Recognition of Serious Infections in the Elderly Visiting the Emergency Department: The Development of a Diagnostic Prediction Model (ROSIE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Selection of Participants
2.3. Measurements
2.4. Outcome
2.5. Statistical Analyses
2.5.1. Predictors and Sample Size Argumentation
2.5.2. Development of the Prediction Model
3. Results
3.1. Characteristics of Study Subjects
3.2. ROSIE Prediction Model
4. Discussion
4.1. Main Findings
4.2. Comparison with Other Studies
4.3. Strengths
4.4. Limitations
4.5. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van den Broek, S.; Heiwegen, N.; Verhofstad, M.; Akkermans, R.; van Westerop, L.; Schoon, Y.; Hesselink, G. Preventable emergency admissions of older adults: An observational mixed-method study of rates, associative factors and underlying causes in two Dutch hospitals. BMJ Open 2020, 10, e040431. [Google Scholar] [CrossRef] [PubMed]
- Karamercan, M.A.; Dündar, D.Z.; Slagman, A.; Ergin, M.; Janssens, K.A.C.; Fabbri, A.; Bjornsen, L.P.; Somodi, S.; Adam, V.N.; Polyzogopoulou, E.; et al. Epidemiology of geriatric patients presenting to emergency departments in Europe: EGERS study. Eur. J. Emerg. Med. 2023, 30, 117–124. [Google Scholar] [CrossRef]
- Aminzadeh, F.; Dalziel, W.B. Older adults in the emergency department: A systematic review of patterns of use, adverse outcomes, and effectiveness of interventions. Ann. Emerg. Med. 2002, 39, 238–247. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Estimates: Leading Causes of Death; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Christensen, K.L.; Holman, R.C.; Steiner, C.A.; Sejvar, J.J.; Stoll, B.J.; Schonberger, L.B. Infectious disease hospitalizations in the United States. Clin. Infect. Dis. 2009, 49, 1025–1035. [Google Scholar] [CrossRef]
- Gray-Miceli, D.; Gray, K.; Sorenson, M.R.; Holtzclaw, B.J. Immunosenescence and Infectious Disease Risk Among Aging Adults: Management Strategies for FNPs to Identify Those at Greatest Risk. Adv. Fam. Pract. Nurs. 2023, 5, 27–40. [Google Scholar] [CrossRef]
- Vila-Corcoles, A.; Aguirre-Chavarria, C.; Ochoa-Gondar, O.; de Diego, C.; Rodriguez-Blanco, T.; Gomez, F.; Raga, X.; Barnes, L.; Magarolas, R.; Esteban, L. Influence of chronic illnesses and underlying risk conditions on the incidence of pneumococcal pneumonia in older adults. Infection 2015, 43, 699–706. [Google Scholar] [CrossRef]
- Iwai-Saito, K.; Shobugawa, Y.; Aida, J.; Kondo, K. Frailty is associated with susceptibility and severity of pneumonia in older adults (A JAGES multilevel cross-sectional study). Sci. Rep. 2021, 11, 7966. [Google Scholar] [CrossRef]
- Johnstone, J.; Eurich, D.T.; Majumdar, S.R.; Jin, Y.; Marrie, T.J. Long-term morbidity and mortality after hospitalization with community-acquired pneumonia: A population-based cohort study. Medicine 2008, 87, 329–334. [Google Scholar] [CrossRef]
- Limpawattana, P.; Phungoen, P.; Mitsungnern, T.; Laosuangkoon, W.; Tansangworn, N. Atypical presentations of older adults at the emergency department and associated factors. Arch. Gerontol. Geriatr. 2016, 62, 97–102. [Google Scholar] [CrossRef]
- Neilson, H.K.; Fortier, J.H.; Finestone, P.; Ogilby, C.M.; Liu, R.; Bridges, E.J.; Garber, G.E. Diagnostic Delays in Sepsis: Lessons Learned From a Retrospective Study of Canadian Medico-Legal Claims. Crit. Care Explor. 2023, 5, e0841. [Google Scholar] [CrossRef]
- Fischer, C.P.; Kastoft, E.; Olesen, B.R.S.; Myrup, B. Delayed Treatment of Bloodstream Infection at Admission is Associated with Initial Low Early Warning Score and Increased Mortality. Crit. Care Explor. 2023, 5, e0959. [Google Scholar] [CrossRef] [PubMed]
- Zasowski, E.J.; Bassetti, M.; Blasi, F.; Goossens, H.; Rello, J.; Sotgiu, G.; Tavoschi, L.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. A Systematic Review of the Effect of Delayed Appropriate Antibiotic Treatment on the Outcomes of Patients with Severe Bacterial Infections. Chest 2020, 158, 929–938. [Google Scholar] [CrossRef]
- Yoshikawa, T.T.; Norman, D.C. Infectious Diseases in Geriatric Medicine, An Issue of Clinics in Geriatric Medicine; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Roghmann, M.C.; Warner, J.; Mackowiak, P.A. The relationship between age and fever magnitude. Am. J. Med. Sci. 2001, 322, 68–70. [Google Scholar] [CrossRef]
- Mayne, S.; Bowden, A.; Sundvall, P.-D.; Gunnarsson, R. The scientific evidence for a potential link between confusion and urinary tract infection in the elderly is still confusing—A systematic literature review. BMC Geriatr. 2019, 19, 32. [Google Scholar] [CrossRef]
- Schoevaerdts, D.; Sibille, F.-X.; Gavazzi, G. Infections in the older population: What do we know? Aging Clin. Exp. Res. 2021, 33, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.Y.; Miller, W.C. Adverse outcomes following hospitalization in acutely ill older patients. BMC Geriatr. 2008, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Caterino, J.M.; Scheatzle, M.D.; Forbes, M.L.; D’Antonio, J.A. Bacteremic elder emergency department patients: Procalcitonin and white count. Acad. Emerg. Med. 2004, 11, 393–396. [Google Scholar] [CrossRef]
- de Guadiana Romualdo, L.G.; Torrella, P.E.; Acebes, S.R.; Oton, M.D.A.; Sanchez, R.J.; Holgado, A.H.; Santos, E.J.; Freire, A.O. Diagnostic accuracy of presepsin (sCD14-ST) as a biomarker of infection and sepsis in the emergency department. Clin. Chim. Acta 2017, 464, 6–11. [Google Scholar] [CrossRef]
- de Guadiana Romualdo, L.G.; Albaladejo Oton, M.D.; Rebollo Acebes, S.; Esteban Torrella, P.; Hernando Holgado, A.; Jimenez Santos, E.; Jimenez Sanchez, R.; Orton Freire, A. Diagnostic accuracy of lipopolysaccharide-binding protein for sepsis in patients with suspected infection in the emergency department. Ann. Clin. Biochem. 2018, 55, 143–148. [Google Scholar] [CrossRef]
- Heining, L.; Giesa, C.; Ewig, S. MR-proANP, MR-proADM, and PCT in Patients Presenting with Acute Dyspnea in a Medical Emergency Unit. Lung 2016, 194, 185–191. [Google Scholar] [CrossRef]
- van Nieuwkoop, C.; Bonten, T.N.; van’t Wout, J.W.; Kuijper, E.J.; Groeneveld, G.H.; Becker, M.J.; Koster, T.; Wattel-Louis, G.H.; Delfos, N.M.; Ablij, H.C.; et al. Procalcitonin reflects bacteremia and bacterial load in urosepsis syndrome: A prospective observational study. Crit. Care 2010, 14, R206. [Google Scholar] [CrossRef]
- Gbinigie, O.A.; Onakpoya, I.J.; Richards, G.C.; Spencer, E.A.; Koshiaris, C.; Bobrovitz, N.; Heneghan, C.J. Biomarkers for diagnosing serious bacterial infections in older outpatients: A systematic review. BMC Geriatr. 2019, 19, 190. [Google Scholar] [CrossRef]
- Lee, S.H.; Chan, R.C.; Wu, J.Y.; Chen, H.W.; Chang, S.S.; Lee, C.C. Diagnostic value of procalcitonin for bacterial infection in elderly patients—A systemic review and meta-analysis. Int. J. Clin. Pract. 2013, 67, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Struyf, T.; Boon, H.A.; van de Pol, A.C.; Tournoy, J.; Schuermans, A.; Verheij, T.J.M.; Verbakel, J.Y.; Van den Bruel, A. Diagnosing serious infections in older adults presenting to ambulatory care: A systematic review. Age Ageing 2021, 50, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Jin, C.; Luo, Y.; Yang, L.; Ning, X.; Zhuo, C.; Xiao, F. Prediction models for diagnosis and prognosis of the colonization or infection of multidrug-resistant organisms in adults: A systematic review, critical appraisal, and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 1364–1373. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kahn, J.M.; Cooke, C.R.; Watkins, T.R.; Heckbert, S.R.; Rea, T.D. Prediction of critical illness during out-of-hospital emergency care. JAMA 2010, 304, 747–754. [Google Scholar] [CrossRef]
- van Vugt, S.F.; Broekhuizen, B.D.; Lammens, C.; Zuithoff, N.P.; de Jong, P.A.; Coenen, S.; Ieven, M.; Butler, C.C.; Goossens, H.; Little, P.; et al. Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: Diagnostic study. BMJ (Clin. Res. Ed.) 2013, 346, f2450. [Google Scholar] [CrossRef]
- Loots, F.J.; Smits, M.; Hopstaken, R.M.; Jenniskens, K.; Schroeten, F.H.; van de Bruel, A.; van de Pol, A.C.; Oosterheert, J.J.; Bouma, H.; Little, P.; et al. New clinical prediction model for early recognition of sepsis in adult primary care patients: A prospective diagnostic cohort study of development and external validation. Br. J. Gen. Pract. 2022, 72, E437–E445. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef]
- Key figures 2022. Leuven, Belgium: UZ Leuven Hospitals. 2022. Available online: https://www.uzleuven.be/en/2022-key-figures (accessed on 13 April 2025).
- Activity Report. Malle, Belgium: AZ Voorkempen Hospital. 2022. Available online: https://www.azvoorkempen.be/over-ons/de-cijfers/activiteit (accessed on 13 April 2025).
- Year Number HHart Leuven. Leuven, Belgium: HHart Hospital. 2022. Available online: https://jaarverslag.hhleuven.be/nl/#yearnumbers (accessed on 13 April 2025).
- Inouye, S.K.; Kosar, C.M.; Tommet, D.; Schmitt, E.M.; Puelle, M.R.; Saczynski, J.S.; Marcantonio, E.R.; Jones, R.N. The CAM-S: Development and validation of a new scoring system for delirium severity in 2 cohorts. Ann. Intern. Med. 2014, 160, 526–533. [Google Scholar] [CrossRef]
- Teasdale, G.; Maas, A.; Lecky, F.; Manley, G.; Stocchetti, N.; Murray, G. The Glasgow Coma Scale at 40 years: Standing the test of time. Lancet Neurol. 2014, 13, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Katz, S. Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 1983, 31, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Castor. Castor Electronic Data Capture. Available online: https://castoredc.com (accessed on 1 September 2023).
- AML. AML Laboratory, Emiel Vloorsstraat 9, 2020 Antwerp, Belgium. Available online: https://www.aml-lab.be/nl/ (accessed on 1 September 2023).
- Struyf, T.; Tournoy, J.; Verbakel, J.Y.; Van den Bruel, A. International Consensus Definition of a Serious Infection in a Geriatric Patient Presenting to Ambulatory Care. J. Am. Med. Dir. Assoc. 2020, 21, 578–582.e1. [Google Scholar] [CrossRef]
- van Smeden, M.; Moons, K.G.; de Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Steyerberg, E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, 2nd ed.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Sisk, R.; Sperrin, M.; Peek, N.; van Smeden, M.; Martin, G.P. Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study. Stat. Methods Med. Res. 2023, 32, 1461–1477. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Prendki, V.; Malézieux-Picard, A.; Azurmendi, L.; Sanchez, J.C.; Vuilleumier, N.; Carballo, S.; Roux, X.; Reny, J.L.; Zekry, D.; Stirnemann, J.; et al. Accuracy of C-reactive protein, procalcitonin, serum amyloid A and neopterin for low-dose CT-scan confirmed pneumonia in elderly patients: A prospective cohort study. PLoS ONE 2020, 15, e0239606. [Google Scholar] [CrossRef]
- Steckler, A.; McLeroy, K.R. The importance of external validity. Am. J. Public Health 2008, 98, 9–10. [Google Scholar] [CrossRef]
Serious Infection (n = 215) | No Serious Infection (n = 210) | All (n = 425) | |
---|---|---|---|
Age (mean (SD)), years | 79.2 (8.2) | 79.7 (8.1) | 79.5 (8.1) |
Age distribution, No. (%) | |||
65–69 years | 31 (14.4) | 34 (16.2) | 65 (15.3) |
70–74 years | 42 (19.5) | 31 (14.8) | 73 (17.2) |
75–79 years | 47 (21.9) | 41 (19.5) | 88 (20.7) |
80–84 years | 36 (16.7) | 44 (21.0) | 80 (18.8) |
85–89 years | 36 (16.7) | 38 (18.1) | 74 (17.4) |
90–94 years | 19 (8.8) | 19 (9.1) | 38 (8.9) |
95–100 years | 4 (1.9) | 3 (1.4) | 7 (1.7) |
Sex, No. (%) | |||
Women | 103 (47.9%) | 109 (51.9%) | 212 (49.9%) |
Final diagnosis, No. (%) | |||
Pneumonia | 94 (43.7) | 0 (0.0) | 94 (22.1) |
Sepsis | 16 (7.4) | 0 (0.0) | 16 (3.8) |
Infectious AECOPD | 14 (6.5) | 0 (0.0) | 14 (3.3) |
Pyelonephritis/pyelitis | 13 (6.1) | 0 (0.0) | 13 (3.1) |
Acute cholecystitis | 9 (4.2) | 9 (4.3) | 18 (4.2) |
Bacteremia | 8 (3.7) | 0 (0.0) | 8 (1.9) |
COVID-19 * | 7 (3.3) | 22 (10.5) | 29 (6.8) |
Acute cystitis | 7 (3.3) | 13 (6.2) | 20 (4.7) |
Appendicitis | 7 (3.3) | 0 (0.0) | 7 (1.7) |
Acute bronchitis/bronchiolitis | 5 (2.3) | 7 (3.3) | 12 (2.8) |
Acute cholangitis | 5 (2.3) | 1 (0.5) | 6 (1.4) |
Influenza-like illness | 3 (1.4) | 3 (1.4) | 6 (1.4) |
Skin infection | 4 (1.9) | 6 (2.9) | 10 (2.4) |
Gastrointestinal infection | 6 (2.8) | 17 (8.1) | 23 (5.4) |
Acute prostatitis | 1 (0.5) | 3 (1.4) | 4 (0.9) |
Wound infection | 1 (0.5) | 2 (1.0) | 3 (0.7) |
Infectious endocarditis | 2 (0.9) | 0 (0.0) | 2 (0.5) |
Meningitis | 1 (0.5) | 0 (0.0) | 1 (0.2) |
Upper respiratory tract infection | 4 (1.9) | 5 (2.4) | 9 (2.1) |
Cellulitis | 1 (0.5) | 3 (1.4) | 4 (0.9) |
Non-infectious AECOPD | 0 (0.0) | 5 (2.4) | 5 (1.2) |
Viral infection (non-specified) | 0 (0.0) | 5 (2.4) | 5 (1.2) |
Infectious arthritis | 1 (0.5) | 0 (0.0) | 1 (0.2) |
Other diagnosis | 6 (2.8) | 109 (51.9) | 115 (27.1) |
Comorbidities (ten most frequent), No. (%) | |||
Hypertension | 81 (37.7) | 90 (42.5) | 171 (40.0) |
Cholesterolaemia | 49 (22.8) | 60 (28.3) | 109 (25.5) |
Cancer (unspecified) | 48 (22.3) | 36 (17.0) | 84 (19.7) |
Type II diabetes | 37 (17.2) | 47 (22.2) | 84 (19.7) |
Atrial fibrillation | 41 (19.1) | 34 (16.0) | 75 (17.6) |
COPD | 39 (18.1) | 22 (10.4) | 61 (14.3) |
Heart failure | 23 (10.7) | 25 (11.8) | 48 (11.2) |
Chronic kidney disease | 19 (8.8) | 25 (11.8) | 44 (10.3) |
Hypothyroidism | 16 (7.4) | 18 (8.5) | 34 (8.0) |
Stroke (CVA) | 11 (5.1) | 16 (7.6) | 27 (6.3) |
Died during 30-day follow-up, (%) | 6.5% | 4.3% | 5.4% |
Hospitalized, (%) | 95.8% | 73.8% | 84.9% |
Referral by general practitioner, (%) | 66.4% | 68.6% | 69.1% |
Diagnostic Variable | Missing N(%) | Serious Infection (n = 215) | No Serious Infection (n = 210) | Univariable AUROC 1 with 95% CI | |
---|---|---|---|---|---|
Clinical characteristics (Day 1) | |||||
Age, mean (SD), years | 0 (0.0) | 79.2 (8.2) | 79.7 (8.1) | 0.52 | 0.47 to 0.58 |
Body temperature, mean (SD), °C | 0 (0.0) | 37.1 (0.9) | 36.9 (0.7) | 0.56 | 0.51 to 0.62 |
<36.5 °C, N (%) | 56 (26.1) | 63 (30.0) | |||
≥38.0 °C, N (%) | 39 (18.1) | 17 (8.1) | |||
Heart rate, 2 mean (SD), beats/min | 0 (0.0) | 85.1 (17.6) | 82.0 (18.6) | 0.56 | 0.50 to 0.61 |
Respiratory rate, 2 mean (SD), breaths/min | 0 (0.0) | 19.6 (4.5) | 18.4 (3.6) | 0.58 | 0.52 to 0.63 |
Systolic blood pressure, mean (SD), mmHg | 0 (0.0) | 131.1 (25.4) | 139.7 (24.0) | 0.61 | 0.55 to 0.66 |
Peripheral oxygen saturation, 2 median% (IQR) | 0 (0.0) | 96.0 (4.0) | 97.0 (3.0) | 0.67 | 0.61 to 0.72 |
Level of confusion (CAM-S score), 3 | 0 (0.0) | 0.51 | 0.45 to 0.56 | ||
N (%) | |||||
0 | 187 (87.0) | 186 (88.6) | |||
1 | 16 (7.4) | 15 (7.1) | |||
2 | 4 (1.9) | 5 (2.4) | |||
3 | 5 (2.3) | 1 (0.5) | |||
4 | 2 (0.9) | 2 (1.0) | |||
5 | 0 (0.0) | 0 (0.0) | |||
6 | 1 (0.5) | 1 (0.5) | |||
Blood test results (Day 1) | |||||
C-reactive protein, 2 median (IQR), mg/L | 0 (0.0) | 130.7 (141.9) | 38.1 (71.7) | 0.79 | 0.75 to 0.83 |
Procalcitonin, 2 median (IQR), ng/mL | 77 (18.1) | 0.37 | 0.03 (0.22) | 0.73 | 0.67 to 0.78 |
(1.98) | |||||
Abnormal white blood cell count, 4 N (%) | 7 (1.6) | 86 (40.0) | 49 (23.3) | 0.58 | 0.53 to 0.64 |
Term in ROSIE Model | Coefficient (95% CI) |
---|---|
Intercept | −2.3898 (−4.2661 to −0.5135) |
Systolic blood pressure (mmHg) | −0.0105 (−0.0202 to −0.0011) |
Log(101—Peripheral oxygen saturation) | 0.9652 (0.6089 to 1.3398) |
Log2(C-reactive protein in mg/L) | 0.2792 (0.0080 to 0.5854) |
Spline term for Log2(C-reactive protein) | 0.3782 (0.0798 to 0.6753) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struyf, T.; Powaga, L.; Sabbe, M.; Léonard, N.; Myatchin, I.; Van Calster, B.; Tournoy, J.; Buntinx, F.; Liesenborghs, L.; Verbakel, J.Y.; et al. Recognition of Serious Infections in the Elderly Visiting the Emergency Department: The Development of a Diagnostic Prediction Model (ROSIE). Geriatrics 2025, 10, 60. https://doi.org/10.3390/geriatrics10030060
Struyf T, Powaga L, Sabbe M, Léonard N, Myatchin I, Van Calster B, Tournoy J, Buntinx F, Liesenborghs L, Verbakel JY, et al. Recognition of Serious Infections in the Elderly Visiting the Emergency Department: The Development of a Diagnostic Prediction Model (ROSIE). Geriatrics. 2025; 10(3):60. https://doi.org/10.3390/geriatrics10030060
Chicago/Turabian StyleStruyf, Thomas, Lisa Powaga, Marc Sabbe, Nicolas Léonard, Ivan Myatchin, Ben Van Calster, Jos Tournoy, Frank Buntinx, Laurens Liesenborghs, Jan Y. Verbakel, and et al. 2025. "Recognition of Serious Infections in the Elderly Visiting the Emergency Department: The Development of a Diagnostic Prediction Model (ROSIE)" Geriatrics 10, no. 3: 60. https://doi.org/10.3390/geriatrics10030060
APA StyleStruyf, T., Powaga, L., Sabbe, M., Léonard, N., Myatchin, I., Van Calster, B., Tournoy, J., Buntinx, F., Liesenborghs, L., Verbakel, J. Y., & Van den Bruel, A. (2025). Recognition of Serious Infections in the Elderly Visiting the Emergency Department: The Development of a Diagnostic Prediction Model (ROSIE). Geriatrics, 10(3), 60. https://doi.org/10.3390/geriatrics10030060