Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Construction of the Feline Oligonucleotide CGH Array
2.2. Experimental Validation of the Feline oaCGH Array Design
2.3. DNA Copy Number Profiling of a Feline Injection-Site Sarcoma
3. Results
3.1. Guiding Development of a Feline oaCGH Array Design Using a Canine Template
3.2. Experimental Evaluation Using Sex-Mismatched Reference DNA
3.3. Cytogenomic Evaluation of Tumor Specimens
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murphy, W.J. The feline genome. Genome. Dyn. 2006, 2, 60–68. [Google Scholar] [PubMed]
- Online Mendelian Inheritance in Animals. Available online: https://omia.org/ (accessed on 23 June 2020).
- Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J.; Zody, M.C.; et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.U.; Mullikin, J.C.; Smith, D.R.; Lindblad-Toh, K.; Gnerre, S.; Clamp, M.; Chang, J.; Stephens, R.; Neelam, B.; Volfovsky, N.; et al. Initial sequence and comparative analysis of the cat genome. Genome. Res. 2007, 17, 1675–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, A.K.; Breen, M.; Choyke, P.; Dewhirst, M.; Fan, T.M.; Gustafson, D.L.; Helman, L.J.; Kastan, M.B.; Knapp, D.W.; Levin, W.J.; et al. Perspectives from man’s best friend: National Academy of Medicine’s Workshop on Comparative Oncology. Sci. Transl. Med. 2016, 8, 324–325. [Google Scholar] [CrossRef] [Green Version]
- Schiffman, J.D.; Breen, M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370. [Google Scholar] [CrossRef]
- Thomas, R.; Valli, V.E.; Ellis, P.; Bell, J.; Karlsson, E.K.; Cullen, J.; Lindblad-Toh, K.; Langford, C.F.; Breen, M. Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas. Chromosome. Res. 2009, 17, 987–1000. [Google Scholar] [CrossRef]
- Buckley, R.M.; Davis, B.W.; Brashear, W.A.; Farias, F.H.G.; Kuroki, K.; Graves, T.; Hillier, L.W.; Kremitzki, M.; Li, G.; Middleton, R.; et al. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Poorman, K.; Borst, L.; Moroff, S.; Roy, S.; Labelle, P.; Motsinger-Reif, A.; Breen, M. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosome. Res. 2015, 23, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.G.; Raghunath, S.; Williams, C.; Motsinger-Reif, A.A.; Cullen, J.M.; Liu, T.; Albertson, D.; Ruvolo, M.; Bergstrom Lucas, A.; Jin, J.; et al. Canine urothelial carcinoma: Genomically aberrant and comparatively relevant. Chromosome. Res. 2015, 23, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Borst, L.; Rotroff, D.; Motsinger-Reif, A.; Lindblad-Toh, K.; Modiano, J.F.; Breen, M. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Chromosome. Res. 2014, 22, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Demeter, Z.; Kennedy, K.A.; Borst, L.; Singh, K.; Valli, V.E.; Le Boedec, K.; Breen, M. Integrated immunohistochemical and DNA copy number profiling analysis provides insight into the molecular pathogenesis of canine follicular lymphoma. Vet. Comp. Oncol. 2017, 15, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J. BLAT--the BLAST-like alignment tool. Genome. Res. 2002, 12, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Seiser, E.L.; Motsinger-Reif, A.; Borst, L.; Valli, V.E.; Kelley, K.; Suter, S.E.; Argyle, D.; Burgess, K.; Bell, J.; et al. Refining tumor-associated aneuploidy through ’genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk. Lymphoma. 2011, 52, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.W.; Bi, W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert. Rev. Mol. Diagn. 2018, 18, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Murphy, W.J.; Davis, B.; David, V.A.; Agarwala, R.; Schaffer, A.A.; Pearks Wilkerson, A.J.; Neelam, B.; O’Brien, S.J.; Menotti-Raymond, M. A 1.5-Mb-resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics 2007, 89, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Young, A.C.; Kirkness, E.F.; Breen, M. Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: The canine PAR and PAB. Chromosome. Res. 2008, 16, 1193–1202. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. The Eutherian Pseudoautosomal Region. Cytogenet. Genome. Res. 2015, 147, 81–94. [Google Scholar] [CrossRef]
- Murphy, W.J.; Pearks Wilkerson, A.J.; Raudsepp, T.; Agarwala, R.; Schaffer, A.A.; Stanyon, R.; Chowdhary, B.P. Novel gene acquisition on carnivore Y chromosomes. PLoS. Genet. 2006, 2. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Leibowitz, M.L.; Pellman, D. Chromothripsis and beyond: Rapid genome evolution from complex chromosomal rearrangements. Genes. Dev. 2013, 27, 2513–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storchova, Z.; Kloosterman, W.P. The genomic characteristics and cellular origin of chromothripsis. Curr. Opin. Cell. Biol. 2016, 40, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting Matrix Metalloproteinases in Cancer: Bringing New Life to Old Ideas. Genes. Dis. 2015, 2, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, K.C.; Kitchell, B.E.; Schaeffer, D.J.; Mardis, P.E. Expression of matrix metalloproteinases in feline vaccine site-associated sarcomas. Am. J. Vet. Res. 2004, 65, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Durrbaum, M.; Storchova, Z. Effects of aneuploidy on gene expression: Implications for cancer. FEBS. J. 2016, 283, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Chaves, R.; Adega, F.; Bastos, E.; Guedes-Pinto, H. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J. Hered. 2006, 97, 114–118. [Google Scholar] [CrossRef] [Green Version]
- von Erichsen, J.; Hecht, W.; Lohberg-Gruene, C.; Reinacher, M. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations. Vet. Pathol. 2012, 49, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufresne, A.; Cassier, P.; Heudel, P.; Pissaloux, D.; Wang, Q.; Blay, J.Y.; Ray-Coquard, I. Molecular biology of sarcoma and therapeutic choices. Bull. Cancer. 2015, 102, 6–16. [Google Scholar] [CrossRef]
- Brashear, W.A.; Raudsepp, T.; Murphy, W.J. Evolutionary conservation of Y Chromosome ampliconic gene families despite extensive structural variation. Genome. Res. 2018, 28, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
Chromosome | Chromosome Size (bp) | Total Number of Probes | Mean Spacing (bp) | Median Spacing (bp) | Maximum Spacing (bp) | Probes/Mb |
---|---|---|---|---|---|---|
A1 | 242,100,913 | 10,648 | 22,664 | 17,125 | 2,635,625 | 44 |
A2 | 171,471,747 | 7944 | 21,469 | 15,552 | 2,272,323 | 46 |
A3 | 143,202,405 | 6653 | 21,434 | 16,188 | 2,630,398 | 46 |
B1 | 208,212,889 | 9420 | 22,001 | 16,824 | 2,362,299 | 45 |
B2 | 155,302,638 | 7160 | 21,603 | 16,296 | 2,303,124 | 46 |
B3 | 149,751,809 | 7026 | 21,173 | 15,704 | 2,516,731 | 47 |
B4 | 144,528,695 | 6559 | 21,942 | 16,343 | 2,103,152 | 45 |
C1 | 222,790,142 | 10,724 | 20,646 | 15,770 | 2,108,648 | 48 |
C2 | 161,193,150 | 7462 | 21,511 | 16,288 | 3,159,135 | 46 |
D1 | 117,648,028 | 5174 | 22,610 | 16,463 | 2,184,516 | 44 |
D2 | 90,186,660 | 3863 | 23,132 | 16,397 | 2,155,220 | 43 |
D3 | 96,884,206 | 4275 | 22,564 | 16,227 | 2,223,652 | 44 |
D4 | 96,521,652 | 4249 | 22,622 | 16,361 | 2,213,074 | 44 |
E1 | 63,494,689 | 2712 | 22,955 | 15,407 | 2,301,848 | 43 |
E2 | 64,340,295 | 2352 | 27,026 | 18,082 | 2,536,363 | 37 |
E3 | 44,648,284 | 1561 | 28,241 | 17,413 | 3,394,005 | 35 |
F1 | 71,664,243 | 3082 | 22,498 | 16,523 | 650,963 | 43 |
F2 | 85,752,456 | 4137 | 20,102 | 15,601 | 333,037 | 48 |
X | 130,557,009 | 5455 | 23,800 | 15,598 | 2,487,257 | 42 |
Total | 2,460,251,910 | 110,456 | 22,631 | - | - | 44 (mean) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, R.; Pontius, J.U.; Borst, L.B.; Breen, M. Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers. Vet. Sci. 2020, 7, 88. https://doi.org/10.3390/vetsci7030088
Thomas R, Pontius JU, Borst LB, Breen M. Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers. Veterinary Sciences. 2020; 7(3):88. https://doi.org/10.3390/vetsci7030088
Chicago/Turabian StyleThomas, Rachael, Joan U Pontius, Luke B Borst, and Matthew Breen. 2020. "Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers" Veterinary Sciences 7, no. 3: 88. https://doi.org/10.3390/vetsci7030088
APA StyleThomas, R., Pontius, J. U., Borst, L. B., & Breen, M. (2020). Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers. Veterinary Sciences, 7(3), 88. https://doi.org/10.3390/vetsci7030088