *1 | 0.993 | 0.947 | - | 1.040 | 0.783 |
HbA1c (%) *1 | 3.230 | 0.686 | - | 15.200 | 0.138 |
Odds Ratio | 95%Cl | p-Value | |||
---|---|---|---|---|---|
Change in triglycerides (mg/dL) *2 | 0.987 | 0.975 | - | 0.999 | 0.039 |
Change in HDL cholesterol (mg/dL) *3 | 1.010 | 0.974 | - | 1.060 | 0.481 |
Change in LDL cholesterol (mg/dL) *4 | 1.000 | 0.984 | - | 1.030 | 0.661 |
Change in systolic blood pressure (mmHg) *5 | 0.960 | 0.915 | - | 1.010 | 0.093 |
Change in diastolic blood pressure (mmHg) *6 | 0.981 | 0.951 | - | 1.010 | 0.238 |
Change in HbA1c (%) *7 | 0.232 | 0.035 | - | 1.550 | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iida, T.; Taguchi, R.; Miyashita, R.; Aoi, S.; Ikeda, H.; Higa, N.; Kanagawa, K.; Okuyama, Y.; Ito, Y. Relationship Between Metabolic Syndrome Indicators Within Reference Ranges and Sarcopenia in Older Women—A 4-Year Longitudinal Study. Geriatrics 2025, 10, 76. https://doi.org/10.3390/geriatrics10030076
Iida T, Taguchi R, Miyashita R, Aoi S, Ikeda H, Higa N, Kanagawa K, Okuyama Y, Ito Y. Relationship Between Metabolic Syndrome Indicators Within Reference Ranges and Sarcopenia in Older Women—A 4-Year Longitudinal Study. Geriatrics. 2025; 10(3):76. https://doi.org/10.3390/geriatrics10030076
Chicago/Turabian StyleIida, Tadayuki, Reina Taguchi, Ruriko Miyashita, Satomi Aoi, Hiromi Ikeda, Nichika Higa, Keiko Kanagawa, Yoko Okuyama, and Yasuhiro Ito. 2025. "Relationship Between Metabolic Syndrome Indicators Within Reference Ranges and Sarcopenia in Older Women—A 4-Year Longitudinal Study" Geriatrics 10, no. 3: 76. https://doi.org/10.3390/geriatrics10030076
APA StyleIida, T., Taguchi, R., Miyashita, R., Aoi, S., Ikeda, H., Higa, N., Kanagawa, K., Okuyama, Y., & Ito, Y. (2025). Relationship Between Metabolic Syndrome Indicators Within Reference Ranges and Sarcopenia in Older Women—A 4-Year Longitudinal Study. Geriatrics, 10(3), 76. https://doi.org/10.3390/geriatrics10030076