Perioperative Outcome in Dogs Undergoing Emergency Abdominal Surgery: A Retrospective Study on 82 Cases (2018–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, M.; Hussain, A.; Xiao, J.; Scheidler, W.; Reddy, H.; Olugbade, K., Jr.; Cummings, D.; Terjimanian, M.; Krapohl, G.; Waits, S.A.; et al. The Importance of Improving the Quality of Emergency Surgery for a Regional Quality Collaborative. Ann. Surg. 2013, 257, 596–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Temimi, M.H.; Griffee, M.; Enniss, T.M.; Preston, R.; Vargo, D.; Overton, S.; Kimball, E.; Barton, R.; Nirula, R. When is death inevitable after emergency laparotomy? Analysis of the American College of Surgeons National Surgical Quality Improvement Program database. J. Am. Coll. Surg. 2012, 215, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.I.; Murray, D.; Pichel, A.C.; Varley, S.; Peden, C.J. Variations in mortality after emergency laparotomy: The first report of the UK Emergency Laparotomy Network. Br. J. Anaesth. 2012, 109, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tengberg, L.T.; Cihoric, M.; Foss, N.B.; Bay-Nielsen, M.; Gögenur, I.; Henriksen, R.; Jensen, T.K.; Tolstrup, M.B.; Nielsen, L.B. Complications after emergency laparotomy beyond the immediate postoperative period—A retrospective, observational cohort study of 1139 patients. Anaesthesia 2017, 72, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Howes, T.E.; Cook, T.M.; Corrigan, L.J.; Dalton, S.J.; Richards, S.K.; Peden, C.J. Postoperative morbidity survey, mortality and length of stay following emergency laparotomy. Anaesthesia 2015, 70, 1020–1027. [Google Scholar] [CrossRef]
- Perregaard, H.; Tenma, J.; Antonsen, J.; Mynster, T. Mortality after abdominal emergency surgery in nonagenarians. Eur. J. Trauma Emerg. Surg. 2021, 47, 485–492. [Google Scholar] [CrossRef]
- Davies, J.A.; Fransson, B.A.; Davis, A.M.; Gilbertsen, A.M.; Gay, J.M. Incidence of and risk factors for postoperative regurgitation and vomiting in dogs: 244 cases (2000–2012). J. Am. Vet. Med. Assoc. 2015, 246, 327–335. [Google Scholar] [CrossRef]
- Brodbelt, D.C.; Pfeiffer, D.U.; Young, L.E.; Wood, J.L. Results of the confidential enquiry into perioperative small animal fatalities regarding risk factors for anesthetic-related death in dogs. J. Am. Vet. Med. Assoc. 2008, 233, 1096–1104. [Google Scholar] [CrossRef]
- Laurenza, C.; Ansart, L.; Portier, K. Risk Factors of Anesthesia-Related Mortality and Morbidity in One Equine Hospital: A Retrospective Study on 1161 Cases Undergoing Elective or Emergency Surgeries. Front. Vet. Sci. 2020, 6, 514. [Google Scholar] [CrossRef]
- Ingraham, A.M.; Cohen, M.E.; Raval, M.V.; Ko, C.Y.; Nathens, A.B. Comparison of hospital performance in emergency versus elective general surgery operations at 198 hospitals. J. Am. Coll. Surg. 2011, 212, 20–28. [Google Scholar] [CrossRef]
- Hajibandeh, S.; Hajibandeh, S.; Bill, V.; Satyadas, T. Meta-analysis of Enhanced Recovery After Surgery (ERAS) Protocols in Emergency Abdominal Surgery. World J. Surg. 2020, 44, 1336–1348. [Google Scholar] [CrossRef]
- Nelson, G.; Bakkum-Gamez, J.; Kalogera, E.; Glaser, G.; Altman, A.; Meyer, L.A.; Taylor, J.S.; Iniesta, M.; Lasala, J.; Mena, G.; et al. Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery After Surgery (ERAS) Society recommendations-2019 update. Int. J. Gynecol. Cancer 2019, 29, 651–668. [Google Scholar] [CrossRef]
- Kehlet, H.M.D.; Wilmore, D. Evidence-Based Surgical Care and the Evolution of Fast-Track Surgery. Ann. Surg. 2008, 248, 189–198. [Google Scholar] [CrossRef]
- Bannay, A.; Chaignot, C.; Blotière, P.O.; Basson, M.; Weill, A.; Ricordeau, P.; Alla, F. The Best Use of the Charlson Comorbidity Index With Electronic Health Care Database to Predict Mortality. Med. Care 2016, 54, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.D. How Old Is My Dog? Identification of Rational Age Groupings in Pet Dogs Based Upon Normative Age-Linked Processes. Front. Vet. Sci. 2021, 8, 643085. [Google Scholar] [CrossRef]
- Song, K.K.; Golsmid, S.E.; Lee, J.; Simpson, D.J. Restrospective analysis of 736 cases of canine gastric dilation volvulus. Aust. Vet. J. 2020, 98, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Aronson, L.R.; Brockman, D.J.; Brown, D.C. Gastrointestinal emergencies. Vet. Clin. N. Am. Small Anim. Pract. 2000, 30, 555–579. [Google Scholar] [CrossRef]
- Gill, S.S.; Buote, N.J.; Peterson, N.W.; Bergman, P.J. Factors associated with dehiscence and mortality rates following gastrointestinal surgery in dogs. J. Am. Vet. Med. Assoc. 2019, 255, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.A.; Schmiedt, C.W.; Cornell, K.K.; Radlinksy, M.A. Identification of risk factors for septic peritonitis and failure to survive following gastrointestinal surgery in dogs. J. Am. Vet. Med. Assoc. 2011, 238, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, K.A.; Smeak, D.D.; Chiang, S. Risk Factors for Dehiscence of Stapled Functional End-to-End Intestinal Anastomoses in Dogs: 53 Cases (2001–2012). Vet. Surg. 2016, 45, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Strelchik, A.; Coleman, M.C.; Scharf, V.F.; Stoneburner, R.M.; Thieman Mankin, K.M. Intestinal incisional dehiscence rate following enterotomy for foreign body removal in 247 dogs. J. Am. Vet. Med. Assoc. 2019, 255, 695–699. [Google Scholar] [CrossRef]
- Hayes, G. Gastrointestinal foreign bodies in dogs and cats: A retrospective study of 208 cases. J. Small Anim. Pract. 2009, 50, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Hobday, M.M.; Pachtinger, G.E.; Drobatz, K.J.; Syring, R.S. Linear versus non-linear gastrointestinal foreign bodies in 499 dogs: Clinical presentation, management and short-term outcome. J. Small Anim. Pract. 2014, 55, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Aronsohn, M.G.; Dubiel, B.; Roberts, B.; Powers, B.E. Prognosis for acute nontraumatic hemoperitoneum in the dog: A retrospective analysis of 60 cases (2003–2006). J. Am. Anim. Hosp. Assoc. 2009, 45, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Lux, C.N.; Culp, W.T.; Mayhew, P.D.; Tong, K.; Rebhun, R.B.; Kass, P.H. Perioperative outcome in dogs with hemoperitoneum: 83 cases (2005–2010). J. Am. Vet. Med. Assoc. 2013, 242, 1385–1391. [Google Scholar] [CrossRef]
- Beck, J.J.; Staatz, A.J.; Pelsue, D.H.; Kudnig, S.T.; MacPhail, C.M.; Seim, H.B., 3rd; Monnet, E. Risk factors associated with short-term outcome and development of perioperative complications in dogs undergoing surgery because of gastric dilatation-volvulus: 166 cases (1992–2003). J. Am. Vet. Med. Assoc. 2006, 229, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Beer, K.A.; Syring, R.S.; Drobatz, K.J. Evaluation of plasma lactate concentration and base excess at the time of hospital admission as predictors of gastric necrosis and outcome and correlation between those variables in dogs with gastric dilatation-volvulus: 78 cases (2004–2009). J. Am. Vet. Med. Assoc. 2013, 242, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Buber, T.; Saragusty, J.; Ranen, E.; Epstein, A.; Bdolah-Abram, T.; Bruchim, Y. Evaluation of lidocaine treatment and risk factors for death associated with gastric dilatation and volvulus in dogs: 112 cases (1997–2005). J. Am. Vet. Med. Assoc. 2007, 230, 1334–1339. [Google Scholar] [CrossRef]
- Rauserova-Lexmaulova, L.; Vanova-Uhrikova, I.; Rehakova, K. Acid-Base, Electrolyte and Lactate Abnormalities as Well as Gastric Necrosis and Survival in Dogs With Gastric Dilation-Volvulus Syndrome. A Retrospective Study in 75 Dogs. Top. Companion Anim. Med. 2020, 39, 100403. [Google Scholar] [CrossRef]
- Spinella, G.; Dondi, F.; Grassato, L.; Magna, L.; Cola, V.; Giunti, M.; Del Magno, S.; Valentini, S. Prognostic value of canine pancreatic lipase immunoreactivity and lipase activity in dogs with gastric dilatation-volvulus. PLoS ONE 2018, 13, e0204216. [Google Scholar] [CrossRef] [Green Version]
- Zacher, L.A.; Berg, J.; Shaw, S.P.; Kudej, R.K. Association between outcome and changes in plasma lactate concentration during presurgical treatment in dogs with gastric dilatation-volvulus: 64 cases (2002–2008). J. Am. Vet. Med. Assoc. 2010, 236, 892–897. [Google Scholar] [CrossRef]
- Green, T.I.; Tonozzi, C.C.; Kirby, R.; Rudloff, E. Evaluation of initial plasma lactate values as a predictor of gastric necrosis and initial and subsequent plasma lactate values as a predictor of survival in dogs with gastric dilatation-volvulus: 84 dogs (2003–2007). J. Vet. Emerg. Crit. Care 2011, 21, 36–44. [Google Scholar] [CrossRef]
- de Papp, E.; Drobatz, K.J.; Hughes, D. Plasma lactate concentration as a predictor of gastric necrosis and survival among dogs with gastric dilatation-volvulus: 102 cases (1995–1998). J. Am. Vet. Med. Assoc. 1999, 215, 49–52. [Google Scholar]
- Huang, T.H.; Hsieh, C.C.; Kuo, L.M.; Chang, C.C.; Chen, C.H.; Chi, C.C.; Liu, C.H. Malnutrition associated with an increased risk of postoperative complications following hepatectomy in patients with hepatocellular carcinoma. HPB 2019, 21, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.G. Electrical activity of the heart. In Cunningam’s Textbook of Veterinary Physiology, 5th ed.; Elsevier Saunders: St. Louis, MI, USA, 2013; pp. 171–187. [Google Scholar]
- Silverstein, D.C.; Hopper, K. Small Animal Critical Care, 2nd ed.; Elsevier Saunders: St. Louis, MI, USA, 2015. [Google Scholar]
- Britton, B.M.; Kelleher, M.E.; Gregor, T.P.; Sorenmo, K.U. Evaluation of factors associated with prolonged hospital stay and outcome of febrile neutropenic patients receiving chemotherapy: 70 cases (1997–2010). Vet. Comp. Oncol. 2014, 12, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Prittie, J. Optimal endpoints of resuscitation and early goal-directed therapy. J. Vet. Emerg. Crit. Care 2006, 16, 329–339. [Google Scholar] [CrossRef]
- Bruchim, Y.; Kelmer, E. Postoperative management of dogs with gastric dilatation and volvulus. Top Companion Anim. Med. 2014, 29, 81–85. [Google Scholar] [CrossRef]
- Rady, M.Y.; Smithline, H.A.; Blake, H.; Nowak, R.; Rivers, E. A comparison of the shock index and conventional vital signs to identify acute, critical illness in the emergency department. Ann. Emerg. Med. 1994, 24, 685–690. [Google Scholar] [CrossRef]
- Berger, T.; Green, J.; Horeczko, T.; Hagar, Y.; Garg, N.; Suarez, A.; Panacek, E.; Shapiro, N. Shock index and early recognition of sepsis in the emergency department: Pilot study. West. J. Emerg. Med. 2013, 14, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraenzlin, M.N.; Cortes, Y.; Fettig, P.K.; Bailey, D.B. Shock index is associated with mortality in canine vehicular trauma patients. J. Vet. Emerg. Crit. Care 2020, 30, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, Í.; Rosenstein, P.G.; Hughes, D. Update: Clinical Use of Plasma Lactate. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 325–342. [Google Scholar] [CrossRef]
- Bush, M.; Carno, M.A.; St Germaine, L.; Hoffmann, D.E. The effect of time until surgical intervention on survival in dogs with secondary septic peritonitis. Can. Vet. J. 2016, 57, 1267–1273. [Google Scholar] [PubMed]
- Hall, K.E.; Holowaychuk, M.K.; Sharp, C.R.; Reineke, E. Multicenter prospective evaluation of dogs with trauma. J. Am. Vet. Med. Assoc. 2014, 244, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Cortellini, S.; Seth, M.; Kellett-Gregory, L.M. Plasma lactate concentrations in septic peritonitis: A retrospective study of 83 dogs (2007-2012). J. Vet. Emerg. Crit. Care 2015, 25, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnelle, A.N.; Barger, A.M. Neutropenia in dogs and cats: Causes and consequences. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, E.M.; Rudloff, E.; Kirby, R. The role of albumin replacement in the critically ill veterinary patient: Albumin in critical illness. J. Vet. Emerg. Crit. Care 2002, 12, 113–124. [Google Scholar] [CrossRef]
- Ralphs, S.C.; Jessen, C.R.; Lipowitz, A.J. Risk factors for leakage following intestinal anastomosis in dogs and cats: 115 cases (1991–2000). J. Am. Vet. Med. Assoc. 2003, 223, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Craft, E.M.; Powell, L.L. The use of canine-specific albumin in dogs with septic peritonitis. J. Vet. Emerg. Crit. Care 2012, 22, 631–639. [Google Scholar] [CrossRef]
- Horowitz, F.B.; Read, R.L.; Powell, L.L. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis. Can. Vet. J. 2015, 56, 591–597. [Google Scholar] [PubMed]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef]
- Toner, A.; Hamilton, M. The long-term effects of postoperative complications. Curr. Opin. Crit. Care 2013, 19, 364–368. [Google Scholar] [CrossRef]
- Smith, J.; Kelly, K.A.; Weinshilboum, R.M. Pathophysiology of postoperative ileus. Arch. Surg. 1977, 112, 203–209. [Google Scholar] [CrossRef]
- Liu, D.T.; Brown, D.C.; Silverstein, D.C. Early nutritional support is associated with decreased length of hospitalization in dogs with septic peritonitis: A retrospective study of 45 cases (2000–2009). J. Vet. Emerg. Crit. Care 2012, 22, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Beal, M.W.; Brown, D.C.; Shofer, F.S. The effects of perioperative hypothermia and the duration of anesthesia on postoperative wound infection rate in clean wounds: A retrospective study. Vet. Surg. 2000, 29, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C.; Conzemius, M.G.; Shofer, F.; Swann, H. Epidemiologic evaluation of postoperative wound infections in dogs and cats. J. Am. Vet. Med. Assoc. 1997, 210, 1302–1306. [Google Scholar]
- Espinel-Rupérez, J.; Martín-Ríos, M.D.; Salazar, V.; Baquero-Artigao, M.R.; Ortiz-Díez, G. Incidence of surgical site infection in dogs undergoing soft tissue surgery: Risk factors and economic impact. Vet. Rec. Open 2019, 6, e000233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eugster, S.; Schawalder, P.; Gaschen, F.; Boerlin, P. A prospective study of postoperative surgical site infections in dogs and cats. Vet. Surg. 2004, 33, 542–550. [Google Scholar] [CrossRef]
- Vasseur, P.B.; Levy, J.; Dowd, E.; Eliot, J. Surgical wound infection rates in dogs and cats. Data from a teaching hospital. Vet. Surg. 1988, 17, 60–64. [Google Scholar] [CrossRef]
- Nelson, L.L. Surgical site infections in small animal surgery. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Hall, D.M.; Buettner, G.R.; Oberley, L.W.; Xu, L.; Matthes, R.D.; Gisolfi, C.V. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H509–H521. [Google Scholar] [CrossRef] [Green Version]
- Hoehne, S.N.; Hopper, K.; Epstein, S.E. Retrospective evaluation of the severity of and prognosis associated with potassium abnormalities in dogs and cats presenting to an emergency room (January 2014-August 2015): 2441 cases. J. Vet. Emerg. Crit. Care 2019, 29, 653–661. [Google Scholar] [CrossRef] [PubMed]
Comorbidity Index (CI) | |
---|---|
0 | No comorbidity present |
1 | Any malignancy, compensated diabetes, mild cardiomyopathy |
2 | Moderate or severe cardiomyopathy, liver disease, renal insufficiency, decompensated diabetes |
3 | Metastatic tumour |
Minor Complication | Major Complications |
---|---|
Anorexia (more than 24 h without voluntary eating) Vomiting/regurgitation Diarrhoea Melena/haematochezia Tachycardia (HR > 140 bpm for small-breed dogs/HR > 100 bpm for large-breed dog) Bradycardia (HR < 60 bpm) Tachypnoea (RR > 40 rpm) Incisional complications (seroma, dehiscence, infection) without requiring surgical intervention Phlebitis Hypotension (MAP < 60 mm Hg/SAP < 90 mmHg as measured via a direct or indirect method) not requiring vasopressor therapy Hypertension (SAP > 180 mmHg) Fever Abdominal pain (assessed using the Glasgow Composite Pain Score) Anaemia (haematocrit < 30%) Leucocytosis (WBC > 19 × 103/μL)/leukopenia (WBC < 5 × 103/μL) Hypoalbuminemia (albumin < 2.5 g/dL Hyperlactatemia (lactate > 2.5 mmol/L) Hypoglycaemia (glucose < 60 mg/dL) Major electrolyte imbalance (K+ < 3.3 mmol/L or > 5.2 mmol/L; Ca+2 < 1.1 mmol/L or > 1.6 mmol/L; Na+ > 165 mmol/L or < 125 mmol/L; Cl− > 140 mmol/L or < 90 mmol/L) | Hypotension requiring vasopressor therapy Pulmonary complications: respiratory failure requiring oxygen supplementation/mechanical ventilation Neurological signs Intra-abdominal suture dehiscence (retrospectively deemed to have occurred if results of postoperative abdominocentesis were consistent with sepsis or dehiscence was confirmed during a subsequent surgery or at necropsy) Surgical reintervention Acute kidney injury (creatinine levels increase 0.3 mg/dL from the initial value or creatinine values higher than 1.6 mg/dL) SIRS/sepsis: ≥ 2 of the following criteria: Hypo- or hyperthermia (<37.8 or >39.4 °C), Tachycardia (HR > 140 bpm/min), tachypnoea (RR > 20 bpm/min), leukopenia or leucocytosis (WBC (<6.0 or >16.0 × 103/μL)) or immature (band) neutrophils > 3%) |
Variables | All Dogs (n = 82) | Survivors (n = 65) | Non-Survivors (n = 17) | p Value |
---|---|---|---|---|
Heart rate (beats/min) | 138 (80–247) | 130 (60–220) | 160 (80–250) | 0.001 |
Respiratory rate (breaths/min) | 40 (16–150) | 44 (16–150) | 32 (20–80) | 0.08 |
Systolic arterial blood pressure (mmHg) | 130 (70–240) | 130 (70–270) | 130 (70–200) | 0.65 |
Body temperature (°C) | 38.4 (33.4–40.1) | 38.6 (35.3–40.2) | 37.6 (33.4–40.1) | 0.002 |
Shock index (HR/SAP) | 0.98 (0.6–2.85) | 0.94 (0.3–2.8) | 1.2 (0.6–3.3) | 0.01 |
Variables | All Dogs (n = 82) | Survivors (n = 65) | Non-Survivors (n = 17) | p Value |
---|---|---|---|---|
pH | 7.38 (6.81–7.48) | 7.39 (7.12–7.55) | 7.23 (6.81–7.46) | <0.0001 |
PCO2 (mm Hg) | 36.4 ± 9.4 | 35.2 ± 8.7 | 41 ± 10.8 | 0.03 |
BE (mmol/L) | −5.2 ± 6.1 | −3.6 ± 4.5 | −10.5 ± 7.9 | <0.0001 |
HCO3− (mm Hg) | 19.7 ± 4.9 | 20.7 ± 4.2 | 16.2 ± 5.9 | 0.001 |
Glucose (mg/dL) | 114 (5–356) | 113 (30–274) | 128 (5–356) | 0.56 |
Lactate (mmol/L) | 2.1 (0.3–16.6) | 1.9 (0.3–14.8) | 5 (0.6–16.6) | 0.008 |
Na+ (mmol/L) | 144 ± 7 | 144 ± 6 | 144 ± 8 | 0.96 |
K+ (mmol/L) | 3.72 (2.9–5.1) | 3.7 ± 0.4 | 4.3 ± 0.6 | <0.0001 |
Cl− (mmol/L) | 113 (92–134) | 111 ± 6 | 113 ± 8 | 0.35 |
Ca+2 (mmol/L) | 1.31 (0.79–3.28) | 1.23 (0.39–1.64) | 1.28 (0.56–1.36) | 0.83 |
WBC count (× 103/μL) | 12.92 (3.8–43) | 13.2 (4.7–43) | 10.5 (3.8–39) | 0.17 |
Platelet count (× 103/μL) | 246 (8–590) | 261 (40–590) | 160 (8–484) | 0.02 |
Haemoglobin (g/dL) | 15.4 ± 4.5 | 15.7 ± 4 | 14.6 ± 6.1 | 0.38 |
Total proteins (g/dL) | 6.6 ± 1.4 | 6.9 ± 1.4 | 5.3 ± 1.1 | 0.001 |
Creatinine (mg/dL) | 0.9 (0.4–12.8) | 0.9 (0.4–4.3) | 1 (0.04–12.8) | 0.88 |
Albumin (mg/dL) | 3 ± 0.7 | 3.2 ± 0.7 | 2.1 ± 0.6 | 0.0002 |
Characteristics | n (%) | Mortality (%) | Odds Ratio | p Value |
---|---|---|---|---|
All patients | 82 | 17/82 (21) | ||
BCS (scale 1–5) | ||||
BCS ≤ 2 | 17 (21) | 7/16 (43) | Base | p < 0.05 |
BCS 3 | 54 (66) | 9/44 (20) | 0.331 | |
BCS ≥ 4 | 11 (14) | 0 | <0.001 | |
CI (0–3) | ||||
CI 0 | 58 (71) | 10/58 (17) | Base | p < 0.001 |
CI1 | 16 (19) | 0 | 0.830 | |
CI ≥ 2 | 8 (10) | 7/8 (87.5) | 33.600 | |
Tachycardia at admission | ||||
Yes | 48 (58.5) | 16/48 (33) | Base | p < 0.001 |
No | 34 (41.5) | 1/34 (2.9) | 16.498 | |
Temperature (°) at admission | ||||
<37.5 | 13 (16) | 8/13 (62) | Base | p < 0.001 |
37.5–39.2 | 47 (57) | 7/47 (15) | 0.109 | |
>39.2 | 17 (21) | 2/17 (12) | 0.083 | |
SI at admission | ||||
>1 | 37 (45) | 12/37 (32) | Base | p < 0.05 |
≤1 | 45 (55) | 5/45 (11) | 0.26 | |
pH value at admission | ||||
<7.3 | 22 (27) | 12/22 (55) | Base | p < 0.001 |
7.3–7.45 | 34 (41) | 3/34 (9) | 0.064 | |
>7.45 | 14 (17) | 1/14 (7) | 0.081 | |
Lactate (mmol/L) value at admission | ||||
<2.5 | 43 (52) | 6/43 (14) | Base | p < 0.001 |
2.5–4.5 | 11 (13) | 0/11 (0) | 0.860 | |
>4.5 | 17 (21) | 11/17 (65) | 11.305 | |
Platelet count (× 103/μL) at admission | ||||
<175 | 26 (32) | 12/26 (46) | Base | p < 0.001 |
175–500 | 46 (56) | 5/46 (11) | 0.001 | |
>500 | 5 (6) | 0/5 (0) | 0.891 | |
WBC count (× 103/μL) at admission | ||||
<6 | 13 (16) | 7/13 (54) | Base | p < 0.001 |
6–16.9 | 35 (43) | 3/35 (8) | 0.080 | |
>16.9 | 26 (32) | 6/26 (26) | 0.257 | |
Haemoglobin (g/dL) value at admission | ||||
<13 | 23 (19) | 8/23 (35) | Base | p < 0.05 |
13–21 | 52 (43) | 5/52 (10) | 0.199 | |
>21 | 7 (6) | 3/7 (43) | 1.406 | |
Albumin (g/dL) value at admission | ||||
<2.5 | 11 (13) | 6/11 (55) | Base | p < 0.001 |
2.5–4 | 34 (41) | 2/34 (6) | <0.001 | |
>4 | 6 (7) | 0/6 (0) | <0.001 | |
Perioperative blood product transfusion | ||||
Yes | 18 (22) | 9/18 (50) | Base | p < 0.001 |
No | 64 (78) | 8/64 (13) | 0.142 | |
Intraoperative hypotension | ||||
Yes | 50 (61) | 17/50 (34) | Base | p < 0.001 |
No | 32 (39) | 0/32 (0) | <0.001 | |
Use of vasopressors in the postoperative period | ||||
Yes | 15 (18) | 10/15 (67) | Base | p < 0.001 |
No | 67 (82) | 6/67 (9) | 0.050 | |
Postoperative development of major complications | ||||
Yes | 20 (24) | 14/20 (70) | Base | p < 0.001 |
No | 62 (75) | 3/62 (5) | 171,128 | |
Postoperative development of minor complications | ||||
Yes | 67 (82) | 16 (24) | Base | p < 0.001 |
No | 15 (18) | 0 (0) | 23,008 |
Postoperative Complication | Variables | Odds Ratio | p Value |
---|---|---|---|
Anorexia | Age: >8 years | 13.75 | p < 0.001 |
Anorexia | Weight: <10 kg | 0.195 | p < 0.05 |
Anorexia | Tachycardia at admission | 4.051 | p < 0.01 |
Anorexia | pH < 7.3 at admission | 0.246 | p < 0.05 |
Anorexia | Intraoperative hypotension | 0.241 | p < 0.01 |
Anorexia | Postoperative use of vasopressors | 0.208 | p < 0.05 |
Vomiting | Hb value > 21 g/dL at admission | 16.072 | p < 0.01 |
Vomiting | Hypothermia at admission | 0.228 | p < 0.05 |
Diarrhoea | BCS ≤ 2 | 0.303 | p < 0.01 |
Diarrhoea | Hb value > 21 g/dl at admission | 8.000 | p < 0.05 |
Diarrhoea | Postoperative use of vasopressors | 0.148 | p < 0.01 |
SIRS/sepsis | BCS ≤ 2 | 0.356 | p < 0.05 |
SIRS/sepsis | CI ≥ 2 | 7.142 | p < 0.05 |
SIRS/sepsis | Tachycardia at admission | 18.157 | p < 0.001 |
SIRS/sepsis | SI > 1 at admission | 4.67 | p < 0.05 |
SIRS/sepsis | Intraoperative hypotension | < 0.001 | p < 0.001 |
SIRS/sepsis | Perioperative use of blood product | 0.121 | p < 0.01 |
SIRS/sepsis | Postoperative use of vasopressors | 0.016 | p < 0.001 |
SIRS/sepsis | WBC < 6 × 103/μL | 0.131 | p < 0.05 |
Surgical site complications | BCS ≤ 2 | 0.071 | p < 0.05 |
Major electrolyte imbalance | CI ≥ 2 | 11.783 | p < 0.05 |
Major electrolyte imbalance | Postoperative use of vasopressors | 0.258 | p < 0.05 |
Postoperative hypotension requiring use of vasopressors | Tachycardia at admission | 13.998 | p < 0.001 |
Postoperative hypotension requiring use of vasopressors | SI > 1 at admission | 13.998 | p < 0.001 |
Postoperative hypotension requiring use of vasopressors | Intraoperative hypotension | 0.081 | p < 0.01 |
Postoperative hypotension requiring use of vasopressors | Perioperative use of blood product | 0.137 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fages, A.; Soler, C.; Fernández-Salesa, N.; Conte, G.; Degani, M.; Briganti, A. Perioperative Outcome in Dogs Undergoing Emergency Abdominal Surgery: A Retrospective Study on 82 Cases (2018–2020). Vet. Sci. 2021, 8, 209. https://doi.org/10.3390/vetsci8100209
Fages A, Soler C, Fernández-Salesa N, Conte G, Degani M, Briganti A. Perioperative Outcome in Dogs Undergoing Emergency Abdominal Surgery: A Retrospective Study on 82 Cases (2018–2020). Veterinary Sciences. 2021; 8(10):209. https://doi.org/10.3390/vetsci8100209
Chicago/Turabian StyleFages, Aida, Carme Soler, Nuria Fernández-Salesa, Giuseppe Conte, Massimiliano Degani, and Angela Briganti. 2021. "Perioperative Outcome in Dogs Undergoing Emergency Abdominal Surgery: A Retrospective Study on 82 Cases (2018–2020)" Veterinary Sciences 8, no. 10: 209. https://doi.org/10.3390/vetsci8100209
APA StyleFages, A., Soler, C., Fernández-Salesa, N., Conte, G., Degani, M., & Briganti, A. (2021). Perioperative Outcome in Dogs Undergoing Emergency Abdominal Surgery: A Retrospective Study on 82 Cases (2018–2020). Veterinary Sciences, 8(10), 209. https://doi.org/10.3390/vetsci8100209