Direct Detection of Feline Coronavirus by Three Rapid Antigen Immunochromatographic Tests and by Real-Time PCR in Cat Shelters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. RNA Isolation and Reverse Transcription
2.3. Real-Time PCR—Identification of FCoV
2.4. RIM Tests
- taking a small amount of faecal sample (in the case of tests A and C, the disposable swab was inserted into faeces to take the required amount; in the case of test B, a small plastic applicator was used to take a sufficient amount of sample),
- inserting and mixing the faecal sample with assay diluent in the diluent tube,
- placing the tube with the sample on a flat horizontal surface for sedimentation of gross faecal particles,
- application of the supernatant on the test device (applying a few drops of supernatant into the sample well of a cassette in the case of tests A and B; placing the dipstick vertically into the sample tube in the case of RIM test C),
- reading the test result visually—a correct test procedure was indicated by the appearance of a control line; if the line did not appear, the result was considered invalid; the appearance of a test line and a control line indicated the presence of FCoV antigen, if only a control line appeared in the result window, no FCoV antigen was present in the sample.
2.5. Determination of Sensitivity and Specificity of RIM Tests
2.6. Statistical Analysis
3. Results
3.1. Real-Time PCR Analysis, Faecal Consistency
3.2. RIM Tests
3.3. Comparison of Results Given by RIM Tests and by Real-Time PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tekes, G.; Thiel, H.J. Feline coronaviruses: Pathogenesis of feline infectious peritonitis. Adv. Virus Res. 2016, 96, 193–218. [Google Scholar] [PubMed]
- Pedersen, N.C. A review of feline infectious peritonitis virus infection: 1963–2008. J. Feline Med. Surg. 2009, 11, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Tasker, S.; Dowgray, N. Managing feline coronavirus and feline infectious peritonitis in the multi-cat/shelter environment. In BSAVA Manual of Canine and Feline Shelter Medicine. Principles of Health and Welfare in a Multi-Animal Environment, 1st ed.; Dean, R., Roberts, M., Stavisky, J., Eds.; British Small Animal Association: Gloucester, UK, 2018; pp. 256–269. [Google Scholar]
- Addie, D.D.; Jarrett, O. A study of naturally occurring feline coronavirus infections in kittens. Vet. Rec. 1992, 130, 133–137. [Google Scholar] [CrossRef]
- Addie, D.D.; Toth, S.; Murray, G.D.; Jarrett, O. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am. J. Vet. Res. 1995, 56, 429–434. [Google Scholar] [PubMed]
- Foley, J.E.; Poland, A.; Carlson, J.; Pedersen, N.C. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J. Am. Vet. Med. Assoc. 1997, 210, 1313–1328. [Google Scholar]
- Herrewegh, A.A.; Mahler, M.; Hedrich, H.J.; Haagmans, B.L.; Egberink, H.F.; Horzinek, M.C.; Rottier, P.J.M.; De Groot, R.J. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 1997, 234, 349–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, S.; Egberink, H.; Hartmann, K. Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis. J. Vet. Intern. Med. 2007, 21, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Luria, B.J.; Levy, J.K.; Lappin, M.R. Prevalence of infectious diseases in feral cats in Northern Florida. J. Feline Med. Surg. 2004, 6, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, Y.; Alcaraz, A.; Bossong, F.J.; Collisson, E.W.; Diniz, P.P.V. Feline coronavirus in multicat environments. Vet. Clin. Small Anim. Pract. 2011, 41, 1133–1169. [Google Scholar] [CrossRef]
- Cave, T.A.; Golder, M.C.; Simpson, J. Risk factors for feline coronavirus seropositivity in cats relinquished to a UK rescue charity. J. Feline Med. Surg. 2004, 6, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Addie, D.D.; Le Poder, S.; Burr, P.; Decaro, N.; Graham, E.; Hofmann-Lehmann, R.; Jarrett, O.; McDonald, M.; Meli, M.L. Utility of feline coronavirus antibody tests. J. Feline Med. Surg. 2015, 17, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servat, A.; Picard-Meyer, E.; Robardet, E.; Muzniece, Z.; Must, K.; Cliquet, F. Evaluation of a Rapid Immunochromatographic Diagnostic Test for the detection of rabies from brain material of European mammals. Biologicals 2012, 40, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bubenikova, J.; Vrabelova, J.; Stejskalova, K.; Futas, J.; Plasil, M.; Cerna, P.; Oppelt, J.; Lobova, D.; Molinkova, D.; Horin, P. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens 2020, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- Addie, D.D.; Jarrett, O. Control of feline coronavirus infections in breeding catteries by serotesting, isolation, and early weaning. Feline Pract. 1995, 23, 92–95. [Google Scholar]
- Addie, D.D.; McDonald, M.; Audhuy, S.; Burr, P.; Hollins, J.; Kovacic, R.; Lutz, H.; Luxton, Z.; Mazar, S.; Meli, M. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection. J. Feline Med. Surg. 2012, 14, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, K. Feline infectious peritonitis. Vet. Clin. N. Am. Small Anim. Pract. 2005, 35, 39–79. [Google Scholar] [CrossRef]
- Bell, E.T.; Toribio, J.A.; White, J.D.; Malik, R.; Norris, J.M. Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia. Aust. Vet. J. 2006, 84, 74–81. [Google Scholar] [CrossRef] [PubMed]
- McKay, L.A.; Meachem, M.; Snead, E.; Brannen, T.; Mutlow, N.; Ruelle, L.; Davies, J.L.; van der Meer, F. Prevalence and mutation analysis of the spike protein in feline enteric coronavirus and feline infectious peritonitis detected in household and shelter cats in western Canada. Can. J. Vet. Res. 2020, 84, 18–23. [Google Scholar] [PubMed]
- Sabshin, S.J.; Levy, J.K.; Tupler, T.; Tucker, S.J.; Greiner, E.C.; Leutenegger, C.M. Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea. J. Am. Vet. Med. Assoc. 2012, 241, 331–337. [Google Scholar] [CrossRef]
- Pedersen, N.C.; Sato, R.; Foley, J.E.; Poland, A.M. Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus. J. Feline Med. Surg. 2004, 6, 83–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.E.; Poland, A.; Carlson, J.; Pedersen, N.C. Patterns of feline coronavirus infection and fecal shedding from cats in multiple cat environments. J. Am. Vet. Med. Assoc. 1997, 210, 1307–1312. [Google Scholar]
- Pedersen, N.C.; Allen, C.E.; Lyons, L.A. Pathogenesis of feline enteric coronavirus infection. J. Feline Med. Surg. 2008, 10, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Klein-Richers, U.; Hartmann, K.; Hofmann-Lehmann, R.; Unterer, S.; Bergmann, M.; Rieger, A.; Leutenegger, C.; Pantchev, N.; Balzer, J.; Felten, S. Prevalence of feline coronavirus shedding in German Catteries and associated risk factors. Viruses 2020, 12, 1000. [Google Scholar] [CrossRef]
- Dye, C.; Helps, C.R.; Siddell, S.G. Evaluation of real-time RT-PCR for the quantification of FCoV shedding in the faeces of domestic cats. J. Feline Med. Surg. 2008, 10, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 1–7. [Google Scholar] [CrossRef]
- Kang, A.; Yeom, M.; Kim, H.; Yoon, S.W.; Jeong, D.G.; Moon, H.J.; Lyoo, K.S.; Na, W.; Song, D. Sputum processing method for lateral flow immunochromatographic assays to detect coronaviruses. Immune Netw. 2021, 21, e11. [Google Scholar] [CrossRef] [PubMed]
- Meli, M.; Kipar, A.; Muller, C.; Jenal, K.; Gonczi, E.; Borel, N.; Gunn-Moore, D.; Chalmers, S.; Lin, F.; Reinacher, M.; et al. High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. J. Feline Med. Surg. 2004, 6, 69–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felten, S.; Klein-Richers, U.; Hofmann-Lehmann, R.; Bergmann, M.; Unterer, S.; Leutenegger, C.M.; Hartmann, K. Correlation of feline coronavirus shedding in feces with coronavirus antibody titer. Pathogens 2020, 9, 598. [Google Scholar] [CrossRef]
- Addie, D.D.; Jarrett, O. Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet. Rec. 2001, 148, 649–653. [Google Scholar] [CrossRef] [PubMed]
Age Category | Classification of Result | |
---|---|---|
Positive (%) | Negative (%) | |
≤6 months | 6 (60) | 4 (40) |
6 < x ≤ 12 months | 7 (43.8) | 9 (56.2) |
1 < x ≤ 8 years | 27 (71.1) | 11 (28.9) |
x > 8 years | 4 (66.7) | 2 (33.3) |
Sex | Classification of Result | |
---|---|---|
Positive (%) | Negative (%) | |
female | 23 (67.6) | 11 (32.4) |
male | 23 (63.9) | 13 (36.1) |
Faecal Consistency Score | Classification of Result | |
---|---|---|
Positive (%) | Negative (%) | |
1—firm, well-formed stool | 22 (62.9) | 13 (37.1) |
2—mostly formed but a softer stool | 15 (68.2) | 7 (31.8) |
3—mostly unformed, watery stool | 7 (53.8) | 6 (46.2) |
Antibody | Sensitivity Stated by the Manufacturer | Specificity Stated by the Manufacturer | Kit Storage | Sample Storage | The Total Duration of the Test Procedure | Number of Invalid Attempts (a New Test Device Had to Be Used) | The Test Requires the Use of Additional Equipment That Is Not Included in the Kit | |
---|---|---|---|---|---|---|---|---|
RIM test A | anti-FCoV monoclonal antibody | >95% vs. PCR | >95% vs. PCR | 15–30 °C | fresh faeces; 2–8 °C for max. 24 h; longer storage at −20 °C or below | approx. 15 min | 1 | no |
RIM test B | anti-FCoV monoclonal antibody | >95% vs. PCR | >95% vs. PCR | 15–25 °C | fresh faeces; 2–8 °C for max. 4 days; longer storage at −20 °C or below | approx. 20 min | 3 | no |
RIM test C | anti-FCoV monoclonal antibody | >90% vs. ELISA, % vs. PCR unknown | >95% vs. ELISA, % vs. PCR unknown | 2–30 °C | fresh faeces; 2–8 °C for max. 24 h; longer storage at −20 °C or below | approx. 15 min | 6 | Yes (use of centrifuge is needed) |
RIM Test | Classification of Result | |
---|---|---|
Positive (%) | Negative (%) | |
RIM test A | 9 (12.9) | 61 (87.1) |
RIM test B | 36 (51.42) | 34 (48.6) |
RIM test C | 17 (24.3) | 53 (75.7) |
RIM Test | Faecal Consistency Score | |
---|---|---|
Spearman’s Rank Correlation Coefficient | p-Value | |
RIM test A | −0.1662 | 0.1692 |
RIM test B | −0.1878 | 0.1195 |
RIM test C | −0.1964 | 0.1033 |
RIM Test A (%) | RIM Test B (%) | RIM Test C (%) | |
---|---|---|---|
the total number of samples identified correctly (out of 70) | 35 (50.0) | 48 (68.6) | 39 (55.7) |
number of samples correctly identified as positive | 9 (12.9) | 29 (41.4) | 15 (21.4) |
number of samples correctly identified as negative | 26 (37.1) | 19 (27.2) | 24 (34.3) |
the total number of samples identified incorrectly (out of 70) | 35 (50.0) | 22 (31.4) | 31 (44.3) |
number of samples incorrectly identified as positive–false positive samples | 0 (0) | 7 (10.0) | 2 (2.9) |
number of samples incorrectly identified as negative–false negative samples | 35 (50.0) | 15 (21.4) | 29 (41.4) |
sensitivity | 20.5 | 65.9 | 34.1 |
specificity | 100 | 73.1 | 92.3 |
RIM Test | Number of Virus Particles | |
---|---|---|
Spearman’s Rank Correlation Coefficient | p-Value | |
RIM test A | 0.2334 | 0.0536 |
RIM test B | 0.2105 | 0.0825 |
RIM test C | 0.1773 | 0.1450 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojtkovská, V.; Lukešová, G.; Voslářová, E.; Konvalinová, J.; Večerek, V.; Lobová, D. Direct Detection of Feline Coronavirus by Three Rapid Antigen Immunochromatographic Tests and by Real-Time PCR in Cat Shelters. Vet. Sci. 2022, 9, 35. https://doi.org/10.3390/vetsci9020035
Vojtkovská V, Lukešová G, Voslářová E, Konvalinová J, Večerek V, Lobová D. Direct Detection of Feline Coronavirus by Three Rapid Antigen Immunochromatographic Tests and by Real-Time PCR in Cat Shelters. Veterinary Sciences. 2022; 9(2):35. https://doi.org/10.3390/vetsci9020035
Chicago/Turabian StyleVojtkovská, Veronika, Gabriela Lukešová, Eva Voslářová, Jarmila Konvalinová, Vladimír Večerek, and Dana Lobová. 2022. "Direct Detection of Feline Coronavirus by Three Rapid Antigen Immunochromatographic Tests and by Real-Time PCR in Cat Shelters" Veterinary Sciences 9, no. 2: 35. https://doi.org/10.3390/vetsci9020035
APA StyleVojtkovská, V., Lukešová, G., Voslářová, E., Konvalinová, J., Večerek, V., & Lobová, D. (2022). Direct Detection of Feline Coronavirus by Three Rapid Antigen Immunochromatographic Tests and by Real-Time PCR in Cat Shelters. Veterinary Sciences, 9(2), 35. https://doi.org/10.3390/vetsci9020035