Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Animals
2.3. Trial 1: Optimization of In Ovo Dosage Levels of Stand-Alone Innate Immune Stimulants
2.4. Trial 2: Comparison of Single Use and Combinations of Innate Immune Stimulants
2.5. Trial 3: Further Study for Combinations of Innate Immune Stimulants
2.6. E. coli Challenge
2.7. Statistical Analysis
3. Results
3.1. Optimal Dosage Levels of Stand-Alone Innate Immune Stimulants
3.2. Protection of Combinations of Innate Immune Stimulants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnasamy, V.; Otte, J.; Silbergeld, E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob. Resist. Infect. Control. 2015, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fevre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance: Mitigation opportunities in livestock sector development. Animal 2017, 11, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slingenbergh, J.; Cecchi, G.; Engring, A.; Hogerwerf, L. World Livestock 2013—Changing Disease Landscapes; Slingenbergh, J., Ed.; Food and Agriculture Organization of United Nation: Rome, Italy, 2013. [Google Scholar]
- Kaiser, P. Advances in avian immunology--prospects for disease control: A review. Avian Pathol. 2010, 39, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Calenge, F.; Kaiser, P.; Vignal, A.; Beaumont, C. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: A review. Genet. Sel. Evol. 2010, 42, 11. [Google Scholar] [CrossRef] [Green Version]
- Calenge, F.; Mignon-Grasteau, S.; Chanteloup, N.K.; Bree, A.; Lalmanach, A.C.; Schouler, C. Broiler lines divergently selected for digestive efficiency also differ in their susceptibility to colibacillosis. Avian Pathol. 2014, 43, 78–81. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Seal, B.S.; Lillehoj, H.S.; Donovan, D.M.; Gay, C.G. Alternatives to antibiotics: A symposium on the challenges and solutions for animal production. Anim. Health Res. Rev. 2013, 14, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Roth, N.; Kasbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Carlet, J.; Collignon, P.; Goldmann, D.; Goossens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N’Doye, B.; Pittet, D.; et al. Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef]
- Webster, P. The perils of poultry. Can. Med. Assoc. J. = J. Assoc. Med. Can. 2009, 181, 21–24. [Google Scholar] [CrossRef] [Green Version]
- MARAN 2017 Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2016. Available online: https://www.wur.nl/upload_mm/6/9/5/4f37c335-224c-4595-82e4-be6182c0a5e1_74ce6009-b112-428d-aeb7-99b95063aab6_Maran%20report%202017.pdf (accessed on 14 December 2017).
- Leverstein-van Hall, M.A.; Dierikx, C.M.; Cohen Stuart, J.; Voets, G.M.; van den Munckhof, M.P.; van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.C.; van de Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borjesson, S.; Ny, S.; Egervarn, M.; Bergstrom, J.; Rosengren, A.; Englund, S.; Lofmark, S.; Byfors, S. Limited Dissemination of Extended-Spectrum beta-Lactamase- and Plasmid-Encoded AmpC-Producing Escherichia coli from Food and Farm Animals, Sweden. Emerg. Infect. Dis. 2016, 22, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PoultryDVM. Available online: http://www.poultrydvm.com/condition/chick-yolk-sac-infection-omphalitis (accessed on 1 February 2011).
- Allan, B.; Wheler, C.; Koster, W.; Sarfraz, M.; Potter, A.; Gerdts, V.; Dar, A. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis. 2018, 62, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Schijns, V.E.J.C.; van de Zande, S.; Lupiani, B.; Reddy, S.M. Practical Aspects of Poultry Vaccination. In Avian Immunology; Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: London, UK, 2014; pp. 345–362. [Google Scholar]
- Allan, B.J.; van den Hurk, J.V.; Potter, A.A. Characterization of Escherichia coli isolated from cases of avian colibacillosis. Can. J. Vet. Res. 1993, 57, 146–151. [Google Scholar] [PubMed]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Tarradas, J.; Tous, N.; Esteve-Garcia, E.; Brufau, A.J. The Control of Intestinal Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic Growth Promoters in Poultry. Microorganisms 2020, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Gaucher, M.L.; Quessy, S.; Letellier, A.; Arsenault, J.; Boulianne, M. Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poult. Sci. 2015, 94, 1791–1801. [Google Scholar] [CrossRef]
- Bergman, P.; Raqib, R.; Rekha, R.S.; Agerberth, B.; Gudmundsson, G.H. Host Directed Therapy Against Infection by Boosting Innate Immunity. Front. Immunol. 2020, 11, 1209. [Google Scholar] [CrossRef]
- Al-Farsi, H.M.; Al-Adwani, S.; Ahmed, S.; Vogt, C.; Ambikan, A.T.; Leber, A.; Al-Jardani, A.; Al-Azri, S.; Al-Muharmi, Z.; Toprak, M.S.; et al. Effects of the Antimicrobial Peptide LL-37 and Innate Effector Mechanisms in Colistin-Resistant Klebsiella pneumoniae With mgrB Insertions. Front. Microbiol. 2019, 10, 2632. [Google Scholar] [CrossRef] [PubMed]
- Goonewardene, K.; Ahmed, K.A.; Gunawardana, T.; Popowich, S.; Kurukulasuriya, S.; Karunarathna, R.; Gupta, A.; Ayalew, L.E.; Lockerbie, B.; Foldvari, M.; et al. Mucosal delivery of CpG-ODN mimicking bacterial DNA via the intrapulmonary route induces systemic antimicrobial immune responses in neonatal chicks. Sci. Rep. 2020, 10, 5343. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Genovese, K.J.; Swaggerty, C.L.; MacKinnon, K.M.; Kogut, M.H. Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-gamma and regulatory cytokine IL-10 expression in chicken monocytes. Dev. Comp. Immunol. 2012, 36, 756–760. [Google Scholar] [CrossRef]
- Ferret-Bernard, S.; Lacroix-Lamande, S.; Remot, A.; Metton, C.; Bernardet, N.; Charley, B.; Drouet, F.; Laurent, F. Mesenteric lymph node cells from neonates present a prominent IL-12 response to CpG oligodeoxynucleotide via an IL-15 feedback loop of amplification. Vet. Res. 2011, 42, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourais-Esteves, I.; Bernardet, N.; Lacroix-Lamande, S.; Ferret-Bernard, S.; Laurent, F. Neonatal goats display a stronger TH1-type cytokine response to TLR ligands than adults. Dev. Comp. Immunol. 2008, 32, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kim, K.D.; Yang, X.; Auh, S.; Fu, Y.X.; Tang, H. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7528–7533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juffermans, N.P.; Leemans, J.C.; Florquin, S.; Verbon, A.; Kolk, A.H.; Speelman, P.; van Deventer, S.J.; van der Poll, T. CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect. Immun. 2002, 70, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Krieg, A.M.; Love-Homan, L.; Yi, A.K.; Harty, J.T. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J. Immunol. 1998, 161, 2428–2434. [Google Scholar]
- Krieg, A.M. Development of TLR9 agonists for cancer therapy. J. Clin. Investig. 2007, 117, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Cluff, C.W.; Baldridge, J.R.; Stover, A.G.; Evans, J.T.; Johnson, D.A.; Lacy, M.J.; Clawson, V.G.; Yorgensen, V.M.; Johnson, C.L.; Livesay, M.T.; et al. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun. 2005, 73, 3044–3052. [Google Scholar] [CrossRef] [Green Version]
- Ashkar, A.A.; Yao, X.D.; Gill, N.; Sajic, D.; Patrick, A.J.; Rosenthal, K.L. Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA. J. Infect. Dis. 2004, 190, 1841–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatte, A.; DeWitte-Orr, S.J.; Lichty, B.; Mossman, K.L.; Ashkar, A.A. A critical role for IL-15 in TLR-mediated innate antiviral immunity against genital HSV-2 infection. Immunol. Cell Biol. 2011, 89, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.; Potter, A.; Tikoo, S.; Gerdts, V.; Lai, K.; Babiuk, L.A.; Mutwiri, G. CpG oligodeoxynucleotides activate innate immune response that suppresses infectious bronchitis virus replication in chicken embryos. Avian Dis. 2009, 53, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.; Tipu, M.; Townsend, H.; Potter, A.; Gerdts, V.; Tikoo, S. Administration of Poly [di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and Avian Beta Defensin as Adjuvants in Inactivated Inclusion Body Hepatitis Virus and its Hexon Protein-Based Experimental Vaccine Formulations in Chickens. Avian Dis. 2015, 59, 518–524. [Google Scholar] [CrossRef]
- Gomis, S.; Babiuk, L.; Allan, B.; Willson, P.; Waters, E.; Ambrose, N.; Hecker, R.; Potter, A. Protection of neonatal chicks against a lethal challenge of Escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Dis. 2004, 48, 813–822. [Google Scholar] [CrossRef]
- Gomis, S.; Babiuk, L.; Godson, D.L.; Allan, B.; Thrush, T.; Townsend, H.; Willson, P.; Waters, E.; Hecker, R.; Potter, A. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect. Immun. 2003, 71, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Goonewardene, K.B.; Popowich, S.; Gebhardt, S.; Gunawardana, T.; Gupta, A.; Kurukulasuriya, S.; Karunarathna, R.; Liu, M.; Chow-Lockerbie, B.; Ayalew, L.; et al. Aerosol delivery of synthetic DNA containing CpG motifs in broiler chicks at hatch under field conditions using a commercial-scale prototype nebulizer provided protection against lethal Escherichia coli septicemia. Poult. Sci. 2021, 100, 100934. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci. 2008, 1143, 1–20. [Google Scholar] [CrossRef]
- Fujita, A.; Kan, O.K.; Tonai, K.; Yamamoto, N.; Ogawa, T.; Fukuyama, S.; Nakanishi, Y.; Matsumoto, K. Inhibition of PI3Kdelta Enhances Poly I:C-Induced Antiviral Responses and Inhibits Replication of Human Metapneumovirus in Murine Lungs and Human Bronchial Epithelial Cells. Front. Immunol. 2020, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef]
- Lantier, L.; Drouet, F.; Guesdon, W.; Mancassola, R.; Metton, C.; Lo-Man, R.; Werts, C.; Laurent, F.; Lacroix-Lamande, S. Poly(I:C)-induced protection of neonatal mice against intestinal Cryptosporidium parvum infection requires an additional TLR5 signal provided by the gut flora. J. Infect. Dis. 2014, 209, 457–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpala, A.J.; Lowenthal, J.W.; Bean, A.G. Activation of the TLR3 pathway regulates IFNbeta production in chickens. Dev. Comp. Immunol. 2008, 32, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Re, F.; Strominger, J.L. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J. Immunol. 2004, 173, 7548–7555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Nomura, F.; Kawai, T.; Takeuchi, O.; Muhlradt, P.F.; Takeda, K.; Akira, S. Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J. Immunol. 2000, 165, 7096–7101. [Google Scholar] [CrossRef]
- He, H.; Genovese, K.J.; Nisbet, D.J.; Kogut, M.H. Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol. Immunol. 2007, 44, 3234–3242. [Google Scholar] [CrossRef]
- Rao Muvva, J.; Ahmed, S.; Rekha, R.S.; Kalsum, S.; Groenheit, R.; Schon, T.; Agerberth, B.; Bergman, P.; Brighenti, S. Immunomodulatory agents combat multidrug-resistant tuberculosis by improving antimicrobial immunity. J. Infect. Dis. 2021, 224, 332–344. [Google Scholar] [CrossRef]
- Bashir, K.; Kappala, D.; Singh, Y.; Dar, J.A.; Mariappan, A.K.; Kumar, A.; Krishnaswamy, N.; Dey, S.; Chellappa, M.M.; Goswami, T.K.; et al. Combination of TLR2 and TLR3 agonists derepress infectious bursal disease virus vaccine-induced immunosuppression in the chicken. Sci. Rep. 2019, 9, 8197. [Google Scholar] [CrossRef]
- Bavananthasivam, J.; Read, L.; Astill, J.; Yitbarek, A.; Alkie, T.N.; Abdul-Careem, M.F.; Wootton, S.K.; Behboudi, S.; Sharif, S. The effects of in ovo administration of encapsulated Toll-like receptor 21 ligand as an adjuvant with Marek’s disease vaccine. Sci. Rep. 2018, 8, 16370. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Cai, J.; Lu, A.; Hao, S.; Zhang, Z.; Sun, H.; Feng, X. The Immunomodulatory Functions of Various CpG Oligodeoxynucleotideson CEF Cells and H9N2 Subtype Avian Influenza Virus Vaccination. Vaccines 2022, 10, 616. [Google Scholar] [CrossRef]
- Zhang, A.; Lai, H.; Xu, J.; Huang, W.; Liu, Y.; Zhao, D.; Chen, R. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks. PLoS ONE 2017, 12, e0170681. [Google Scholar]
- Yuan, F.; Chu, Y.; Qi, L.; Li, H.; Sun, S.; Zhao, P.; Chang, S.; Guo, H. Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection. Antiviral Res. 2017, 147, 1–10. [Google Scholar] [CrossRef] [PubMed]
- St Paul, M.; Barjesteh, N.; Brisbin, J.T.; Villaneueva, A.I.; Read, L.R.; Hodgins, D.; Nagy, É.; Sharif, S. Effects of ligands for Toll-like receptors 3, 4, and 21 as adjuvants on the immunogenicity of an avian influenza vaccine in chickens. Viral Immunol. 2013, 27, 167–173. [Google Scholar] [CrossRef] [PubMed]
Group | Treatment | Dosage/Embryo | Survival Proportion (%) | ||
---|---|---|---|---|---|
3 Days PC | 5 Days PC | 7 Days PC | |||
A | CpG ODN2007 | 50 µg | 86 | 81 | 76 |
20 µg | 81 | 81 | 81 | ||
10 µg | 81 | 77 | 77 | ||
05 µg | 60 | 60 | 60 | ||
01 µg | 52 | 48 | 44 | ||
B | Poly I:C | 20 µg | 82 | 82 | 82 |
10 µg | 78 | 78 | 65 | ||
05 µg | 51 | 51 | 51 | ||
C | Cyclic Polyphosphazene (CPZ) 75B | 20 µg | 60 | 60 | 60 |
10 µg | 56 | 44 | 39 | ||
D | PBS | 64 | 64 | 64 |
Group | Treatment | Dosage/Embryo | Survival % Age | ||
---|---|---|---|---|---|
3 Days PC | 5 Days PC | 7 Days PC | |||
A | CpG | 20 µg | 92 | 85 | 77 |
B | Poly I:C | 20 µg | 82 | 82 | 82 |
C | ABD2 | 10 µg | 95 | 89 | 84 |
D | CpG + Poly I:C | 10 µg + 15 µg | 100 | 100 | 100 |
E | Poly I:C + ABD2 | 15 µg + 10 µg | 85 | 85 | 79 |
F | CpG + Poly I:C + ABD2 | 10 µg + 15 µg + 10 µg | 82 | 82 | 70 |
G | PBS | 62 | 62 | 59 |
Group | Treatment | Dosage/Embryo | Survival % Age | ||
---|---|---|---|---|---|
3 Days PC | 5 Days PC | 7 Days PC | |||
A | CpG + CPZ75B | 20 µg + 10 µg | 97 | 92 | 82 |
B | Poly I:C + CPZ75B | 10 µg + 10 µg | 77 | 75 | 60 |
C | CpG + Poly I:C + CPZ75B | 20 µg + 10 µg + 10 µg | 97 | 95 | 85 |
D | PBS | 85 | 72 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarfraz, M.; Nguyen, T.T.T.; Wheler, C.; Köster, W.; Gerdts, V.; Dar, A. Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Vet. Sci. 2022, 9, 203. https://doi.org/10.3390/vetsci9050203
Sarfraz M, Nguyen TTT, Wheler C, Köster W, Gerdts V, Dar A. Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Veterinary Sciences. 2022; 9(5):203. https://doi.org/10.3390/vetsci9050203
Chicago/Turabian StyleSarfraz, Mishal, Thuy Thi Thu Nguyen, Colette Wheler, Wolfgang Köster, Volker Gerdts, and Arshud Dar. 2022. "Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks" Veterinary Sciences 9, no. 5: 203. https://doi.org/10.3390/vetsci9050203