Antibacterial Activity of Honey Samples from Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Melissopalynological Analysis and Physico-Chemical Analysis
2.3. Bacterial Strains
2.4. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
2.5. Statistical Analysis
3. Results
3.1. Melissopalynological and Physico-Chemical Analysis
3.2. Minimal Inhibitory Concentration and Minimal Bactericidal Concentration)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Szweda, P. Antimicrobial Activity of Honey. In Honey Analysis; IntechOpen: London, UK, 2017. [Google Scholar]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017, 130, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Felicioli, A.; Cilia, G.; Mancini, S.; Turchi, B.; Galaverna, G.; Cirlini, M.; Cerri, D.; Fratini, F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Biosci. 2019, 29, 102–109. [Google Scholar] [CrossRef]
- Libonatti, C.; Varela, S.; Basualdo, M. Antibacterial activity of honey: A review of honey around the world. J. Microbiol. Antimicrob. 2014, 6, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Sagona, S.; Bozzicolonna, R.; Nuvoloni, R.; Cilia, G.; Torracca, B.; Felicioli, A. Water activity of fresh bee pollen and mixtures of bee pollen-honey of different botanical origin. LWT 2017, 84, 595–600. [Google Scholar] [CrossRef]
- Bucekova, M.; Jardekova, L.; Juricova, V.; Bugarova, V.; Di Marco, G.; Gismondi, A.; Leonardi, D.; Farkasovska, J.; Godocikova, J.; Laho, M.; et al. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019, 24, 1573. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grecka, K.; Kuś, P.; Worobo, R.W.; Szweda, P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2018, 23, 260. [Google Scholar] [CrossRef] [Green Version]
- Pittia, P.; Antonello, P. Safety by Control of Water Activity: Drying, Smoking, and Salt or Sugar Addition. In Regulating Safety of Traditional and Ethnic Foods; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 7–28. [Google Scholar]
- Zamora, M.C.; Chirife, J.; Roldán, D. On the nature of the relationship between water activity and % moisture in honey. Food Control. 2006, 17, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Ghramh, H.A.; Khan, K.A.; AlShehri, A.M.A. Antibacterial potential of some Saudi honeys from Asir region against selected pathogenic bacteria. Saudi J. Biol. Sci. 2018, 26, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Almasaudi, S.B.; Al-Nahari, A.A.; El-Ghany, E.S.M.A.; Barbour, E.; Al Muhayawi, S.M.; Al-Jaouni, S.; Azhar, E.; Qari, M.; Qari, Y.A.; Harakeh, S. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J. Biol. Sci. 2017, 24, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nahari, A.A.; Almasaudi, S.B.; El-Ghany, E.S.M.A.; Barbour, E.; Al Jaouni, S.K.; Harakeh, S. Antimicrobial activities of Saudi honey against Pseudomonas aeruginosa. Saudi J. Biol. Sci. 2015, 22, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.E.A.; Kabbashi, A.S.; Koko, W.S.; Rana, R.M.; Adgaba, N.; Ghamdi, A.A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J. Biol. Sci. 2017, 26, 238–243. [Google Scholar] [CrossRef]
- Kacániová, M.; Vukovic, N.; Chlebo, R.; Hascík, P.; Rovná, K.; Cubon, J.; Dzugan, M.; Pasternakiewicz, A. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch. Biol. Sci. 2012, 64, 927–934. [Google Scholar] [CrossRef]
- Sagona, S.; Turchi, B.; Fratini, F.; Giusti, M.; Torracca, B.; Biondi, C.; Roberta, N.; Cerri, D.; Felicioli, A. Antimicrobial activity of fifteen Italian honeys against Paenibacillus larvae ATCC 9545. J. Hell. Vet. Med. Soc. 2018, 68, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Adetuyi, F.; Ibrahim, T.; Ojei, J.; Ogundahunsi, G. Total phenol, tocopherol and antibacterial quality of honey Apis mellifera sold in Owo community, Ondo State, Nigeria. Afr. J. Biotechnol. 2002, 8, 1305–1309. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W.J. (Eds.) AOAC International Official Methods of Analysis, 18th ed.; AOAC Intl.: Rockville, MD, USA, 2005. [Google Scholar]
- Bogdanov, S.; Martin, P.; Lüllmann, C. Harmonised methods of the European Honey Commission. Apidologie 1997, 28, 1–59. [Google Scholar]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Oddo, L.P.; Piro, R.; Bruneau, É.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Flamini, C.; Lheritier, J.; Morlot, M.; Russmann, H.; et al. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Taormina, P.J.; Niemira, B.A.; Beuchat, L. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 2001, 69, 217–225. [Google Scholar] [CrossRef]
- Basualdo, C.; Sgroy, V.; Finola, M.S.; Marioli, J.M. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet. Microbiol. 2007, 124, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, O.; Dolan, A.; Athman, R.; Power, A.; Gethin, G.; Cowman, S.; Humphreys, H. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Waili, N.S.; Salom, K.; Butler, G.; Al Ghamdi, A.A. Honey and Microbial Infections: A Review Supporting the Use of Honey for Microbial Control. J. Med. Food 2011, 14, 1079–1096. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.S.; Zaat, S. Antibacterial components of honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef]
- Brudzynski, K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can. J. Microbiol. 2006, 52, 1228–1237. [Google Scholar] [CrossRef]
- De-Melo, A.A.M.; De Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Sagona, S.; Turchi, B.; Fratini, F.; Giusti, M.; Torracca, B.; Nuvoloni, R.; Cerri, D.; Felicioli, A. Preliminary evaluation of glucose oxidase and its products in vitro antimicrobial activities on Paenibacillus larvae ATCC9545 vegetative form. Bull. Insectol. 2015, 68, 233–237. [Google Scholar]
- Brudzynski, K.; Sjaarda, C. Antibacterial Compounds of Canadian Honeys Target Bacterial Cell Wall Inducing Phenotype Changes, Growth Inhibition and Cell Lysis That Resemble Action of β-Lactam Antibiotics. PLoS ONE 2014, 9, e106967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.R.; Smith, L.A.; Campbell, F.; Seers, K.; McQuay, H.; Moore, A.R. Systematic review of the use of honey as a wound dressing. BMC Complement. Altern. Med. 2001, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, N.M.; Cutting, K.F. Antibacterial Honey (MedihoneyTM): In-vitro Activity against Clinical Isolates of MRSA, VRE, and Other Multiresistant Gram-negative Organisms Including Pseudomonas aeruginosa. Wounds a Compend. Clin. Res. Pract. 2007, 19, 231–236. [Google Scholar]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Yuksel, P. Comparison of the VersaTrek and BACTEC MGIT 960 systems for the contamination rate, time of detection and recovery of mycobacteria from clinical specimens. Afr. J. Microbiol. Res. 2011, 5, 844–852. [Google Scholar] [CrossRef]
- Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002, 177, 67–80. [Google Scholar] [CrossRef]
- Zainol, M.I.; Yusoff, K.M.; Yusof, M.Y. Antibacterial activity of selected Malaysian honey. BMC Complement. Altern. Med. 2013, 13, 129. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, A.G.; Al Guthami, F.M.; Al Gethami, A.; Allah, F.M.A.; Saleh, A.A.; Fouad, E. Potential antibacterial activity of some Saudi Arabia honey. Vet. World 2017, 10, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Jantakee, K.; Tragoolpua, Y. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol. Res. 2015, 48, 4. [Google Scholar] [CrossRef] [Green Version]
- El-Toum, S.K.; Yagoub, S.O. Compression Study of Anti-microbial Activity of Honey-bees. Res. J. Microbiol. 2007, 2, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Wang, J.; Yang, S.; Chen, S.; Song, Y. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys. Food Funct. 2011, 2, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Vica, M.L.; Glevitzky, M.; Dumitrel, G.-A.; Junie, L.M.; Popa, M. Antibacterial activity of different natural honeys from Transylvania, Romania. J. Environ. Sci. Health Part B 2013, 49, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Shamala, T.R.; Jyothi, Y.P.S.; Saibaba, P. Antibacterial effect of honey on the in vitro and in vivo growth of Escherichia coli. World J. Microbiol. Biotechnol. 2002, 18, 863–865. [Google Scholar] [CrossRef]
- Badawy, O.; Shafii, S.; Tharwat, E.; Kamal, A. Antibacterial activity of bee honey and its therapeutic usefulness against Escherichia coli 0157:H7 and Salmonella typhimurium infection. Rev. Sci. Tech. 2004, 23, 1011–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.; Cavanagh, H.M. Antibacterial Activity of 13 Honeys against Escherichia coli and Pseudomonas aeruginosa. J. Med. Food 2005, 8, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, H.M.H. Study Antibacterial Activity of Honey against Some Common Species of Pathogenic Bacteria. Iraqi J. Sci. 2018, 59, 30–37. [Google Scholar]
- Rahman, M.M.; Richardson, A.; Sofian-Azirun, M. Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. Afr. J. Microbiol. Res. 2010, 4, 1872–1878. [Google Scholar]
- Voidarou, C.; Alexopoulos, A.; Plessas, S.; Karapanou, A.; Mantzourani, I.; Stavropoulou, E.; Fotou, K.; Tzora, A.; Skoufos, I.; Bezirtzoglou, E. Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe 2011, 17, 375–379. [Google Scholar] [CrossRef]
- Fidaleo, M.; Zuorro, A.; Lavecchia, R. Antimicrobial Activity of some Italian Honeys against Pathogenic Bacteria. Chem. Eng. Trans. 2011, 24, 1015–1020. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, A.; Pandey, V.; Chacko, K.M.; Khandal, R.K. Antibacterial Activity of Raw and Processed Honey. Electron. J. Biol. 2010, 5, 58–66. [Google Scholar]
- Coniglio, M.; Faro, G.; Giammanco, G.; Pignato, S.; Marranzano, M. Antimicrobial potential of Sicilian honeys against commensal Escherichia coli and pathogenic Salmonella serovar Infantis. J. Prev. Med. Hyg. 2013, 54, 223–226. [Google Scholar] [PubMed]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A.; et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltrušaitytė, V.; Venskutonis, P.R.; Čeksterylė, V. Antibacterial Activity of Honey and Beebread of Different Origin against S. aureus and S. epidermidis. Food Technol. Biotechnol. 2007, 45, 201–208. [Google Scholar]
- Dinkov, D. The antibacterial activity of acacia, multifloral and oak honeydew honeys. Int. J. Vet. Sci. Anim. Husb. 2016, 1, 7–10. [Google Scholar]
- Kuś, P.; Szweda, P.; Jerković, I.; Tuberoso, C.I. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett. Appl. Microbiol. 2016, 62, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Anthimidou, E.; Mossialos, D. Antibacterial Activity of Greek and Cypriot Honeys against Staphylococcus aureus and Pseudomonas aeruginosa in Comparison to Manuka Honey. J. Med. Food 2013, 16, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Szczęsna, T. Protein content and amino acid composition of bee-collected pollen from selected botanical origins. J. Apic. Sci. 2006, 50, 81–90. [Google Scholar]
- Roulston, T.H.; Cane, J.H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 2000, 222, 187–209. [Google Scholar] [CrossRef]
- Nogueira, C.; Iglesias, A.; Feás, X.; Estevinho, L.M. Commercial Bee Pollen with Different Geographical Origins: A Comprehensive Approach. Int. J. Mol. Sci. 2012, 13, 11173–11187. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
Sample | Botanical Origin | Melissopalynology | Provenience | Physico-Chemical Analyses | |||
---|---|---|---|---|---|---|---|
pH | Glucose 1 | Fructose 1 | Acidity 2 | ||||
1 | Brassica spp. | Brassica 99% Taraxacum 1% | Zhytomyr region | 4.2 | 47.5 | 42.3 | 14.8 |
2 | Multifloral (organic honey) | Medicago 14% Helianthus 12% Phacelia 11% Tilia 8% | Ivano-Frankivsk region | 3.8 | 27.9 | 39.9 | 19.7 |
3 | Multifloral (medicinal plants) | Eucalyptus 21% Phacelia 12% Lavandula 8% Thymus 5% | Kiev region | 3.9 | 25.5 | 37.4 | 30.4 |
4 | Multifloral | Castanea 15% Tilia 11% Thymus 8% Phacelia 2% | Zhytomyr region | 3.8 | 28.9 | 42.5 | 33.0 |
5 | Echium vulgare | Echium 61% Robinia 12% Phacelia 12% Thymus 9% | Kherson region | 3.8 | 30.1 | 41.9 | 28.0 |
6 | Brassica spp. | Brassica 97% Taraxacum 3% | Zhytomyr region | 3.8 | 47.1 | 44.7 | 10.7 |
7 | Multifloral (organic honey) | Eucalyptus 18% Phacelia 7% Thymus 3% | Ivano-Frankivsk region | 3.9 | 29.0 | 37.3 | 22.2 |
8 | Helianthus spp. | Helianthus 69% Trifolium 12% Tilia 10% Medicago 9% | Kharkiv region | 3.8 | 37.0 | 42.8 | 24.7 |
9 | Multifloral | Rosmarinus 20% Taraxacum 10% Brassica 8% | Kiev region | 3.7 | 29.4 | 37.7 | 23.9 |
10 | Robinia spp. | Robinia 25% Phacelia 12% Taraxacum 3% | Ukraine, industrial honey | 3.9 | 26.1 | 41.3 | 11.3 |
11 | Multifloral | Eucalyptus 21% Castanea 13% Phacelia 11% Trifolium 5% | Kiev region | 3.8 | 27.0 | 37.6 | 27.1 |
12 | Multifloral (organic honey) | Castanea 17% Aesculus 12% Phacelia 11% Trifolium 8% Thymus 5% | Ivano-Frankivsk region | 3.9 | 27.0 | 37.5 | 16.0 |
13 | Helianthus spp. | Helianthus 71% Trifolium 11% Medicago 8% | Zhytomyr region | 3.9 | 37.5 | 43.9 | 28.6 |
14 | Robinia spp. | Robinia 31% Castanea 11% Taraxacum 4% | Ukraine, industrial honey | 3.8 | 26.4 | 43.2 | 11.3 |
15 | Robinia spp. | Robinia 27% Phacelia 10% Castanea 4% | Kiev region | 3.5 | 27.1 | 42.4 | 11.6 |
16 | Helianthus spp. | Helianthus 68% Medicago 18% Trifolium 14% | Zhytomyr region | 3.9 | 36.9 | 43.4 | 21.0 |
17 | Robinia spp. | Robinia 29% Phacelia 11% Taraxacum 6% | Ukraine, industrial honey | 4.0 | 28.2 | 41.2 | 11.5 |
18 | Helianthus spp. | Helianthus 80% Medicago 11% Trifolium 9% | Kharkiv region | 3.9 | 37.0 | 42.5 | 27.9 |
19 | Multifloral | Rosmarinus 17% Taraxacum 12% Brassica 7% | Zhytomyr region | 3.8 | 32.5 | 40.7 | 34.6 |
20 | Helianthus spp. | Helianthus 72% Medicago 12% Trifolium 10% Phacelia 6% | Kharkiv region | 3.8 | 37.5 | 44.6 | 28.6 |
21 | Robinia spp. | Robinia 35% Phacelia 9% Taraxacum 6% | Donetsk region | 3.8 | 26.4 | 43.2 | 11.3 |
22 | Multifloral | Eucalyptus 18% Phacelia 13% Castanea 9% Thymus 3% | Donetsk region | 3.8 | 31.4 | 37.4 | 18.1 |
23 | Helianthus spp. | Helianthus 90% Medicago 7% Trifolium 3% | Donetsk region | 3.9 | 37.6 | 43.1 | 24.2 |
24 | Brassica spp. | Brassica 98% Taraxacum 2% | Kiev region | 4.1 | 49.3 | 42.4 | 13.3 |
25 | Robinia spp. | Robinia 21% Phacelia 10% Castanea 8% | Ukraine, industrial honey | 3.9 | 25.6 | 45.0 | 10.8 |
26 | Robinia spp. | Robinia 34% Castanea 13% Phacelia 11% Taraxacum 5% | Ukraine, industrial honey | 4.0 | 26.9 | 44.1 | 11.3 |
27 | Robinia spp. | Robinia 25% Castanea 9% Taraxacum 2% | Ukraine, industrial honey | 4.0 | 26.2 | 43.5 | 10.9 |
28 | Multifloral | Castanea 17% Aesculus 12% Trifolium 11% Thymus 8% Lavandula 5% | Zhytomyr region | 3.9 | 31.9 | 37.9 | 20.8 |
29 | Tilia spp. | Tilia 25% Castanea 12% | Kiev region | 4.5 | 28.5 | 41.6 | 24.3 |
30 | Tilia spp. | Tilia 31% Castanea 14% | Kiev region | 4.2 | 30.1 | 41.9 | 19.8 |
31 | Multifloral (medicinal plants) | Eucalyptus 23% Lavandula 13% Phacelia 9% Trifolium 4% | Kiev region | 3.9 | 31.8 | 38.7 | 26.2 |
32 | Helianthus spp. | Helianthus 75% Medicago 13% Trifolium 12% | Zhytomyr region | 3.8 | 38.2 | 44.8 | 20.3 |
33 | Robinia spp. | Robinia spp. 39% Castanea 12% Phacelia 11% | Ukraine, industrial honey | 3.7 | 26.0 | 45.7 | 10.1 |
34 | Coriandrum sativum | Coriandrum 99% Castanea 1% | Ukraine, industrial honey | 3.9 | 35.7 | 35.9 | 30.0 |
35 | Multifloral | Taraxacum 18% Brassica 14% Rosmarinus 3% Tilia 2% | Zhytomyr region | 3.9 | 25.3 | 39.4 | 18.2 |
36 | Robinia spp. | Robinia spp. 28% Phacelia 12% Castanea 7% Taraxacum 2% | Ukraine, industrial honey | 4.0 | 26.2 | 42.5 | 8.7 |
37 | Multifloral | Eucalyptus 17% Castanea 16% Trifolium 11% Thymus 7% | Zhytomyr region | 3.9 | 30.9 | 37.2 | 19.8 |
38 | Helianthus spp. | Helianthus 81% Trifolium 9% Medicago 6% | Zhytomyr region | 3.8 | 37.0 | 44.9 | 30.3 |
39 | Helianthus spp. | Helianthus 99% Trifolium 1% | Zhytomyr region | 3.8 | 36.8 | 45.0 | 27.7 |
40 | Helianthus spp. | Helianthus 91% Medicago 9% | Zhytomyr region | 3.9 | 36.9 | 43.8 | 24.6 |
41 | Helianthus spp. | Helianthus 94% Trifolium 6% | Kharkiv region | 3.8 | 36.6 | 43.5 | 22.1 |
Honey Botanical Origin | Sample | Bacterial Strain | MIC Mode | MBC Mode |
---|---|---|---|---|
Brassica spp. | 1 | E. coli | 0.375 g/mL | >0.750 g/mL |
Salmonella | 0.188 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
6 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | >0.750 g/mL | ||
S. aureus | 0.188 g/mL | >0.750 g/mL | ||
24 | E. coli | 0.375 g/mL | 0.375 g/mL | |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.375 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
Organic Multifloral | 2 | E. coli | 0.375 g/mL | 0.375 g/mL |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
7 | E. coli | 0.188 g/mL | 0.750 g/mL | |
Salmonella | 0.188 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.094 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
12 | E. coli | 0.188 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.094 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
Medicinal Plant Multifloral | 3 | E. coli | 0.375 g/mL | >0.750 g/mL |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
31 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
Multifloral | 4 | E. coli | 0.188 g/mL | 0.188 g/mL |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
9 | E. coli | 0.375 g/mL | 0.375 g/mL | |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
11 | E. coli | 0.188 g/mL | 0.375 g/mL | |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
19 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
22 | E. coli | 0.375 g/mL | 0.375 g/mL | |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.375 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
28 | E. coli | 0.375 g/mL | 0.375 g/mL | |
Salmonella | 0.375 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
35 | E. coli | 0.188 g/mL | 0.750 g/mL | |
Salmonella | 0.188 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
37 | E. coli | 0.375 g/mL | >0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
E. vulgare | 5 | E. coli | 0.375 g/mL | 0.750 g/mL |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.375 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
Helianthus spp. | 8 | E. coli | 0.188 g/mL | 0.750 g/mL |
Salmonella | 0.188 g/mL | >0.75 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
13 | E. coli | 0.188 g/mL | 0.375 g/mL | |
Salmonella | 0.094 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.094 g/mL | 0.188 g/mL | ||
S. aureus | 0.094 g/mL | 0.188 g/mL | ||
16 | E. coli | 0.188 g/mL | 0.188 g/mL | |
Salmonella | 0.188 g/mL | 0.188 g/mL | ||
L. monocytogenes | 0.094 g/mL | 0.188 g/mL | ||
S. aureus | 0.094 g/mL | 0.375 g/mL | ||
18 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
20 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
23 | E. coli | 0.375 g/mL | 0.375 g/mL | |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
32 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
38 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
39 | E. coli | 0.188 g/mL | >0.75 g/mL | |
Salmonella | 0.188 g/mL | 0.75 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
40 | E. coli | 0.188 g/mL | 0.188 g/mL | |
Salmonella | 0.375 g/mL | 0.75 g/mL | ||
L. monocytogenes | 0.094 g/mL | 0.188 g/mL | ||
S. aureus | 0.375 g/mL | 0.75 g/mL | ||
41 | E. coli | 0.375 g/mL | 0.75 g/mL | |
Salmonella | 0.375 g/mL | >0.75 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.375 g/mL | ||
S. aureus | 0.375 g/mL | 0.75 g/mL | ||
Robinia spp. | 10 | E. coli | 0.375 g/mL | 0.750 g/mL |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
14 | E. coli | 0.375 g/mL | >0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
15 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
17 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.375 g/mL | ||
S. aureus | 0.188 g/mL | >0.750 g/mL | ||
21 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
25 | E. coli | 0.188 g/mL | 0.750 g/mL | |
Salmonella | 0.188 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
26 | E. coli | 0.375 g/mL | 0.750 g/mL | |
Salmonella | 0.375 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
27 | E. coli | 0.375 g/mL | >0.750 g/mL | |
Salmonella | 0.188 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
33 | E. coli | 0.188 g/mL | 0.750 g/mL | |
Salmonella | 0.188 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.375 g/mL | ||
36 | E. coli | >0.750 g/mL | >0.750 g/mL | |
Salmonella | >0.750 g/mL | >0.750 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
Tilia spp. | 29 | E. coli | 0.375 g/mL | 0.375 g/mL |
Salmonella | 0.188 g/mL | 0.375 g/mL | ||
L. monocytogenes | 0.188 g/mL | 0.375 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL | ||
30 | E. coli | 0.375 g/mL | >0.750 g/mL | |
Salmonella | 0.188 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | >0.750 g/mL | ||
S. aureus | 0.375 g/mL | 0.750 g/mL | ||
C. sativum | 34 | E. coli | 0.375 g/mL | >0.750 g/mL |
Salmonella | 0.188 g/mL | 0.750 g/mL | ||
L. monocytogenes | 0.375 g/mL | 0.750 g/mL | ||
S. aureus | 0.375 g/mL | >0.750 g/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilia, G.; Fratini, F.; Marchi, M.; Sagona, S.; Turchi, B.; Adamchuk, L.; Felicioli, A.; Kačániová, M. Antibacterial Activity of Honey Samples from Ukraine. Vet. Sci. 2020, 7, 181. https://doi.org/10.3390/vetsci7040181
Cilia G, Fratini F, Marchi M, Sagona S, Turchi B, Adamchuk L, Felicioli A, Kačániová M. Antibacterial Activity of Honey Samples from Ukraine. Veterinary Sciences. 2020; 7(4):181. https://doi.org/10.3390/vetsci7040181
Chicago/Turabian StyleCilia, Giovanni, Filippo Fratini, Matilde Marchi, Simona Sagona, Barbara Turchi, Leonora Adamchuk, Antonio Felicioli, and Miroslava Kačániová. 2020. "Antibacterial Activity of Honey Samples from Ukraine" Veterinary Sciences 7, no. 4: 181. https://doi.org/10.3390/vetsci7040181
APA StyleCilia, G., Fratini, F., Marchi, M., Sagona, S., Turchi, B., Adamchuk, L., Felicioli, A., & Kačániová, M. (2020). Antibacterial Activity of Honey Samples from Ukraine. Veterinary Sciences, 7(4), 181. https://doi.org/10.3390/vetsci7040181