Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection and Study Design
2.2. Immunohistochemistry
2.3. Western Blotting
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Western Blotting and Immunohistochemistry
3.3. Follow-Up
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knowles, E.J.; Tremaine, W.H.; Pearson, G.R.; Mair, T.S. A Database Survey of Equine Tumours in the United Kingdom. Equine Vet. J. 2016, 48, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, P.A.; Wobeser, B.; Martin, L.E.R.; Dennis, M.M.; Duncan, C.G. Cutaneous Neoplastic Lesions of Equids in the Central United States and Canada: 3351 Biopsy Specimens from 3272 Equids (2000–2010). J. Am. Vet. Med. Assoc. 2013, 242, 99–104. [Google Scholar] [CrossRef]
- Wobeser, B.K.; Davies, J.L.; Hill, J.E.; Jackson, M.L.; Kidney, B.A.; Mayer, M.N.; Townsend, H.G.G.; Allen, A.L. Epidemiology of Equine Sarcoids in Horses in Western Canada. Can. Vet. J. 2010, 51, 1103–1108. [Google Scholar]
- Bergvall, K.E. Sarcoids. Vet. Clin. N. Am. Equine Pract. 2013, 29, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Knottenbelt, D.C. Sarcoids. In Clinical Equine Oncology; Knottenbelt, D.C., Patterson-Kane, J., Snalune, K.L., Eds.; Elsevier: Toronto, ON, Canada, 2015; pp. 203–229. [Google Scholar]
- Chambers, G.; Ellsmore, V.A.; O’Brien, P.M.; Reid, S.W.J.; Love, S.; Campo, M.S.; Nasir, L. Association of Bovine Papillomavirus with the Equine Sarcoid. J. Gen. Virol. 2003, 84, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.; Yuan, Z.; Morgan, I.M.; Campo, M.S.; Nasir, L. Equine Sarcoids: Bovine Papillomavirus Type 1 Transformed Fibroblasts Are Sensitive to Cisplatin and UVB Induced Apoptosis and Show Aberrant Expression of P53. Vet. Res. 2012, 43, 81. [Google Scholar] [CrossRef]
- Schafer, K.A. The Cell Cycle: A Review. Vet. Pathol. 1998, 478, 461–478. [Google Scholar] [CrossRef]
- Altamura, G.; Corteggio, A.; Nasir, L.; Yuan, Z.Q.; Roperto, F.; Borzacchiello, G. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts. BioMed Res. Int. 2013, 2013, 283985. [Google Scholar] [CrossRef][Green Version]
- Borzacchiello, G.; Mogavero, S.; De Vita, G.; Roperto, S.; Della Salda, L.; Roperto, F. Activated Platelet-Derived Growth Factor Beta Receptor Expression, PI3K-AKT Pathway Molecular Analysis, and Transforming Signals in Equine Sarcoids. Vet. Pathol. 2009, 46, 589–597. [Google Scholar] [CrossRef]
- Nasir, L.; McFarlane, S.T.; Reid, S.W.J. Mutational Status of the Tumour Suppressor Gene (P53) in Donkey Sarcoid Tumours. Vet. J. 1999, 157, 99–101. [Google Scholar] [CrossRef]
- Bucher, K.; Szalai, G.; Marti, E.; Griot-Wenk, M.E.; Lazary, S.; Pauli, U. Tumour Suppressor Gene P53 in the Horse: Identification, Cloning, Sequencing and a Possible Role in the Pathogenesis of Equine Sarcoid. Res. Vet. Sci. 1996, 61, 114–119. [Google Scholar] [CrossRef]
- Martens, A.; De Moor, A.; Demeulemeester, J.; Ducatelle, R. Histopathological Characteristics of Five Clinical Types of Equine Sarcoid. Res. Vet. Sci. 2000, 69, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Nixon, C.; Chambers, G.; Ellsmore, V.; Campo, M.S.; Burr, P.; Argyle, D.J.; Reid, S.W.J.; Nasir, L. Expression of Cell Cycle Associated Proteins Cyclin A, CDK-2, P27 Kip1 and P53 in Equine Sarcoids. Cancer Lett. 2005, 221, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Ogawa, T.; Jin, Z.; Shirasawa, H. Genus Specific Features of Bovine Papillomavirus E6, E7, E5 and E8 Proteins. Virus Res. 2007, 124, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Narechania, A.; Terai, M.; Chen, Z.; DeSalle, R.; Burk, R.D. Lack of the Canonical PRB-Binding Domain in the E7 ORF of Artiodactyl Papillomaviruses Is Associated with the Development of Fibropapillomas. J. Gen. Virol. 2004, 85, 1243–1250. [Google Scholar] [CrossRef]
- Tura, G.; Savini, F.; Gallina, L.; La Ragione, R.M.; Durham, A.E.; Mazzeschi, M.; Lauriola, M.; Avallone, G.; Sarli, G.; Brunetti, B.; et al. Fibroblast-Associated Protein-α Expression and BPV Nucleic Acid Distribution in Equine Sarcoids. Vet. Pathol. 2021, 58, 1–7. [Google Scholar] [CrossRef]
- Gavressea, T.; Kalogeras, K.T.; Koliou, G.A.; Zagouri, F.; Lazaridis, G.; Gogas, H.; Tsigaridas, K.; Koutras, A.; Petraki, K.; Markopoulos, C.; et al. The Prognostic Value of the Immunohistochemical Expression of Phosphorylated RB and P16 Proteins in Association with Cyclin D1 and the P53 Pathway in a Large Cohort of Patients with Breast Cancer Treated with Taxane-Based Adjuvant Chemotherapy. Anticancer Res. 2017, 37, 2947–2957. [Google Scholar] [CrossRef]
- Kusume, T.; Tsuda, H.; Kawabata, M.; Inoue, T. The P16-Cyclin D1/CDK4-PRb Pathway and Clinical Outcome in Epithelial Ovarian Cancer 1. Clin. Cancer Res. 1999, 5, 4152–4157. [Google Scholar]
- Nicolás, I.; Saco, A.; Barnadas, E.; Marimon, L.; Rakislova, N.; Fusté, P.; Rovirosa, A.; Gaba, L.; Buñesch, L.; Gil-Ibañez, B.; et al. Prognostic Implications of Genotyping and P16 Immunostaining in HPV-Positive Tumors of the Uterine Cervix. Mod. Pathol. 2020, 33, 128–137. [Google Scholar] [CrossRef]
- Karpathiou, G.; Monaya, A.; Forest, F.; Froudarakis, M.; Casteillo, F.; Marc Dumollard, J.; Prades, J.M.; Peoc’h, M. P16 and P53 Expression Status in Head and Neck Squamous Cell Carcinoma: A Correlation with Histological, Histoprognostic and Clinical Parameters. Pathology 2016, 48, 341–348. [Google Scholar] [CrossRef]
- Jiromaru, R.; Yamamoto, H.; Yasumatsu, R.; Hongo, T.; Nozaki, Y.; Nakano, T.; Hashimoto, K.; Nakagawa, T.; Oda, Y. P16 Overexpression and Rb Loss Correlate with High-risk HPV Infection in Oropharyngeal Squamous Cell Carcinoma. Histopathology 2021, 79, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Huang, C.C.; Otterson, G.A.; Leon, M.E.; Tang, Y.; Shilo, K.; Villalona, M.A. Altered P16 INK4 and RB1 Expressions Are Associated with Poor Prognosis in Patients with Nonsmall Cell Lung Cancer. J. Oncol. 2012, 2012, 957437. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Broglie, M.A.; Förbs, D.; Stoeckli, S.J.; Jochum, W. Prognostic Significance of Cell Cycle-Associated Proteins P16, PRB, Cyclin D1 and P53 in Resected Oropharyngeal Carcinoma. J. Otolaryngol. Head Neck Surg. 2018, 47, 53. [Google Scholar] [CrossRef] [PubMed]
- Collard, T.J.; Urban, B.C.; Patsos, H.A.; Hague, A.; Townsend, P.A.; Paraskeva, C.; Williams, A.C. The Retinoblastoma Protein (Rb) as an Anti-Apoptotic Factor: Expression of Rb Is Required for the Antiapoptotic Function of BAG-1 Protein in Colorectal Tumour Cells. Cell Death Dis. 2012, 3, e408–e409. [Google Scholar] [CrossRef]
- Lu, J.-W.; Lin, Y.-M.; Chang, J.-G.; Yeh, K.-T.; Chen, R.-M.; Tsai, J.J.P.; Su, W.-W.; Hu, R.-M. Clinical Implications of Deregulated CDK4 and Cyclin D1 Expression in Patients with Human Hepatocellular Carcinoma. Med. Oncol. 2013, 30, 379. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, L.; Lv, W.; Dong, C.; Wang, Y.; Zhang, J. Overexpression of Cyclin D1 in Meningioma Is Associated with Malignancy Grade and Causes Abnormalities in Apoptosis, Invasion and Cell Cycle Progression. Med. Oncol. 2015, 32, 439. [Google Scholar] [CrossRef]
- Song, J.Y.; Song, L.; Herrera, A.F.; Venkataraman, G.; Murata-collins, J.L.; Bedell, V.H.; Chen, Y.Y.; Kim, Y.S.; Tadros, R.; Nathwani, B.N.; et al. Cyclin D1 Expression in Peripheral T-Cell Lymphomas. Mod. Pathol. 2016, 29, 1306–1312. [Google Scholar] [CrossRef]
- Zamboni, C.; Brocca, G.; Ferraresso, S.; Ferro, S.; Sammarco, A.; Dal Corso, C.; Iussich, S.; de Andres, P.J.; Martìnez de Merlo, E.M.; Cavicchioli, L.; et al. Cyclin D1 Immunohistochemical Expression and Somatic Mutations in Canine Oral Melanoma. Vet. Comp. Oncol. 2019, 18, 231–238. [Google Scholar] [CrossRef]
- Araldi, R.P.; Mazzuchelli-de-Souza, J.; Modolo, D.G.; Souza, E.B.D.; Melo, T.C.D.; Spadacci-Morena, D.D.; Magnelli, R.F.; Carvalho, M.A.C.R.D.; de Sá Júnior, P.L.; Carvalho, R.F.D.; et al. Mutagenic Potential of Bos Taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description. BioMed Res. Int. 2015, 2015, 806361. [Google Scholar] [CrossRef]
- Haspeslagh, M.; Vlaminck, L.E.M.; Martens, A.M. Treatment of Sarcoids in Equids: 230 Cases (2008–2013). J. Am. Vet. Med. Assoc. 2016, 249, 311–318. [Google Scholar] [CrossRef]
Protein | Score | Percent (%) | Fibroblastic n(%) | Mixed n (%) | Nodular n (%) | Occult n (%) | Verrucous n (%) | p Value |
---|---|---|---|---|---|---|---|---|
pRb | low (score 1) | 51% | 5 (55.6) | 1 (20.0) | 16 (55.2) | 1 (33.3) | 5 (55.6) | 0.618 |
high (score 2–3) | 49% | 4 (44.4) | 4 (80.0) | 13 (44.8) | 2 (66.7) | 4 (44.4) | ||
Cyclin D1 | low (score 1) | 20% | 2 (22.2) | 1 (20.0) | 5 (17.2) | 3 (100.0) | 0 (0.0) | 0.006 * |
high (score 2–3) | 80% | 7 (77.8) | 4 (80.0) | 24 (82.8) | 0 (0.0) | 9 (100.0) | ||
Ki67 Median [95% CI] | 5.45 | 7.30 [2.88, 11.25] | 7.01 [2.71, 7.72] | 5.95 [2.24, 20.00] | 1.75 [1.00, 4.20] | 3.45 [2.90, 6.24] | 0.015 * | |
Ki67 | low | 49% | 4 (44.4) | 2 (40.0) | 10 (34.5) | 3 (100.0) | 8 (88.9) | 0.021 * |
high | 51% | 5 (55.6) | 3 (60.0) | 19 (65.5) | 0 (0.0) | 1 (11.1) |
Clinical Type | LR | Median Tume to LR (95% CI) | DNO (Distant) | Median Time to DNO (95% CI) | No Recurrence |
---|---|---|---|---|---|
Fibroblastic (8) | 7 | 145 (60–180) | 0 | - | 1 |
Mixed (2) | 2 | 150 (108-na) | 1 0 | - | 0 |
Nodular (13) | 0 | - | 1 | - | 12 |
Occult (2) | 0 | - | 0 | - | 2 |
Verrucous (5) | 0 | - | 4 | 205 (95-na) 1 | 1 |
Cell Cycle Protein | Low | High | p Value |
---|---|---|---|
pRb | 14 | 16 | 0.189 |
Cyclin D1 | 8 | 22 | 0.212 |
Ki67 | 12 | 18 | 0.664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tura, G.; Brunetti, B.; Brigandì, E.; Rinnovati, R.; Sarli, G.; Avallone, G.; Muscatello, L.V.; La Ragione, R.M.; Durham, A.E.; Bacci, B. Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids. Vet. Sci. 2022, 9, 474. https://doi.org/10.3390/vetsci9090474
Tura G, Brunetti B, Brigandì E, Rinnovati R, Sarli G, Avallone G, Muscatello LV, La Ragione RM, Durham AE, Bacci B. Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids. Veterinary Sciences. 2022; 9(9):474. https://doi.org/10.3390/vetsci9090474
Chicago/Turabian StyleTura, Giorgia, Barbara Brunetti, Elena Brigandì, Riccardo Rinnovati, Giuseppe Sarli, Giancarlo Avallone, Luisa Vera Muscatello, Roberto Marcello La Ragione, Andy E. Durham, and Barbara Bacci. 2022. "Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids" Veterinary Sciences 9, no. 9: 474. https://doi.org/10.3390/vetsci9090474
APA StyleTura, G., Brunetti, B., Brigandì, E., Rinnovati, R., Sarli, G., Avallone, G., Muscatello, L. V., La Ragione, R. M., Durham, A. E., & Bacci, B. (2022). Expression of Cell-Cycle Regulatory Proteins pRb, Cyclin D1, and p53 Is Not Associated with Recurrence Rates of Equine Sarcoids. Veterinary Sciences, 9(9), 474. https://doi.org/10.3390/vetsci9090474