Therapy Dog Welfare Revisited: A Review of the Literature
Abstract
:1. Introduction
2. Results
2.1. Overview on Included Studies
2.2. Description of Study Outcomes
3. Discussion
3.1. Relationship
3.2. Inequity Aversion
3.3. Exploration of AAI Environments
3.4. Therapy Dog Age
3.5. New Research Methods
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kruger, K.A.; Serpell, J.A. Animal-assisted interventions in mental health: Definitions and theoretical foundations. In Handbook on Animal-Assisted Therapy: Theoretical Foundations and Guidelines for Practice, 2nd ed.; Fine, A.H., Ed.; Academic Press: San Diego, CA, USA, 2006; pp. 21–38. [Google Scholar]
- Glenk, L.M. Current Perspectives on Therapy Dog Welfare in Animal-Assisted Interventions. Animals 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Hediger, K.; Meisser, A.; Zinsstag, J. A One Health Research Framework for Animal-Assisted Interventions. Int. J. Environ. Res. Public Health 2019, 16, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menna, L.F.; Santaniello, A.; Todisco, M.; Amato, A.; Borrelli, L.; Scandurra, C.; Fioretti, A. The Human-Animal Relationship as the Focus of Animal-Assisted Interventions: A One Health Approach. Int. J. Environ. Res. Public Health 2019, 16, 3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, C.A.; Keehner, J.R.; Hervé-Claude, L.P.; Stephen, C. Health promotion and harm reduction attributes in One Health literature: A scoping review. One Health 2021, 13, 100284. [Google Scholar] [CrossRef]
- International Association of Human-Animal Interaction Organizations. IAHAIO White Paper. 2018. Available online: http://iahaio.org/wp/wpcontent/uploads/2018/04/iahaio_wp_updated-2018-final.pdf (accessed on 2 May 2021).
- VanFleet, R.; Faa-Thompson, T. Animal Assisted Play Therapy; Professional Resource Press: Sarasota, FL, USA, 2017. [Google Scholar]
- Pet Partners. Standards of Practice in Animal-Assisted Interventions. 2018. Available online: https://petpartners.org/standards/ (accessed on 4 April 2021).
- Animal-Assisted Intervention International (AAII). Animal-Assisted Intervention International Standards of Practice. 2019. Available online: https://aai-int.org/wpcontent/uploads/2019/02/AAII-Standards-of-Practice.pdf (accessed on 5 April 2021).
- Mellor, D.J. Operational Details of the Five Domains Model and Its Key Applications to the Assessment and Management of Animal Welfare. Animals 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Palestrini, C.; Calcaterra, V.; Cannas, S.; Talamonti, Z.; Papotti, F.; Buttram, D.; Pelizzo, G. Stress level evaluation in a dog during animal-assisted therapy in pediatric surgery. J. Vet. Behav. 2017, 17, 44–49. [Google Scholar] [CrossRef]
- Pirrone, F.; Ripamonti, A.; Garoni, E.C.; Stradiotti, S.; Albertini, M. Measuring social synchrony and stress in the handler-dog dyad during animal-assisted activities: A pilot study. J. Vet. Behav. 2017, 21, 45–52. [Google Scholar] [CrossRef]
- McCullough, A.; Jenkins, M.; Ruehrdanz, A.; Gilmer, M.J.; Olson, J.; Pawar, A.; Holley, L.; Sierra-Rivera, S.; Linder, D.E.; Pinchette, D.; et al. Physiological and behavioral effects of animal-assisted interventions on therapy dogs in pediatric oncology settings. Appl. Anim. Behav. Sci. 2018, 200, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Colussi, A.; Stefanon, B.; Adorini, C.; Sandri, M. Variations of salivary cortisol in dogs exposed to different cognitive and physical activities. Ital. J. Anim. Sci. 2018, 17, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Uccheddu, S.; Albertini, M.; Pierantoni, L.; Fantino, S.; Pirrone, F. Assessing behaviour and stress in two dogs during sessions of a reading- to-a- dog program for children with pervasive developmental disorders. Dog Behav. 2018, 3, 1–12. [Google Scholar] [CrossRef]
- Corsetti, S.; Ferrara, M.; Natoli, E. Evaluating Stress in Dogs Involved in Animal-Assisted Interventions. Animals 2019, 9, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.D.; Smidt, J.M.; Bauer, B.A. Welfare consideration: Salivary cortisol concentrations on frequency of therapy dog visits in an outpatient hospital setting: A pilot study. J. Vet. Behav. 2019, 30, 88–91. [Google Scholar] [CrossRef]
- Silas, H.J.; Binfet, J.; Ford, A.T. Therapeutic for all? Observational assessments of therapy canine stress in an on-campus stress-reduction program. J. Vet. Behav. 2019, 32, 6–13. [Google Scholar] [CrossRef]
- Melco, A.L.; Goldman, L.; Fine, A.H.; Peralta, J.M. Investigation of physiological and behavioral responses in dogs participating in animal-assisted therapy with children diagnosed with attention-deficit hyperactivity disorder. J. Appl. Anim. Welf. Sci. 2020, 23, 10–28. [Google Scholar] [CrossRef]
- De Carvalho, I.R.; Nunes, T.; Sousa, L.; Almeida, V. The combined use of salivary cortisol concentrations, heart rate, and respiratory rate for the welfare assessment of dogs involved in AAI programs. J. Vet. Behav. 2020, 36, 26–33. [Google Scholar] [CrossRef]
- Clark, S.D.; Martin, F.; McGowan, R.T.S.; Smidt, J.M.; Anderson, R.; Wang, L.; Turpin, T.; Langenfeld-McCoy, N.; Bauer, B.A.; Mohabbat, A.B. Physiological State of Therapy Dogs during Animal-Assisted Activities in an Outpatient Setting. Animals 2020, 10, 819. [Google Scholar] [CrossRef]
- Clark, S.; Martin, F.; McGowan, R.; Smidt, J.; Anderson, R.; Wang, L.; Turpin, T.; Langenfeld-McCoy, N.; Bauer, B.; Mohabbat, A.B. The Impact of a 20-Minute Animal-Assisted Activity Session on the Physiological and Emotional States in Patients with Fibromyalgia. Mayo Clin. Proc. 2020, 95, 2442–2461. [Google Scholar] [CrossRef]
- D’Angelo, D.; d’Ingeo, S.; Ciani, F.; Visone, M.; Sacchettino, L.; Avallone, L.; Quaranta, A. Cortisol Levels of Shelter Dogs in Animal Assisted Interventions in a Prison: An Exploratory Study. Animals 2021, 11, 345. [Google Scholar] [CrossRef]
- Glenk, L.M.; Kothgassner, O.D.; Stetina, B.U.; Palme, R.; Kepplinger, B.; Baran, H. Therapy dogs’ salivary cortisol levels vary during animal-assisted interventions. Anim. Welf. 2013, 22, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Glenk, L.M.; Kothgassner, O.D.; Stetina, B.U.; Palme, R.; Kepplinger, B.; Baran, H. Salivary cortisol and behavior in therapy dogs during animal-assisted interventions: A pilot study. J. Vet. Behav. 2014, 9, 98–106. [Google Scholar] [CrossRef]
- Ng, Z.Y.; Pierce, B.J.; Otto, C.M.; Buechner-Maxwell, V.A.; Siracusa, C.; Werre, S.R. The effect of dog-human interaction on cortisol and behavior in registered animal-assisted activity dogs. Appl. Anim. Behav. Sci. 2014, 159, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Koda, N.; Watanabe, G.; Miyaji, Y.; Ishida, A.; Miyaji, C. Stress levels in dogs, and its recognition by their handlers, during animal-assisted therapy in a prison. Anim. Welf. 2015, 24, 203–209. [Google Scholar] [CrossRef]
- Haubenhofer, D.K.; Kirchengast, S. Physiological arousal for companion dogs working with their owners in animal-assisted activities and animal-assisted therapy. J. Appl. Anim. Welf. Sci. 2006, 9, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Haubenhofer, D.K.; Kirchengast, S. Dog Handlers’ and Dogs’ Emotional and Cortisol Secretion Responses Associated with Animal-Assisted Therapy Sessions. Soc. Anim. 2007, 15, 127–150. [Google Scholar] [CrossRef] [Green Version]
- King, C.; Watters, J.; Mungre, S. Effect of a time-out session with working animal-assisted therapy dogs. J. Vet. Behav. 2011, 6, 232–238. [Google Scholar] [CrossRef]
- Uetake, K.; Otsuka, N.; Osada, S.; Kanada, K.; Miyamoto, S.; Horii, T.; Fukuzawa, M.; Eguchi, Y.; Ota, M.; Tanaka, T. Stress response of dogs repeatedly participated in animal-assisted activities at special nursing homes for elderly people. Anim. Behav. Manag. 2007, 43, 192–198. [Google Scholar]
- Hatch, A. The view from all fours: A look at an animal-assisted activity program from the animals’ perspective. Anthrozoös 2007, 20, 37–50. [Google Scholar] [CrossRef]
- Iannuzzi, D.; Rowan, A.N. Ethical issues in animal-assisted therapy programs. Anthrozoös 1991, 4, 154–163. [Google Scholar] [CrossRef]
- Simonato, M.; de Santis, M.; Contalbrigo, L.; de Mori, B.; Ravarotto, L.; Farina, L. The Three R’s as a Framework for Considering the Ethics of Animal Assisted Interventions. Soc. Anim. 2020, 28, 395–419. [Google Scholar] [CrossRef]
- Russell, W.M.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Marino, L. Construct validity of animal-assisted therapy and activities: How important is the animal in AAT? Anthrozoös 2012, 25 (Suppl. 1), 139–151. [Google Scholar] [CrossRef]
- Park, S.; Bak, A.; Kim, S.; Nam, Y.; Kim, H.S.; Yoo, D.-H.; Moon, M. Animal-Assisted and Pet-Robot Interventions for Ameliorating Behavioral and Psychological Symptoms of Dementia: A Systematic Review and Meta-Analysis. Biomedicines 2020, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Barber, O.; Somogyi, E.; McBride, A.E.; Proops, L. Children’s Evaluations of a Therapy Dog and Biomimetic Robot: Influences of Animistic Beliefs and Social Interaction. Intern. J. Soc. Robot. 2020, 13, 1411–1425. [Google Scholar] [CrossRef]
- Bradwell, H.; Edwards, K.; Shenton, D.; Winnington, R.; Thill, S.; Jones, R.B. User-centred design of companion robot pets: Care home resident-robot interactions followed by focus groups with residents, staff and family. JMIR Rehabil. Assist. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Romano, D.; Donati, E.; Benelli, G.; Stefanini, C. A review on animal-robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019, 113, 201–225. [Google Scholar] [CrossRef]
- Aarskog, N.A.; Hunskår, I.; Bruvik, F. Animal-Assisted Interventions with Dogs and Robotic Animals for Residents with Dementia in Nursing Homes: A Systematic Review. Phys. Occup. Ther. I Geritatrics 2019, 37, 77–93. [Google Scholar] [CrossRef]
- Ong, Y.C.; Tang, A.; Tam, W. Effectiveness of robot therapy in the management of behavioural and psychological symptoms for individuals with dementia: A systematic review and meta-analysis. J. Psychiat. Res. 2021, 140, 381–394. [Google Scholar] [CrossRef]
- Odendaal, J.S.; Meintjes, R.A. Neurophysiological correlates of affliative behavior between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- Flaherty, S.C.; Sadler, L.S. A review of attachment theory in the context of adolescent parenting. J. Pediatr. Health Care 2011, 25, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Topál, J.; Miklósi, A.; Csanyi, V.; Doka, A. Attachment behavior in dogs (Canis familiaris): A new application of Ainsworth’s (1969) Strange Situation Test. J. Comp. Psychol. 1998, 112, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Prato-Previde, E.; Custance, D.M.; Spiezio, C.; Sabatini, F. Is the dog-human relationship an attachment bond? An observational study using Ainsworth’s strange situation. Behaviour 2003, 140, 225–254. [Google Scholar] [CrossRef]
- Horn, L.; Range, F.; Huber, L. Dogs’ attention towards humans depends on their relationship, not only on social familiarity. Anim. Cogn. 2013, 16, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Payne, E.; Bennett, P.C.; McGreevy, P.D. Current perspectives on attachment and bonding in the dog-human dyad. Psychol. Res. Behav. Manag. 2015, 8, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanser, S.H.; Udell, M.A.R. Does attachment security to a human handler influence the behavior of dogs who engage in animal assisted activities? Appl. Anim. Behav. Sci. 2019, 210, 88–94. [Google Scholar] [CrossRef]
- Feldman, J.B. Best Practice for Adolescent Prenatal Care: Application of an Attachment Theory Perspective to Enhance Prenatal Care and Diminish Birth Risks. Child. Adolesc. Soc. Work J. 2012, 29, 151–166. [Google Scholar] [CrossRef]
- Naber, A.; Kreuzer, L.; Zink, R.; Millesi, E.; Palme, R.; Glenk, L.M. Heart rate, heart rate variability and salivary cortisol as indicators of arousal and synchrony in clients with intellectual disability, horses and therapist during equine-assisted interventions. Pet. Behav. Sci. 2019, 7, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Azhari, A.; Leck, W.Q.; Gabrieli, G.; Bizzego, A.; Rigo, P.; Setoh, P.; Bornstein, M.H.; Esposito, G. Parenting Stress Undermines Mother-Child Brain-to-Brain Synchrony: A Hyperscanning Study. Sci Rep. 2019, 9, 11407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehr, E.; Schmidt, K.M. A Theory of Fairness, Competition, and Cooperation. Q. J. Econ. 1999, 114, 817–868. [Google Scholar] [CrossRef]
- Brosnan, S.F.; de Waal, F.B.M. Evolution of responses to (un)fairness. Science 2014, 346, 1251776. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, S.F.; de Waal, F.B.M. Monkeys reject unequal pay. Nature 2003, 425, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, S.F.; Schiff, H.C.; de Waal, F.B.M. Tolerance for inequity may increase with social closeness in chimpanzees. Proc. Biol. Sci. 2005, 272, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Range, F.; Horn, L.; Virányi, Z.; Huber, L. The absence of reward induces inequity aversion in dogs. Proc. Natl. Acad. Sci. USA 2009, 106, 340–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brucks, D.; Essler, J.L.; Marshall-Pescini, S.; Range, F. Inequity Aversion Negatively Affects Tolerance and Contact-Seeking Behaviours towards Partner and Experimenter. PLoS ONE 2016, 11, e0153799. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, E.; Binfet, J. What is important in canine-assisted intervention teams? An investigation of canine-assisted intervention program online screening tools. J. Vet. Behav. 2019, 29, 53–60. [Google Scholar] [CrossRef]
- Shettleworth, S.J. Cognition, Evolution, and Behavior, 2nd ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Franks, B. Cognition as a cause, consequence, and component of welfare. In Advances in Agricultural Animal Welfare; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar] [CrossRef]
- Foltin, S.; Ganslosser, U. Exploration Behavior of Pet Dogs During Off-Leash Walks. J. Veter. Sci. Med. 2021, 9, 9. [Google Scholar]
- Moretti, L.; Hentrup, M.; Kotrschal, K.; Range, F. The influence of relationships on neophobia and exploration in wolves and dogs. Anim. Behav. 2015, 9, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Kelley, A.E.; Cador, M.; Stinus, L. Exploration and its measurement: A psychopharmacological perspective. In Psychopharmacology: Neuromethods; Psychopharmacology; Boulton, A.A., Baker, G.B., Eds.; Humana Press: Clifton, NJ, USA, 1989; Volume 13, pp. 95–144. [Google Scholar]
- Caston, J.; Chianale, C.; Delhaye-Bouchaud, N.; Mariani, J. Role of the cerebellum in exploration behavior. Brain Res. 1998, 808, 232–237. [Google Scholar] [CrossRef]
- Tiira, K.; Sulkama, S.; Lohi, H. Prevalence, comorbidity, and behavioral variation in canine anxiety. J. Vet. Behav. 2016, 16, 36–44. [Google Scholar] [CrossRef]
- Fine, A.H.; Beck, A.M.; Ng, Z. The State of Animal-Assisted Interventions: Addressing the Contemporary Issues That Will Shape the Future. Int. J. Environ. Res. Public Health 2019, 16, 3997. [Google Scholar] [CrossRef] [Green Version]
- Ng, Z.Y.; Fine, A.H. Considerations for the Retirement of Therapy Animals. Animals 2019, 9, 1100. [Google Scholar] [CrossRef] [Green Version]
- Ng, Z.; Fine, A. Paving the Path Toward Retirement for Assistance Animals: Transitioning Lives. Front. Vet. Sci. 2019, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Mongillo, P.; Pitteri, E.; Adamelli, S.; Bonichini, S.; Farina, L.; Marinelli, L. Validation of a selection protocol of dogs involved in Animal Assisted Intervention. J. Vet. Behav. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Roth, L.S.V.; Jensen, P. Assessing companion dog behavior in a social setting. J. Vet. Behav. 2015, 10, 315–323. [Google Scholar] [CrossRef] [Green Version]
- McMillan, F.D. Behavioral and psychological outcomes for dogs sold as puppies through pet stores and/or born in commercial breeding establishments: Current knowledge and putative causes. J. Vet. Behav. 2017, 19, 14–26. [Google Scholar] [CrossRef]
- Blackwell, E.J.; Bradshaw, J.W.S.; Casey, R.A. Fear responses to noises in domestic dogs: Prevalence, risk factors and co-occurrence with other fear related behavior. Appl. Anim. Behav. Sci. 2013, 145, 15–25. [Google Scholar] [CrossRef]
- Scott, J.P.; Fuller, J.L. Genetics and the Social Behavior of the Dog; The University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Howell, T.J.; King, T.; Bennett, P.C. Puppy parties and beyond: The role of early age socialization practices on adult dog behavior. Vet. Med. (Auckl) 2015, 6, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miklósi, A.; Turcsán, B.; Kubinyi, E. The personality of dogs. In Dog Behaviour, Evolution, and Cognition, 2nd ed.; Oxford University Press: Oxford, UK, 2015; Volume 81, pp. 392–401. [Google Scholar]
- Rooney, N.J.; Clark, C.C.A.; Casey, R.A. Minimizing fear and anxiety in working dogs: A review. J. Vet. Behav. 2016, 16, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, C.L. Periods of Early Development and the Effects of Stimulation and Social Experiences in the Canine. J. Vet. Behav. 2009, 4, 203–210. [Google Scholar] [CrossRef]
- Casey, R.A.; Bradshaw, J.W.S. The effects of additional socialisation for kittens in a rescue centre on their behaviour and suitability as a pet. Appl. Anim. Behav. Sci. 2008, 114, 196–205. [Google Scholar] [CrossRef]
- Benz-Schwarzburg, J.; Monsó, S.; Huber, L. How Dogs Perceive Humans and How Humans Should Treat Their Pet Dogs: Linking Cognition with Ethics. Front. Psychol. 2020, 11, 584037. [Google Scholar] [CrossRef]
- Schmidt, J.R. Evidence against conflict monitoring and adaptation. Psychon. Bull. Rec. 2019, 26, 753–771. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, J.K.F. Minimising Stress for Patients in the Veterinary Hospital: Why It Is Important and What Can Be Done about It. Vet. Sci. 2017, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Rooney, N.J.; Gaines, S.A.; Bradshaw, J.W.S. Behavioural and glucocorticoid responses of dogs (Canis familiaris) to kennelling: Investigating mitigation of stress by prior habituation. Physiol. Behav. 2007, 92, 847–854. [Google Scholar] [CrossRef]
- Cobb, M.; Branson, N.; McGreevy, P.; Bennett, P.; Rooney, N.; Magdalinski, T.; Howell, T.; Dawson, K. Review and Assessment of Best Practice Rearing, Socialization, Education and Training Methods for Greyhounds in a Racing Context. Report to Greyhound Racing New South Wales. 2015. Available online: https://sgvscience.files.wordpress.com/2015/09/review-assessment-of-best-practice-rearing-socialisation-education-and-training-methods-for-greyhounds-in-a-racing-context-small.pdf (accessed on 10 October 2021).
- Mills, D.; Karagiannis, C.; Zulch, H. Stress—Its Effects on Health and Behavior: A Guide for Practitioners. Vet. Clin. Small Anim. 2014, 44, 525–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewen, K.M.; Davenport, R.E.; Light, K.C. An investigation of plasma and salivary oxytocin responses in breast- and formula-feeding mothers of infants. Psychophysiology 2010, 47, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvat-Gordon, M.; Granger, D.A.; Schwartz, E.B.; Nelson, V.J.; Kivlighan, K.T. Oxytocin is not a valid biomarker when measured in saliva by immunoassay. Physiol. Behav. 2005, 84, 445–448. [Google Scholar] [CrossRef]
- Martin, J.; Kagerbauer, S.M.; Gempt, J.; Podtschaske, A.; Hapfelmeier, A.; Schneider, G. Oxytocin levels in saliva correlate better than plasma levels with concentrations in the cerebrospinal fluid of patients in neurocritical care. J. Neuroendocrinol. 2018, 30, e12596. [Google Scholar] [CrossRef]
- Handlin, L.; Hydbring-Sandberg, E.; Nilsson, A.; Ejdebäck, M.; Jansson, A.; Uvnäs-Moberg, K. Short-term interaction between dogs and their owners: Effects on oxytocin, cortisol, insulin and heart rate—An exploratory study. Anthrozoös 2011, 24, 301–315. [Google Scholar] [CrossRef]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Onaka, T.; Mogi, K.; Kikusui, T. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef]
- Taylor, S.E.; Gonzaga, G.C.; Klein, L.C.; Hu, P.; Greendale, G.A.; Seeman, T.E. Relation of oxytocin to psychological stress responses and hypothalamic-pituitary-adrenocortical axis activity in older women. Psychosom. Med. 2006, 68, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.A.; Altemus, M.; Enos, T.; Cooper, B.; McGuinness, T. Preliminary research on plasma oxytocin in normal cycling women: Investigating emotion and interpersonal distress. Psychiatry 1999, 62, 97–113. [Google Scholar] [CrossRef]
- Glenk, L.M.; Kothgassner, O.D.; Felnhofer, A.; Gotovina, J.; Pranger, C.L.; Jensen, A.N.; Mothes-Luksch, N.; Palme, R.; Jensen-Jarolim, E. Salivary cortisol responses to acute stress vary between allergic and healthy individuals: The role of plasma oxytocin, emotion regulation strategies, reported stress and anxiety. Stress 2020, 23, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansade, L.; Nowak, R.; Lainé, A.L.; Leterrier, C.; Bonneau, C.; Parias, C.; Bertin, A. Facial expression and oxytocin as possible markers of positive emotions in horses. Sci. Rep. 2018, 8, 14680. [Google Scholar] [CrossRef] [Green Version]
- Rault, J.L.; Carter, C.S.; Garner, J.P.; Marchant-Forde, J.N.; Richert, B.T.; Lay, D.C., Jr. Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behavior. Physiol. Behav. 2013, 112, 40–48. [Google Scholar] [CrossRef]
- Bouwknecht, J.A.; Olivier, B.; Paylor, R.E. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: A review of pharmacological and genetic studies in the mouse. Neurosci. Biobehav. Rev. 2007, 31, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Travain, T.; Colombo, E.S.; Heinzl, E.U.L.; Bellucci, D.; Prato Previde, E.; Valsecchi, P. Hot dogs: Thermography in the assessment of stress in dogs (Canis familiaris)—A pilot study. J. Vet. Behav. 2015, 10, 17–23. [Google Scholar] [CrossRef]
- Riemer, S.; Assis, L.; Pike, T.W.; Mills, D.S. Dynamic changes in ear temperature in relation to separation distress in dogs. Physiol. Behav. 2016, 167, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.C.; Maior, R.S.; Barros, M. Rightward Tympanic Membrane Temperature Bias During Acute Restraint-Isolation Stress in Marmoset Monkeys. Front. Neurosci. 2019, 13, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzotti, G.A.; Boere, V. The right ear but not the left ear temperature is related to stress-induced cortisolaemia in the domestic cat (Felis catus). Laterality 2009, 14, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Travain, T.; Valsecchi, P. Infrared Thermography in the Study of Animals’ Emotional Responses: A Critical Review. Animals 2021, 11, 2510. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Y.; Liang, F.; Zhang, Y.; Yu, X.; Li, Z.; An, Q.; Lv, H.; Wang, J. Non-Contact Vital Signs Monitoring of Dog and Cat Using a UWB Radar. Animals 2020, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, J.L.; Khuvis, S.; Yeagle, E.; Cerf, M.; Mehta, A.D. Breathing above the brain stem: Volitional control and attentional modulation in humans. J. Neurophysiol. 2018, 119, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, M.; Vlemincx, E.; von Leupoldt, A.; Mittelstädt, J.M.; van den Bergh, O. Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plast. 2016, 2016, 8146809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Published in | Environment | Recipients | Dogs (N) | Welfare Indicators | |
---|---|---|---|---|---|
Pirrone et al. [13] | 2017 | Health care facility | Adults | 4 | Heart rate, behavior. |
McCullough et al. [14] | 2018 | Pediatric hospital | Children | 26 | Salivary cortisol, behavior, handler questionnaire. |
Colussi et al. [15] | 2018 | Kindergarten | Children | 6 | Salivary cortisol. |
Uccheddu et al. [16] | 2018 | Reading program | Children | 2 | Salivary cortisol, behavior. |
Corsetti et al. [17] | 2019 | Hospital or Training campsite of AAI association | N/a | 6 | Behavior. |
Clark et al. [18] | 2019 | Outpatient nursing unit | Adults | 4 | Salivary cortisol. |
Silas et al. [19] | 2019 | University campus | Adults | 40 | Stress rated in a visual analogue scale. |
Melco et al. [20] | 2020 | Outpatient therapy for children with ADHD | Children | 9 | Salivary cortisol, heart rate, behavior. |
De Carvalho et al. [21] | 2020 | N/a | N/a | 19 | Salivary cortisol, heart rate, respiratory rate. |
Clark et al. [22] | 2020 | Hospital | Adults | 9 | Salivary cortisol, perceived stress protocol, behavior. |
Clark et al. [23] | 2020 | Outpatient clinic | Adults | 19 | Salivary cortisol and oxytocin, tympanic ear membrane temperature, heart rate and heart rate variability. |
D′Angelo et al. [24] | 2021 | Prison | Inmates | 5 | Salivary cortisol. |
Duration | Single/ Group | Intervals | Relevant Findings | |
---|---|---|---|---|
Pirrone et al. [13] | 55 min | Group | Weekly | No difference in salivary cortisol between working and resting days; ↑ salivary cortisol prior to AAA compared to during the activities; ↑ joint attention and gaze synchrony during AAA; ↑ heart rate on working days. |
McCullough et al. [14] | 20 min | Single | Weekly | No difference in salivary cortisol between working and resting days; ↑ salivary cortisol levels related to ↑ stress behaviors and ↓ affiliative behaviors; ↓ affiliative behaviors in dogs with higher scores on stranger-directed fear. |
Colussi et al. [15] | 90 min | Group | N/a | ↓ Salivary cortisol after AAA compared to before session and home levels. |
Uccheddu et al. [16] | 30 min | Group | Weekly | ↑ Salivary cortisol pre- and during session in one dog; most prevalent stress behaviors were tail down and lip licking. |
Corsetti et al. [17] | 10–30 min | Single | Max. 4 sessions/day with a 2 h break between sessions | No difference in anxiety-related or submissive behavior during AAIs; ↑ (non-aggressive) dominance behavior, attention, sniffing, affiliative and playful behavior. |
Clark et al. [18] | 15 min ± 5 SD | Group | Biweekly, weekly, 2/month, 1/month | ↓ Salivary cortisol in biweekly sessions; one dog had higher post-session values in all conditions except the weekly session interval conditions; one dog had lower post-session values in all conditions except the biweekly session interval conditions. |
Silas et al. [19] | 90 min | Group | N/a | Self-reported handler (not client!) stress level was related to more stress behaviors in dogs; ↓ stress levels in students and dog handlers; ↑ stress when dog working levels were compared to baseline values at home. |
Melco et al. [20] | 60 min | Group | Biweekly | No changes in salivary cortisol, heart rate or stress-related behaviors emerged over 6 sessions; most prevalent stress behaviors were ears back, panting and lip licking. |
De Carvalho et al. [21] | 41.6 min ± 7.5 SD | N/a | Variable (ranging between 15 min to ≥24h) | ↑ Salivary cortisol, heart rate and respiratory rate when working levels were compared to home baseline values; ↑ heart rates in AAA compared to AAT; ↑ heart and respiratory rate when dogs were transported >50 min. |
Clark et al. [22] | <60 min | Single, Group | N/a | No difference in salivary cortisol comparing baseline values at home and working levels across multiple measurements; significant correlation between owner’s perceived stress in the dog and dog salivary cortisol; most prevalent stress behaviors were panting, lip licking and yawning. |
Clark et al. [23] | 20 min | Single | N/a | ↓ Heart rate and right tympanic membrane temperature post session; no changes in cortisol, oxytocin or heart rate variability. |
D′Angelo et al. [24] | 70 min | Group of two inmates | Weekly | ↓ Baseline salivary cortisol from pre- to post-program ↑ salivary cortisol during transportation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glenk, L.M.; Foltin, S. Therapy Dog Welfare Revisited: A Review of the Literature. Vet. Sci. 2021, 8, 226. https://doi.org/10.3390/vetsci8100226
Glenk LM, Foltin S. Therapy Dog Welfare Revisited: A Review of the Literature. Veterinary Sciences. 2021; 8(10):226. https://doi.org/10.3390/vetsci8100226
Chicago/Turabian StyleGlenk, Lisa Maria, and Sandra Foltin. 2021. "Therapy Dog Welfare Revisited: A Review of the Literature" Veterinary Sciences 8, no. 10: 226. https://doi.org/10.3390/vetsci8100226
APA StyleGlenk, L. M., & Foltin, S. (2021). Therapy Dog Welfare Revisited: A Review of the Literature. Veterinary Sciences, 8(10), 226. https://doi.org/10.3390/vetsci8100226