Repeatability of Health and Welfare Traits and Correlation with Performance Traits in Dairy Goats Reared under Low-Input Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms and Animals
2.2. Phenotypic Data and Recording Protocols
2.3. Phenotypic Data Handling
2.4. Data Analysis
3. Results
3.1. Trait Repeatability Estimates
3.2. Animal Correlations of Health and Welfare Traits with Milk Production Traits and Body Condition Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosgey, I.S.; Okeyo, A.M. Genetic improvement of small ruminants in low-input, smallholder production systems: Technical and infrastructural issues. Small Rumin. Res. 2007, 70, 76–88. [Google Scholar] [CrossRef]
- Barillet, F. Genetic improvement for dairy production in sheep and goats. Small Rumin. Res. 2007, 70, 60–75. [Google Scholar] [CrossRef]
- Simões, J.; Abecia, J.A.; Cannas, A.; Delgadillo, J.A.; Lacasta, D.; Voigt, K.; Chemineau, P. Managing sheep and goats for sustainable high yield production. Animal 2021, 15, 100293. [Google Scholar] [CrossRef] [PubMed]
- Sevi, A.; Casamassima, D.; Pulina, G.; Pazzona, A. Factors of welfare reduction in dairy sheep and goats. Ital. J. Anim. Sci. 2009, 8, 81–101. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Valergakis, G.E.; Arsenos, G. Health and welfare of indigenous goat breeds from dairy farms in Greece. In Sustainable Goat Production in Adverse Environments: Volume I; Simões, J., Gutiérrez, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 223–246. [Google Scholar] [CrossRef]
- Vouraki, S.; Gelasakis, A.I.; Papanikolopoulou, V.; Papadopoulos, E.; Arsenos, G. Association of Hard Ticks (Ixodidae) Infestation with Milk Production and Udder Health of Extensively Reared Dairy Goats. Animals 2022, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Gelasakis, A.I.; Angelidis, A.S.; Giannakou, R.; Filioussis, G.; Kalamaki, M.S.; Arsenos, G. Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J. Dairy Sci. 2016, 99, 3698–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battini, M.; Vieira, A.; Barbieri, S.; Ajuda, I.; Stilwell, G.; Mattiello, S. Invited review: Animal-based indicators for on-farm welfare assessment for dairy goats. J. Dairy Sci. 2014, 97, 6625–6648. [Google Scholar] [CrossRef] [Green Version]
- Hoste, H.; Le Frileux, Y.; Pommaret, A. Distribution and repeatability of faecal egg counts and blood parameters in dairy goats naturally infected with gastrointestinal nematodes. Res. Vet. Sci. 2001, 70, 57–60. [Google Scholar] [CrossRef]
- Hoste, H.; Chartier, C.; Le Frileux, Y. Control of gastrointestinal parasitism with nematodes in dairy goats by treating the host category at risk. Vet. Res. 2002, 33, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Heckendorn, F.; Bieber, A.; Werne, S.; Saratsis, A.; Maurer, V.; Stricker, C. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes. Parasite 2017, 24, 32. [Google Scholar] [CrossRef] [Green Version]
- Rostang, A.; Devos, J.; Chartier, C. Review of the Eprinomectin effective doses required for dairy goats: Where do we go from here? Vet. Parasitol. 2020, 277, 108992. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Huau, C.; Caillat, H.; Fassier, T.; Bouvier, F.; Pampouille, E.; Clément, V.; Palhière, I.; Larroque, H.; Tosser-Klopp, G.; et al. Divergent selection on milk somatic cell count in goats improves udder health and milk quality with no effect on nematode resistance. J. Dairy Sci. 2019, 102, 5242–5253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apodaca-Sarabia, C.A.; Lopez-Villalobos, N.; Blair, H.T.; Prosser, G.G. Genetic parameters for somatic cell score in dairy goats estimated by random regression. Proc. N. Z. Soc. Anim. Prod. 2009, 69, 206–209. [Google Scholar]
- Rupp, R.; Clément, V.; Piacere, A.; Robert-Granié, C.; Manfredi, E. Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats. J. Dairy Sci. 2011, 94, 3629–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroteau, C.; Palhière, I.; Larroque, H.; Clément, V.; Ferrand, M.; Tosser-Klopp, G.; Rupp, R. Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats. J. Dairy Sci. 2014, 97, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Bagnicka, E.; Lukaszewicz, M.; Ådnøy, T. Genetic parameters of somatic cell score and lactose content in goat’s milk. J. Anim. Feed Sci. 2016, 25, 210–215. [Google Scholar] [CrossRef]
- Vagenas, D.; Jackson, F.; Russel, A.J.F.; Merchant, M.; Wright, I.A.; Bishop, S.C. Genetic control of resistance to gastro-intestinal parasites in crossbred cashmere-producing goats: Responses to selection, genetic parameters and relationships with production traits. Anim. Sci. 2002, 74, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Mandonnet, N.; Menendez-Buxadera, A.; Arquet, R.; Mahieu, M.; Bachand, M.; Aumont, G. Genetic variability in resistance to gastro-intestinal strongyles during early lactation in Creole goats. Anim. Sci. 2006, 82, 283–287. [Google Scholar] [CrossRef]
- Zvinorova, P.I.; Halimani, T.E.; Muchadeyi, F.C.; Matika, O.; Riggio, V.; Dzama, K. Breeding for resistance to gastrointestinal nematodes–the potential in low-input/output small ruminant production systems. Vet. Parasitol. 2016, 225, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Scholtens, M.R.; Lopez-Villalobos, N.; Garrick, D.; Blair, H.; Lehnert, K.; Snell, R. Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy goats. Anim. Sci. J. 2020, 91, e13310. [Google Scholar] [CrossRef]
- Vlassoff, A.; Bisset, S.A.; McMurtry, L.W. Faecal egg counts in Angora goats following natural or experimental challenge with nematode parasites: Within-flock variability and repeatabilities. Vet. Parasitol. 1999, 84, 113–123. [Google Scholar] [CrossRef]
- Morris, C.A.; Wheeler, M.; Hosking, B.C.; Watson, T.G.; Hurford, A.P.; Foote, B.J.; Foote, J.F. Genetic parameters for milk yield and faecal nematode egg count in Saanen does. N. Z. J. Agric. Res. 1997, 40, 523–528. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Rose, G.; Giannakou, R.; Valergakis, G.E.; Theodoridis, A.; Fortomaris, P.; Arsenos, G. Typology and characteristics of dairy goat production systems in Greece. Livest. Sci. 2017, 197, 22–29. [Google Scholar] [CrossRef]
- Anzuino, K.; Bell, N.J.; Bazeley, K.J.; Nicol, C.J. Assessment of welfare on 24 commercial UK dairy goat farms based on direct observations. Vet. Rec. 2010, 167, 774–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, S.J.; Waterman, A.E.; Livingston, A.; Parkinson, T.J. Effect of chronic pain associated with lameness on plasma cortisol concentrations in sheep: A field study. Res. Vet. Sci. 1994, 57, 332–335. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Fisheries and Food (MAFF). Manual of Veterinary Parasitological Laboratory Techniques, 3rd ed.; H.M.S.O.: London, UK, 1986; ISBN 0112427243.
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Angelidis, A.S.; Giannakou, R.; Arsenos, G. Bacterial subclinical mastitis and its effect on milk quality traits in low-input dairy goat herds. Vet. Rec. 2018, 183, 449. [Google Scholar] [CrossRef]
- Vouraki, S.; Gelasakis, A.I.; Ekateriniadou, L.V.; Banos, G.; Arsenos, G. Impact of polymorphisms at the PRNP locus on the performance of dairy goats reared under low-input pastoral farming systems. Small Rumin. Res. 2019, 174, 77–82. [Google Scholar] [CrossRef]
- International Committee for Animal Recording. ICAR Recording Guidelines. International Agreement of Recording Practices. Available online: http://www.icar.org/wp-content/uploads/2016/Guidelines-Edition-2016.pdf/ (accessed on 7 June 2018).
- Papadopoulos, E.; Arsenos, G.; Sotiraki, S.; Deligiannis, C.; Lainas, T.; Zygoyiannis, D. The epizootiology of gastrointestinal nematode parasites in Greek dairy breeds of sheep and goats. Small Rumin. Res. 2003, 47, 193–202. [Google Scholar] [CrossRef]
- Papadopoulos, B.; Morel, P.C.; Aeschlimann, A. Ticks of domestic animals in the Macedonia region of Greece. Vet. Parasitol. 1996, 63, 25–40. [Google Scholar] [CrossRef]
- Hadfield, J.D. MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Boettcher, P.J.; Moroni, P.; Pisoni, G.; Gianola, D. Application of a finite mixture model to somatic cell scores of Italian goats. J. Dairy Sci. 2005, 88, 2209–2216. [Google Scholar] [CrossRef] [Green Version]
- Stuhr, T.; Aulrich, K. Intramammary infections in dairy goats: Recent knowledge and indicators for detection of subclinical mastitis. Landbauforschung 2010, 60, 267–279. [Google Scholar]
- Rainard, P.; Foucras, G.; Boichard, D.; Rupp, R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. 2018, 101, 6703–6714. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.H., Jr.; Steelman, C.D.; Johnson, Z.B.; Rosenkrans, C.F., Jr.; Brasuell, T.M. Estimates of repeatability and heritability of horn fly resistance in beef cattle. J. Anim. Sci. 1992, 70, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Burrow, H.M. Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livest. Prod. Sci. 2001, 70, 213–233. [Google Scholar] [CrossRef]
- Mackinnon, M.J.; Meyer, K.; Hetzel, D.J.S. Genetic variation and covariation for growth, parasite resistance and heat tolerance in tropical cattle. Livest. Prod. Sci. 1991, 27, 105–122. [Google Scholar] [CrossRef]
- Silva, A.M.D.; Alencar, M.M.D.; Regitano, L.C.D.A.; Oliveira, M.C.D.S.; Júnior, W.B. Artificial infestation of Boophilus microplus in beef cattle heifers of four genetic groups. Genet. Mol. Biol. 2007, 30, 1150–1155. [Google Scholar] [CrossRef]
- Cardoso, F.F.; Gomes, C.C.G.; Sollero, B.P.; Oliveira, M.M.; Roso, V.M.; Piccoli, M.L.; Higa, R.H.; Yokoo, M.J.; Caetano, A.R.; Aguilar, I. Genomic prediction for tick resistance in Braford and Hereford cattle. J. Anim. Sci. 2015, 93, 2693–2705. [Google Scholar] [CrossRef]
- Giglioti, R.; de Oliveira, H.N.; Bilhassi, T.B.; Portilho, A.I.; Okino, C.H.; Marcondes, C.R.; de Sena Oliveira, M.C. Estimates of repeatability and correlations of hemoparasites infection levels for cattle reared in endemic areas for Rhipicephalus microplus. Vet. Parasitol. 2018, 250, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grøva, L.; Sae-Lim, P.; Olesen, I. Genetic parameters of tick–infestation on lambs of the Norwegian White sheep breed. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Cloete, S.W.P.; Cloete, J.J.E.; Scholtz, A.J. Genetic parameters for tick count and udder health in commercial and indigenous ewes in South Africa. Vet. Parasitol. 2016, 230, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Giglioti, R.; Oliveira, H.N.; Santana, C.H.; Ibelli, A.M.G.; Néo, T.A.; Bilhassi, T.B.; Rabelo, M.D.; Machado, R.Z.; Brito, L.G.; Oliveira, M.D.S. Babesia bovis and Babesia bigemina infection levels estimated by qPCR in Angus cattle from an endemic area of São Paulo state, Brazil. Ticks Tick Borne Dis. 2016, 7, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadarmideen, H.N.; Thompson, R.; Simm, G. Linear and threshold model genetic parameters for disease, fertility and milk production in dairy cattle. Anim. Sci. 2000, 71, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.P.; Bermingham, M.L.; Good, M.; More, S.J. Genetics of animal health and disease in cattle. Ir. Vet. J. 2011, 64, 5. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Stamer, E.; Junge, W.; Thaller, G. Genetic parameters for lameness and claw and leg diseases in dairy cows. J. Dairy Sci. 2013, 96, 3310–3318. [Google Scholar] [CrossRef] [Green Version]
- Kougioumtzis, A.; Valergakis, G.E.; Oikonomou, G.; Arsenos, G.; Banos, G. Profile and genetic parameters of dairy cattle locomotion score and lameness across lactation. Animal 2014, 8, 20–27. [Google Scholar] [CrossRef]
- Mandal, A.; Sharma, D.K. Inheritance of faecal nematode egg count in Barbari goats following natural Haemonchus contortus infection. Vet. Parasitol. 2008, 155, 89–94. [Google Scholar] [CrossRef]
- O’Brien, A.C.; McHugh, N.; Wall, E.; Pabiou, T.; McDermott, K.; Randles, S.; Fair, S.; Berry, D.P. Genetic parameters for lameness, mastitis and dagginess in a multi-breed sheep population. Animal 2017, 11, 911–919. [Google Scholar] [CrossRef]
- Uribe, H.A.; Kennedy, B.W.; Martin, S.W.; Kelton, D.F. Genetic parameters for common health disorders of Holstein cows. J. Dairy Sci. 1995, 78, 421–430. [Google Scholar] [CrossRef]
- Doeschl-Wilson, A.B.; Vagenas, D.; Kyriazakis, I.; Bishop, S.C. Exploring the assumptions underlying genetic variation in host nematode resistance. Genet. Sel. Evol. 2008, 40, 241–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boareki, M.N.; Schenkel, F.S.; Willoughby, O.; Suarez-Vega, A.; Kennedy, D.; Cánovas, A. Comparison between methods for measuring fecal egg count and estimating genetic parameters for gastrointestinal parasite resistance traits in sheep. J. Anim. Sci. 2021, 99, skab341. [Google Scholar] [CrossRef] [PubMed]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar]
- Hazel, L.N. The genetic basis for constructing selection indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Hazel, L.N.; Dickerson, G.E.; Freeman, A.E. The selection index—Then, now, and for the future. J. Dairy Sci. 1994, 77, 3236–3251. [Google Scholar] [CrossRef]
- Henderson, C.R. Selection index and expected genetic advance. In Statistical Genetics and Plant Breeding, National Academy of Sciences; National Research Council Publication: Washington, DC, USA, 1963; pp. 141–163. [Google Scholar]
- Céron-Rojas, J.J.; Crossa, J. The linear phenotypic selection index theory. In Linear Selection Indices in Modern Plant Breeding; Springer: Cham, Switzerland, 2018; pp. 15–42. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, P.J.; Dekkers, J.C.M.; Warnick, L.D.; Wells, S.J. Genetic analysis of clinical lameness in dairy cattle. J. Dairy Sci. 1998, 81, 1148–1156. [Google Scholar] [CrossRef]
- Van Dorp, T.E.; Dekkers, J.C.M.; Martin, S.W.; Noordhuizen, J.P.T.M. Genetic parameters of health disorders and relationships with 305-day milk yield and conformation traits of registered Holstein cows. J. Dairy Sci. 1998, 81, 2264–2270. [Google Scholar] [CrossRef]
- Alatalo, R.V.; Gustafsson, L.; Lundberg, A. Phenotypic selection on heritable size traits: Environmental variance and genetic response. Am. Nat. 1990, 135, 464–471. [Google Scholar] [CrossRef]
- Kruuk, L.E.; Merilä, J.; Sheldon, B.C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 2001, 158, 557–571. [Google Scholar] [CrossRef]
- Killen, S.S.; Adriaenssens, B.; Marras, S.; Claireaux, G.; Cooke, S.J. Context dependency of trait repeatability and its relevance for management and conservation of fish populations. Conserv. Physiol. 2016, 4, cow007. [Google Scholar] [CrossRef] [Green Version]
Eghoria | Skopelos | Damascus | ||||
---|---|---|---|---|---|---|
Trait | N 1 | Mean (±SD 2) | N 1 | Mean (±SD 2) | N 1 | Mean (±SD 2) |
Daily milk yield (g) | 2597 | 829.32 (379.64) | 2766 | 1359.53 (738.40) | 2124 | 1827.88 (1053.49) |
Daily fat yield (g) | 2561 | 39.46 (17.67) | 2685 | 63.06 (31.85) | 2110 | 76.49 (40.77) |
Daily protein yield (g) | 2563 | 30.82 (13.59) | 2693 | 50.39 (26.69) | 2095 | 65.00 (33.32) |
Daily lactose yield (g) | 2562 | 36.91 (17.96) | 2688 | 59.77 (32.55) | 2089 | 78.29 (45.47) |
Daily SNF 3 yield (g) | 2567 | 75.03 (34.65) | 2695 | 122.40 (65.45) | 2111 | 158.90 (87.48) |
BCS 4 (1–5) | 2920 | 2.31 (0.37) | 2830 | 2.54 (0.32) | 2298 | 2.44 (0.41) |
SCC 5 (×103 cells/mL) | 2673 | 2050.43 (3590.82) | 2167 | 1999.01 (1990.09) | 2001 | 2816.54 (4125.64) |
TVC 6 (×103 cfu/mL) | 2858 | 157.26 (415.80) | 2657 | 97.6 (319.21) | 1969 | 201.00 (463.86) |
SMI 7 | 2667 | −0.01 (0.91) | 2087 | 0.00 (0.93) | 1734 | −0.04 (0.87) |
GIN 8 FEC 9 (eggs/g) | 584 | 267.29 (426.67) | 546 | 8.52 (28.18) | 814 | 93.30 (360.23) |
Cestode FEC 9 (eggs/g) | 584 | 1.80 (16.07) | 546 | 5.59 (32.92) | 814 | 0.98 (16.97) |
Lungworm FLC 10 (larvae/g) | 584 | 6.51 (33.01) | 545 | 10.18 (59.19) | 814 | 0.06 (1.75) |
Trait | Levels | Eghoria | Skopelos | Damascus |
---|---|---|---|---|
UHP1 1 | 0 | 73.68 | 76.95 | 66.49 |
1 | 26.32 | 23.05 | 33.51 | |
UHP2 2 | 0 | 50.36 | 54.86 | 40.60 |
1 | 23.32 | 22.09 | 25.89 | |
2 | 26.32 | 23.05 | 33.51 | |
UHP3 3 | 0 | 50.36 | 54.86 | 40.60 |
1 | 8.77 | 6.37 | 6.46 | |
2 | 14.55 | 15.72 | 19.43 | |
3 | 26.32 | 23.05 | 33.51 |
Eghoria | Skopelos | Damascus | ||||
---|---|---|---|---|---|---|
Trait | N 1 | Frequency (%) | N 1 | Frequency (%) | N 1 | Frequency (%) |
Tick infestation | 2921 | 13.63 | 2830 | 8.80 | 2298 | 0.26 |
Myiasis | 2921 | 0.24 | 2830 | 4.55 | 2298 | 0.00 |
GIN 2 infection | 584 | 66.44 | 546 | 11.72 | 814 | 27.40 |
Cestode infection | 584 | 2.05 | 546 | 4.76 | 814 | 0.61 |
Lungworm infection | 584 | 5.14 | 545 | 7.34 | 814 | 0.12 |
Endoparasite infection | 584 | 70.03 | 545 | 19.23 | 814 | 27.64 |
Eghoria | Skopelos | Damascus | |||||
---|---|---|---|---|---|---|---|
Body Part | Trait | N 1 | Frequency (%) | N 1 | Frequency (%) | N 1 | Frequency (%) |
Head | Ear injuries | 2920 | 8.29 | 2830 | 1.80 | 2298 | 4.09 |
Horn injuries | 2920 | 11.23 | 2830 | 8.90 | 2298 | 18.28 | |
Head skin lesions | 2920 | 7.60 | 2830 | 2.37 | 2298 | 8.66 | |
Nasal discharge | 2920 | 10.14 | 2830 | 0.88 | 2298 | 2.39 | |
Ocular discharge | 2920 | 0.41 | 2830 | 0.07 | 2298 | 0.57 | |
Head problems | 2920 | 31.43 | 2830 | 13.36 | 2298 | 31.38 | |
Body | Abscess | 2921 | 1.51 | 2830 | 13.39 | 2298 | 9.88 |
Diarrhoea | 2920 | 0.51 | 2830 | 0.04 | 2298 | 0.52 | |
Injury | 2921 | 0.45 | 2830 | 0.25 | 2298 | 0.35 | |
Hernia | 2921 | 0.00 | 2830 | 0.28 | 2298 | 0.00 | |
Body problems | 2921 | 3.15 | 2830 | 14.42 | 2298 | 10.92 | |
Legs | Lameness | 2921 | 0.10 | 2830 | 0.04 | 2298 | 1.39 |
Overgrown claws | 2920 | 4.35 | 2830 | 4.38 | 2298 | 37.21 | |
Arthritis | 2920 | 0.03 | 2830 | 0.11 | 2298 | 4.79 | |
Leg problems | 2921 | 4.45 | 2830 | 4.52 | 2298 | 39.21 | |
Udder | Udder asymmetry | 2920 | 38.18 | 2830 | 20.99 | 2298 | 32.46 |
Udder abscess | 2920 | 28.08 | 2830 | 25.51 | 2298 | 29.77 | |
Udder skin lesions | 2920 | 1.51 | 2830 | 1.10 | 2298 | 2.05 | |
Udder problems | 2920 | 54.25 | 2830 | 39.01 | 2298 | 51.61 | |
Total | Skin lesions | 2920 | 8.80 | 2830 | 3.43 | 2298 | 10.40 |
Injuries | 2920 | 19.25 | 2830 | 10.71 | 2298 | 21.76 |
Trait | Eghoria | Skopelos | Damascus |
---|---|---|---|
SCC 1 (×103 cells/mL) | 0.45 (0.02) * | 0.47 (0.02) * | 0.22 (0.02) * |
TVC 2 (×103 cfu/mL) | 0.22 (0.02) * | 0.30 (0.02) * | 0.15 (0.02) * |
SMI 3 | 0.20 (0.02) * | 0.28 (0.03) * | 0.10 (0.02) * |
UHP1 4 (0–1) | 0.50 (0.04) * | 0.59 (0.04) * | 0.43 (0.05) * |
UHP2 5 (0–2) | 0.08 (0.01) * | 0.09 (0.02) * | 0.08 (0.01) * |
UHP3 6 (0–3) | 0.14 (0.02) * | 0.15 (0.02) * | 0.14 (0.02) * |
Tick infestation (0–1) | 0.03 (0.02) | 0.03 (0.01) | NE 10 |
Myiasis (0–1) | NE 10 | 0.34 (0.10) * | NE 10 |
GIN 7 FEC 8 (eggs/g, Tukey) | 0.11 (0.04) * | 0.001 (0.002) | 0.001 (0.002) |
Cestode FEC 8 (eggs/g, Tukey) | 0.09 (0.03) * | 0.04 (0.03) | NE 10 |
Lungworm FLC 9 (larvae/g, Tukey) | 0.04 (0.02) | 0.001 (0.002) | NE 10 |
GIN 7 infection (0–1) | 0.26 (0.07) * | 0.06 (0.04) | 0.01 (0.02) |
Cestode infection (0–1) | 0.23 (0.19) | 0.27 (0.15) | NE 10 |
Lungworm infection (0–1) | 0.32 (0.11) * | 0.03 (0.03) | NE 10 |
Endoparasite infection (0–1) | 0.29 (0.07) * | 0.04 (0.03) | 0.002 (0.005) |
Trait | Eghoria | Skopelos | Damascus |
---|---|---|---|
Ear injuries (0–1) | 0.95 (0.01) * | 0.96 (0.02) * | 0.91 (0.03) * |
Horn injuries (0–1) | 0.99 (0.004) * | 0.97 (0.01) * | 0.98 (0.01) * |
Head skin lesions (0–1) | 0.18 (0.04) * | 0.23 (0.07) * | 0.43 (0.06) * |
Nasal discharge (0–1) | 0.21 (0.04) * | NE 1 | 0.25 (0.07) * |
Ocular discharge (0–1) | NE | NE 1 | NE 1 |
Head problems (0–1) | 0.61 (0.03) * | 0.78 (0.03) * | 0.74 (0.03) * |
Abscess (0–1) | 0.41 (0.07) * | 0.49 (0.04) * | 0.46 (0.05) * |
Diarrhoea (0–1) | NE 1 | NE 1 | NE 1 |
Injury (0–1) | NE 1 | NE 1 | NE 1 |
Hernia (0–1) | NE 1 | NE 1 | NE 1 |
Body problems (0–1) | 0.22 (0.05) * | 0.45 (0.04) * | 0.42 (0.05) * |
Lameness (0–1) | NE 1 | NE 1 | 0.51 (0.08) * |
Overgrown claws (0–1) | 0.17 (0.05) * | 0.46 (0.07) * | 0.21 (0.04) * |
Arthritis (0–1) | NE 1 | NE 1 | 0.87 (0.04) * |
Limb problems (0–1) | 0.16 (0.05) * | 0.45 (0.07) * | 0.20 (0.04) * |
Udder asymmetry (0–1) | 0.52 (0.03) * | 0.52 (0.04) * | 0.63 (0.03) * |
Udder abscess (0–1) | 0.37 (0.03) * | 0.50 (0.03) * | 0.39 (0.04) * |
Udder skin lesions (0–1) | 0.43 (0.08) * | 0.54 (0.08) * | 0.29 (0.08) * |
Udder problems (0–1) | 0.36 (0.03) * | 0.41 (0.03) * | 0.46 (0.03) * |
Total skin lesions (0–1) | 0.16 (0.04) * | 0.19 (0.05) * | 0.35 (0.05) * |
Total injuries (0–1) | 0.95 (0.01) * | 0.95 (0.01) * | 0.93 (0.01) * |
Milk Production Traits | ||||||
---|---|---|---|---|---|---|
Breed | Health Traits | Milk Yield (g, ln) | Fat Yield (g, ln) | Protein Yield (g, ln) | Lactose Yield (g, ln) | SNF Yield (g, ln) |
Eghoria | SCC 1 (cells/ mL, ln) | −0.15 (0.06) | −0.22 (0.06) | NS 8 | −0.20 (0.06) | −0.15 (0.07) |
TVC 2 (cfu/ mL, ln) | −0.14 (0.07) | −0.20 (0.07) | NS 8 | −0.19 (0.07) | −0.12 (0.07) | |
SMI 3 | −0.21 (0.07) | −0.26 (0.08) | NS 8 | −0.26 (0.07) | −0.19 (0.07) | |
UHP1 4 (0–1) | −0.21 (0.07) | −0.26 (0.08) | NS 8 | −0.28 (0.07) | −0.20 (0.07) | |
UHP2 5 (0–2) | −0.22 (0.08) | −0.31 (0.09) | NS 8 | −0.30 (0.08) | −0.21 (0.09) | |
UHP3 6 (0–3) | −0.18 (0.07) | −0.27 (0.07) | NS 8 | −0.25 (0.07) | −0.18 (0.07) | |
GIN 7 infection (0–1) | −0.39 (0.17) | NS 8 | NS 8 | −0.39 (0.18) | −0.37 (0.17) | |
Endoparasite infection (0–1) | −0.39 (0.17) | NS 8 | NS 8 | −0.39 (0.17) | −0.36 (0.18) | |
Skopelos | SCC 1 (cells/mL, ln) | −0.22 (0.06) | −0.29 (0.06) | −0.18 (0.06) | −0.27 (0.06) | −0.23 (0.06) |
TVC 2 (cfu/mL, ln) | −0.23 (0.06) | −0.30 (0.07) | −0.18 (0.07) | −0.28 (0.06) | −0.24 (0.06) | |
SMI 3 | −0.24 (0.07) | −0.33 (0.07) | −0.20 (0.07) | −0.29 (0.07) | −0.25 (0.07) | |
UHP1 4 (0–1) | −0.30 (0.07) | −0.39 (0.07) | −0.24 (0.07) | −0.35 (0.07) | −0.31 (0.07) | |
UHP2 5 (0–2) | −0.31 (0.09) | −0.39 (0.09) | −0.22 (0.09) | −0.37 (0.09) | −0.31 (0.09) | |
UHP3 6 (0–3) | −0.22 (0.07) | −0.30 (0.07) | −0.15 (0.07) | −0.28 (0.07) | −0.22 (0.07) | |
Damascus | SCC 1 (cells/mL, ln) | −0.25 (0.09) | −0.24 (0.09) | NS 8 | −0.27 (0.09) | −0.20 (0.09) |
UHP1 4 (0–1) | −0.25 (0.09) | −0.21 (0.10) | NS 8 | −0.33 (0.10) | NS 8 | |
UHP2 5 (0–2) | −0.23 (0.09) | −0.34 (0.09) | NS 8 | −0.33 (0.09) | −0.22 (0.09) | |
UHP3 6 (0–3) | −0.20 (0.08) | −0.30 (0.08) | NS 8 | −0.27 (0.08) | −0.19 (0.08) |
Performance Traits | |||||||
---|---|---|---|---|---|---|---|
Breed | Health Traits | Milk Yield (g, ln) | Fat Yield (g, ln) | Protein Yield (g, ln) | Lactose Yield (g, ln) | SNF Yield (g, ln) | BCS 1 (1–5) |
Eghoria | Udder abscess (0–1) | NS 2 | NS 2 | 0.17 (0.07) | NS 2 | NS 2 | NS 2 |
Head skin lesions (0–1) | NS 2 | NS 2 | −0.28 (0.12) | NS 2 | NS 2 | NS 2 | |
Total skin lesions (0–1) | NS 2 | −0.27 (0.13) | NS 2 | NS 2 | NS 2 | NS 2 | |
Skopelos | Udder abscess (0–1) | 0.23 (0.06) | NS 2 | 0.24 (0.07) | 0.18 (0.07) | 0.21 (0.07) | NS 2 |
Udder problems (0–1) | NS 2 | NS 2 | 0.15 (0.07) | NS 2 | NS 2 | NS 2 | |
Overgrown claws (0–1) | 0.36 (0.10) | 0.44 (0.10) | 0.38 (0.10) | 0.37 (0.09) | 0.40 (0.10) | NS 2 | |
Limb problems (0–1) | 0.34 (0.09) | 0.45 (0.10) | 0.37 (0.10) | 0.36 (0.10) | 0.39 (0.10) | NS 2 | |
Damascus | Udder asymmetry (0–1) | −0.24 (0.08) | −0.24 (0.08) | −0.20 (0.08) | −0.23 (0.08) | −0.23 (0.08) | NS 2 |
Arthritis (0–1) | NS 2 | NS 2 | NS 2 | NS 2 | NS 2 | −0.22 (0.09) | |
Limb problems (0–1) | NS 2 | NS 2 | NS 2 | NS 2 | NS 2 | −0.28 (0.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vouraki, S.; Gelasakis, A.I.; Fotiadou, V.; Banos, G.; Arsenos, G. Repeatability of Health and Welfare Traits and Correlation with Performance Traits in Dairy Goats Reared under Low-Input Farming Systems. Vet. Sci. 2022, 9, 289. https://doi.org/10.3390/vetsci9060289
Vouraki S, Gelasakis AI, Fotiadou V, Banos G, Arsenos G. Repeatability of Health and Welfare Traits and Correlation with Performance Traits in Dairy Goats Reared under Low-Input Farming Systems. Veterinary Sciences. 2022; 9(6):289. https://doi.org/10.3390/vetsci9060289
Chicago/Turabian StyleVouraki, Sotiria, Athanasios I. Gelasakis, Vasileia Fotiadou, Georgios Banos, and Georgios Arsenos. 2022. "Repeatability of Health and Welfare Traits and Correlation with Performance Traits in Dairy Goats Reared under Low-Input Farming Systems" Veterinary Sciences 9, no. 6: 289. https://doi.org/10.3390/vetsci9060289