Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing
Abstract
:1. Introduction
2. Material and Methods
2.1. Farms, Animals, and Sampling
2.2. Preliminary Screening
2.3. Identification of Virulotypes and O Serotypes
3. Results
3.1. PCR-Positive RAMS
3.2. CH- and PCR-Positive Colonies
3.3. Virulotypes of the PCR-Positive Colonies
3.4. O Serotypes of the PCR-Positive Colonies
3.5. Agar Media and PCR-Positive Colonies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tozzoli, R.; Scheutz, F. Diarrhoeagenic Escherichia coli infections in humans. In Pathogenic Escherichia coli: Molecular and Cellular Microbiology; Morabito, S., Ed.; Horizon Scientific Press and Caister Academic Press: Norwich, UK, 2014; pp. 1–18. ISBN 978-1-908230-37-9. [Google Scholar]
- Beutin, L.; Fach, P. Detection of Shiga toxin-producing Escherichia coli from nonhuman sources and strain typing. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing Escherichia coli; Sperandio, V., Hovde, C.J., Eds.; ASM Press: Norwich, UK; Washington, DC, USA, 2015; pp. 263–295. ISBN 978-1-555581-878-4. [Google Scholar]
- Stevens, M.P.; Frankel, G.M. The locus of enterocyte effacement and other associated virulence factors of enterohemorrhagic Escherichia coli. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing Escherichia coli; Sperandio, V., Hovde, C.J., Eds.; ASM Press: Norwich, UK; Washington, DC, USA, 2015; pp. 97–130. ISBN 978-1-555581-878-4. [Google Scholar]
- EFSA; ECDC (European Food Safety Authority, European Centre for Disease Prevention and Control). The European Union One Health 2018 zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar]
- Piérard, D.; De Greve, H.; Haesebrouck, F.; Mainil, J.G. O157:H7 and O104:H4 Vero/Shiga toxin-producing Escherichia coli: Respective role of cattle and humans. Vet. Res. 2012, 43, 13. [Google Scholar] [CrossRef] [Green Version]
- Naylor, S.W.; Low, J.C.; Besser, T.E.; Mahajan, A.; Gunn, G.J.; Pearce, M.C.; McKendrick, I.J.; Smith, D.G.E.; Gally, D.L. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 2003, 71, 150–1512. [Google Scholar] [CrossRef] [Green Version]
- Kudva, I.T.; Hovde, C.J.; John, M. Adherence of non-O157 Shiga toxin–producing Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157. Foodborne Pathog. Dis. 2013, 10, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Persad, A.K.; Lejeune, J.T. Animal reservoirs of Shiga toxin producing Escherichia coli. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing Escherichia coli; Sperandio, V., Hovde, C.J., Eds.; ASM Press: Norwich,UK; Washington, DC, USA, 2015; pp. 211–230. ISBN 978-1-555581-878-4. [Google Scholar]
- Cobbold, R.; Desmarchelier, P. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian dairy herds. Vet. Microbiol. 2000, 71, 125–137. [Google Scholar] [CrossRef]
- Mellor, G.E.; Fegan, N.; Duffy, L.L.; McMillan, K.E.; Jordan, D.; Barlow, R.S. National survey of Shiga toxin-producing Escherichia coli serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian beef cattle feces. J. Food Prot. 2016, 79, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Browne, A.S.; Midwinter, A.C.; Withers, H.; Cookson, A.L.; Biggs, P.J.; Marshall, J.C.; Benschop, J.; Hathaway, S.; Haack, N.A.; Akhter, R.N.; et al. Molecular epidemiology of Shiga toxin-producing Escherichia coli (STEC) on New-Zealand dairy farms: Application of a culture-independent assay and whole-genome sequencing. Appl. Environ. Microbiol. 2018, 84, e00481-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainil, J.G.; Fairbrother, J.M. Pathogenic Escherichia coli in domestic mammals and birds. In Pathogenic Escherichia coli: Molecular and Cellular Microbiology; Morabito, S., Ed.; Horizon Scientific Press and Caister Academic Press: Norwich, UK, 2014; pp. 19–43. ISBN 978-1-908230-37-9. [Google Scholar]
- Fakih, I.; Thiry, D.; Duprez, J.N.; Saulmont, M.; Iguchi, A.; Piérard, D.; Jouant, L.; Daube, G.; Ogura, Y.; Hayashi, T.; et al. Identification of Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli in diarrhoeic calves and comparative genomics of O5 bovine and human STEC. Vet. Microbiol. 2017, 202, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habets, A.; Crombé, F.; Nakamura, K.; Guérin, V.; De Rauw, K.; Piérard, D.; Saulmont, M.; Hayashi, T.; Mainil, J.G.; Thiry, D. Genetic characterization of Shigatoxigenic and enteropathogenic Escherichia coli O80:H2 from diarrheic and septicemic calves and relatedness to human Shigatoxigenic E. coli O80:H2. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Moxley, R.A.; Smith, D.R. Attaching-effacing Escherichia coli infections in cattle. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 29–56. [Google Scholar] [CrossRef]
- Thiry, D.; Saulmont, M.; Takaki, S.; De Rauw, K.; Duprez, J.N.; Iguchi, A.; Piérard, D.; Mainil, J.G. Enteropathogenic Escherichia coli O80:H2 in young calves with diarrhea, Belgium. Emerg. Infect. Dis. 2017, 23, 2093–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiry, D.; De Rauw, K.; Takaki, S.; Duprez, J.N.; Iguchi, A.; Piérard, D.; Korsak, N.; Mainil, J.G. Low prevalence of the “gang of seven” and absence of the O80:H2 serotypes among Shigatoxigenic and enteropathogenic Escherichia coli (STEC and EPEC) in intestinal contents of healthy cattle at two slaughterhouses in Belgium in 2014. J. Appl. Microbiol. 2018, 124, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.H.; Sheng, H.Q.; Wynia, S.A.; Hovde, C.J. Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157:H7-colonized cattle and those transiently shedding the same organism. J. Clin. Microbiol. 2003, 41, 4924–4929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCabe, E.; Burgess, C.M.; Lawal, D.; Whyte, P.; Duffy, G. An investigation of shedding and super-shedding of Shiga toxigenic Escherichia coli O157 and E. coli O26 in cattle presented for slaughter in the Republic of Ireland. Zoonoses Public Health 2019, 66, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelen, F.; Thiry, D.; Devleesschauwer, B.; Heyndrickx, M.; Mainil, J.; De Zutter, L.; Cox, E. Escherichia coli O157 and O26 in young Belgian dairy calves by recto-anal mucosal swab culturing. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Iyoda, S.; Seto, K.; Morita-Ishihara, T.; Scheutz, F.; Ohnishi, M. The Pathogenic E. coli Working Group in Japan. Escherichia coli O-genotyping PCR: A comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 2015, 53, 2427–2432. [Google Scholar] [CrossRef] [Green Version]
- Zadik, P.M.; Chapman, P.A.; Siddons, C.A. Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. J. Med. Microbiol. 1993, 39, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Szalo, I.M.; Goffaux, F.; Pirson, V.; Piérard, D.; Ball, H.; Mainil, J. Presence in bovine enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli of genes coding for putative adhesins of human EHEC strains. Res. Microbiol. 2002, 153, 653–658. [Google Scholar] [CrossRef]
- Mainil, J.G.; Bardiau, M.; Ooka, T.; Ogura, Y.; Murase, K.; Etoh, Y.; Ichibara, S.; Horikawa, K.; Buvens, G.; Piérard, D.; et al. IS621-based multiplex PCR printing method of O26 enterohaemorrhagic and enteropathogenic Escherichia coli isolated from humans and cattle. J. Appl. Microbiol. 2011, 111, 773–786. [Google Scholar] [CrossRef]
- Jaros, P.; Cookson, A.L.; Reynolds, A.; Prattley, D.J.; Campbell, D.M.; Hathaway, S.; French, N.P. Nationwide prevalence and risk factors for faecal carriage of Escherichia coli O157 and O26 in very young calves and adult cattle at slaughter in New Zealand. Epidemiol. Infect. 2016, 144, 1736–1747. [Google Scholar] [CrossRef] [Green Version]
- Pohl, P.; Cleenwerk, I.; Imberechts, H.; Jacquemin, E.; Marin, M.; China, B.; Mainil, J. Différences entre les pathotypes et les sérogroupes des Escherichia coli vérotoxinogènes isolées de veaux sains et celles isolées de veaux souffrant de diarrhée. Ann. Méd. Vét. 1997, 141, 155–159. [Google Scholar]
- Pohl, P.; Daube, G.; Lintermans, P.; Imberechts, H.; Kaeckenbeeck, A.; Mainil, J. Infection multiple des veaux par Escherichia coli vérotoxinogènes (VTEC). Ann. Méd. Vét. 1992, 136, 259–262. [Google Scholar]
- Mainil, J.; Daube, G. Verotoxigenic Escherichia coli from animals, humans and foods: Who’s who? J. Appl. Microbiol. 2005, 98, 1332–1344. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, B.; De Reu, K.; Heyndrickx, M.; De Zutter, L. Comparison of six chromogenic agar media for the isolation of a broad variety of non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups. Int. J. Environ. Res. Public Health 2015, 12, 6965–6978. [Google Scholar] [CrossRef] [Green Version]
- Bardiau, M.; Labrozzo, S.; Mainil, J.G. Putative adhesins of enteropathogenic and enterohemorrhagic Escherichia coli of serogroup O26 isolated from humans and cattle. J. Clin. Microbiol. 2009, 47, 2090–2096. [Google Scholar] [CrossRef] [Green Version]
- Bugarel, M.; Beutin, L.; Scheutz, F.; Loukiadis, E.; Fach, P. Identification of genetic markers for differentiation of Shiga toxin-producing, enteropathogenic, and avirulent strains of Escherichia coli O26. Appl. Environ. Microbiol. 2011, 77, 2275–2281. [Google Scholar] [CrossRef] [Green Version]
- Soysal, N.; Mariani-Kurkdjian, P.; Smail, Y.; Liguori, S.; Gouali, M.; Loukiadis, E.; Fach, P.; Bruyand, M.; Blanco, J.; Bidet, P.; et al. Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg. Infect. Dis. 2016, 22, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Ogura, Y.; Gotoh, Y.; Itoh, T.; Sato, M.; Seto, K.; Yoshino, S.; Isobe, J.; Etoh, Y.; Kurogi, M.; Kimata, K.; et al. The population structure of Escherichia coli O26:H11 with recent and repeated stx2 acquisition in multiple lineages. Microb. Genomes 2017, 3. [Google Scholar] [CrossRef]
Performed Tests | RAMS | Number Positive RAMS (n = 69) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Farms | FarmA | FarmB | FarmC | Total | |||||||
Samplings (S) | S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | ||
Lauryl sulfate broth triplex PCR | 8 (50%) 1 | 8 (33%) | 33 (97%) | 4 (17%) | 23 (88%) | 20 (91%) | 1 (4%) | 19 (76%) | 32 (86%) | 148 (64%) | |
Growth on the four agar media 2 | 8 (70) 3 | 8 (131) | 33 (495) | 4 (42) | 23 (326) | 20 (270) | 1 (14) | 19 (294) | 32 (504) | 148 (2146) | |
Colony triplex hybridization (CH) 4 | 3 (14) 5 | 3 (4) | 13 (50) | 3 (14) | 13 (59) | 12 (58) | 1 (5) | 8 (34) | 21 (100) | 77 (338) | |
Colony triplex PCR 6 | 1 (9) 5 | 1 (2) | 13 (42) | 2 (10) | 12 (51) | 12 (52) | 1 (3) | 8 (34) | 19 (91) | 69 (294) |
Pathotypes | EPEC | AE-STEC 1 (=EHEC) | STEC | PCR-Positive Colonies | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Virulotypes | eae | eae, stx1 | eae, stx2 | eae, stx1, stx2 | stx1 | stx2 | stx1, stx2 | Per Farm | Per Sampling | ||
FARMS | A | S1 2 | 9 (1) 3 | --- | --- | --- | --- | --- | --- | A: 53 (15) | 1: 22 (4) |
S2 | --- 4 | --- | 2 (1) | --- | --- | --- | --- | ||||
S3 | 23 (9) 5 | 15 (4) | --- | --- | --- | 2 (2) | 2 (2) | ||||
B | S1 | 9 (1) | --- | --- | --- | --- | --- | 1 (1) | B: 113 (26) | 2: 87 (21) | |
S2 | 28 (10) | 9 (4) | --- | 1 (1) | --- | 13 (3) | --- | ||||
S3 | 29 (8) | --- | 1 (1) | 5 (2) | 5 (4) | 12 (3) | --- | ||||
C | S1 | --- | --- | --- | --- | --- | --- | 3 (1) | C: 128 (28) | 3: 185 (44) | |
S2 | 18 (3) | --- | --- | 1 (1) | --- | --- | 15 (4) | ||||
S3 | 15 (4) | 9 (2) | 8 (1) | 38 (7) | --- | --- | 21 (8) | ||||
Total virulotypes | 131 (36) | 33 (10) | 11 (3) | 45 (11) | 5 (4) | 27 (8) | 42 (16) | 294 (69) | |||
Total pathotypes | 131 (36) | 89 (23) 6 | 74 (27) 6 |
O Somatic Serotypes 1 | EPEC n = 131 (36) 2 | AE-STEC 3 (=EHEC) n = 89 (23) | STEC n = 74 (27) | Total n = 294 (69) | ||||
---|---|---|---|---|---|---|---|---|
eae n = 131 (36) | eae,stx1 n = 33 (10) | eae,stx2 n = 11 (3) | eae,stx1,stx2 n = 45 (11) | stx1 n = 5 (4) | stx2 n = 27 (8) | stx1,stx2 n = 42 (16) | ||
O26 | 4 (3) 4 | 5 (2) | 0 | 0 | 0 | 0 | 0 | 9 (4) |
O103 | 4 (2) | 7 (3) | 0 | 0 | 0 | 0 | 0 | 11 (4) |
O111 | 5 (4) | 2 (2) | 0 | 38 (8) | 0 | 2 (2) | 15 (6) | 62 (18) |
O145 | 21 (9) | 6 (2) | 4 (2) | 1 (1) | 0 | 4 (2) | 7 (3) | 43 (16) |
O157 | 4 (1) | 0 | 2 (1) | 0 | 0 | 0 | 5 (1) | 11 (3) |
Total | 38 (19) | 20 (8) | 6 (3) | 39 (9) | 0/5 | 6 (4) | 27 (10) | 136 (42) |
38 (19) | 65 (19) | 33 (14) |
Sampling/Farm | A | B | C | Total |
---|---|---|---|---|
S1 1 | O145 (1) 2 | O111 (1) | O111 (1) | O111 (2), O145 (1) |
S2 | O157 (1) | O26 (3), O111 (2), O145 (2) | O111 (3), O145 (2) | O26 (3), O111 (5), O145 (4), O157 (1) |
S3 | O103 (3), O111 (4) O145 (3) | O26 (1), O103 (1), O145 (4) | O111 (7), O145 (4), O157 (2) | O26 (1), O103 (4), O111 (11), O145 (11), O157 (2) |
TOTAL | O103 (3), O111 (4), O145 (4), O157 (1) | O26 (4), O103 (1), O111 (3), O145 (6) | O111 (11), O145 (6), O157 (2) | O26 (4), O103 (4), O111 (18), O145 (16), O157 (3) |
Pathotypes | EPEC | AE-STEC 2 (=EHEC) | STEC | Total PCR-Positive Colonies (%) | Total RAMS with PCR-Positive Colonies (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Virulotypes | eae | eae, stx1 | eae, stx2 | eae, stx1, stx2 | stx1 | stx2 | stx1, stx2 | |||
Agar media 1 | MC | 11 (5) 3 | 2 (1) | 3 (1) | 6 (2) | 2 (2) | 12 (5) | 1 (1) | 37 (5%) | 16 (11%) |
ES | 12 (5) | 2 (1) | 0 | 0 | 3 (2) | 14 (6) | 3 (3) | 33 (5%) | 17 (12%) | |
ESTe | 5 (4) | 1 (1) | 0 | 1 (1) | 0 | 0 | 0 | 7 (3%) | 5 (8%) | |
STECB | 103 (30) 4 | 28 (10) | 8 (3) | 38 (11) | 0 | 1 (1) | 38 (12) | 216 (45%) | 58 (54%) | |
Total virulotypes | 131 (36) | 33 (10) | 11 (3) | 45 (11) | 5 (4) | 27 (8) | 42 (16) | 294 (14%) | 69 (45%) | |
Total pathotypes | 131 (36) | 89 (23) | 74 (27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habets, A.; Engelen, F.; Duprez, J.-N.; Devleesschauwer, B.; Heyndrickx, M.; De Zutter, L.; Thiry, D.; Cox, E.; Mainil, J. Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing. Vet. Sci. 2020, 7, 167. https://doi.org/10.3390/vetsci7040167
Habets A, Engelen F, Duprez J-N, Devleesschauwer B, Heyndrickx M, De Zutter L, Thiry D, Cox E, Mainil J. Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing. Veterinary Sciences. 2020; 7(4):167. https://doi.org/10.3390/vetsci7040167
Chicago/Turabian StyleHabets, Audrey, Frederik Engelen, Jean-Noël Duprez, Brecht Devleesschauwer, Marc Heyndrickx, Lieven De Zutter, Damien Thiry, Eric Cox, and Jacques Mainil. 2020. "Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing" Veterinary Sciences 7, no. 4: 167. https://doi.org/10.3390/vetsci7040167
APA StyleHabets, A., Engelen, F., Duprez, J. -N., Devleesschauwer, B., Heyndrickx, M., De Zutter, L., Thiry, D., Cox, E., & Mainil, J. (2020). Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing. Veterinary Sciences, 7(4), 167. https://doi.org/10.3390/vetsci7040167