Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop
Abstract
:1. Introduction
2. Mercury Bioaccumulation in Dolphins
Study Site | Years | Total Mercury Concentration Mean ± SD | Reference | |
---|---|---|---|---|
Blood (μg/L ± SD) | Skin (μg/g ± SD) | |||
Indian River Lagoon, FL | 2003–2005 | 658 ± 519.0 (n = 75) | 7.0 ± 5.9 (n = 75) | [18,19] |
Charleston, SC | 2003–2005 | 147 ± 88.0 (n = 74) | 1.7 ± 0.9 (n = 74) | [18,19] |
Sarasota Bay, FL | 2003–2005 | 570.3 ± 433.5 (n = 55) | 2.1 ± 1.7 (n = 54) | [20] |
Sarasota Bay, FL | 2002–2004 | 512 ± 363 (n = 51) | 2.13 ± 1.54 (n = 40) | [21] |
Italy, Aquaria | 2001 | 139 ± 220 (n = 4) | - | [22] |
National Aquarium, Baltimore, MD | 2011 | 63.9 ± 34.0 (n = 7) | - | [23] |
3. The Indian River Lagoon, Florida
4. Health Effects of Exposure to Mercury in Dolphins
5. Minamata Disease and Neurotoxicity of Methylmercury in Humans
6. The Dancing Cats of Minamata Bay
Fish and Shellfish | Cats | Humans | |||
---|---|---|---|---|---|
Oyster | 5.6 | Control | 0.9–3.66 | Control | <3.0 |
Gray Mullet | 10.6 | Kidney | 12.2–36.1 | Kidney | 3.1–144.0 |
Clam | 20.0 | Liver | 37–145.5 | Liver | 0.3–70.5 |
China Fish | 24.1 | Brain | 8–18.6 | Brain | 0.1–24.8 |
Crab | 35.7 | Hair | 21–70 | Hair | 96–705 |
7. The Bottlenose Dolphin as a Sentinel for Human Exposure
Participant Group | n | Mean ± SD | Median | Percentile | p-Value | ||
---|---|---|---|---|---|---|---|
75th | 90th | 95th | |||||
All Participants | 135 | 1.53 ± 1.89 | 1.01 | 1.86 | 3.16 | 5.01 | |
Sex | <0.01 | ||||||
Male | 73 | 2.02 ± 2.38 | 1.17 | 2.81 | 4.74 | 6.06 | |
Female | 62 | 0.96 ± 0.74 | 0.74 | 1.38 | 1.98 | 2.60 | |
Total Seafood Consumption | <0.01 | ||||||
≥Once per day | 9 | 2.14 ± 1.86 | 2.96 | 3.21 | - | - | |
Three times per week | 66 | 1.95 ± 2.32 | 1.20 | 2.39 | 4.30 | 5.30 | |
Once per week | 50 | 1.08 ± 1.16 | 0.73 | 1.41 | 2.02 | 2.84 | |
≤Once per month | 10 | 0.49 ± 0.29 | 0.39 | 0.79 | 0.90 | - | |
IRL Seafood Consumption | 0.11 | ||||||
≥Three times per week | 8 | 2.01 ± 1.47 | 1.19 | 3.02 | - | - | |
Once per week | 17 | 1.71 ± 1.41 | 1.14 | 3.07 | 3.69 | - | |
≤Once per month | 110 | 1.47 ± 1.99 | 0.89 | 1.73 | 2.96 | 4.71 | |
Fish Sources | <0.01 | ||||||
All locally caught | 28 | 2.53 ± 3.20 | 1.21 | 3.14 | 5.36 | 12.3 | |
Most locally caught | 17 | 2.46 ± 2.24 | 1.62 | 3.76 | 5.95 | - | |
Half locally caught | 13 | 1.65 ± 1.06 | 1.15 | 2.71 | 3.44 | - | |
Most bought from store or restaurant | 24 | 1.20 ± 0.71 | 1.14 | 1.73 | 2.31 | 2.52 | |
All bought from store or restaurant | 52 | 0.85 ± 0.73 | 0.60 | 1.11 | 1.85 | 2.72 | |
Shellfish Sources | <0.01 | ||||||
All locally caught | 14 | 3.37 ± 4.50 | 1.20 | 5.63 | 12.14 | - | |
Most locally caught | 10 | 2.54 ± 1.83 | 1.84 | 4.47 | 5.38 | - | |
Half locally caught | 5 | 2.77 ± 1.15 | 2.72 | 3.68 | - | - | |
Most bought from store or restaurant | 19 | 1.10 ± 0.82 | 0.85 | 1.41 | 2.28 | - | |
All bought from store or restaurant | 85 | 1.12 ± 1.00 | 0.75 | 1.60 | 2.74 | 3.08 |
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.; Zeller, D. Mercury, food webs, and marine mammals: Implications of diet and climate change for human health. Environ. Health Perspect. 2005, 113, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Hsu-Kim, H.; Kucharzky, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef] [PubMed]
- King, J.K.; Saunders, F.M.; Lee, R.F.; Jahnke, R.A. Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ. Toxicol. Chem. 1999, 18, 1362–1369. [Google Scholar] [CrossRef]
- Liu, G.L.; Cai, Y.; Philippi, T.; Kalla, P.; Scheidt, D.; Richards, J.; Scinto, L.; Appleby, C. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation. Environ. Pollut. 2008, 153, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.L.; Reif, J.S.; Bachand, A.; Ridgeway, S.H. Opportunities for using navy marine mammals to explore associations between organochlorine contaminants and unfavorable effects on reproduction. Sci. Total. Environ. 2001, 274, 171–182. [Google Scholar] [CrossRef]
- Wells, R.S.; Rhinehardt, H.L.; Hansen, L.J.; Sweeney, J.C.; Townsend, F.I.; Stone, R.; Casper, D.R.; Scott, M.D.; Hohn, A.A.; Rowles, T.K. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 2004, 1, 246–254. [Google Scholar] [CrossRef]
- Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, D.W.; Haebler, R. Organochlorine, organobromine, metal, and selenium residues in bottlenose dolphins (Tursiops trucatus) collected during an unusual mortality event in the Gulf of Mexico, 1990. Arch. Environ. Contam. Toxicol. 1995, 28, 494–499. [Google Scholar] [PubMed]
- Beck, K.M.; Fair, P.A.; McFee, W.; Wolf, D. Heavy metals in livers of bottlenose dolphins stranded along the South Carolina coast. Mar. Pollut. Bull. 1997, 34, 734–739. [Google Scholar] [CrossRef]
- Meador, J.P.; Ernest, D.; Hohn, A.A.; Tilbury, K.; Gorzeleny, J.; Worthy, G.; Stein, J.E. Comparison of elements in bottlenose dolphins stranded on the beaches of Texas and Florida in the Gulf of Mexico over one-year period. Arch. Environ. Contam. Toxicol. 1999, 36, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Durden, W.N.; Stolen, M.K.; Adams, D.H.; Stolen, E.D. Mercury and selenium concentrations in stranded bottlenose dolphins from the Indian River Lagoon system, Fl. Bull. Mar. Sci. 2007, 81, 37–54. [Google Scholar]
- Stavros, H.C.; Stolen, M.; Durden, W.N.; McFee, W.; Bossart, G.D.; Fair, P.A. Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus). Chemosphere 2011, 11, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Cardellicchio, N.; Decataldo, A.; Di Leo, A.; Misino, A. Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environ. Pollut. 2002, 116, 265–271. [Google Scholar] [CrossRef]
- Roditi-Elasar, M.; Kerem, D.; Hornung, H.; Kress, N.; Shohan-Frider, E.; Goffman, O.; Spanier, E. Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Mar. Pollut. Bull. 2003, 46, 491–521. [Google Scholar] [CrossRef]
- Borrel, A.; Aguilar, A.; Tornero, V.; Drago, M. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 2014, 107, 319–323. [Google Scholar] [CrossRef] [PubMed]
- García-Alvarez, N.; Fernández, A.; Boada, L.D.; Zumbado, M.; Zaccaroni, A.; Arbelo, M.; Sierra, E.; Almunia, J.; Luzardo, O.P. Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. Sci. Total Environ. 2015, 536, 489–498. [Google Scholar]
- Stavros, H.C.; Bossart, G.D.; Hulsey, T.C.; Fair, P.A. Trace element concentrations in blood of free-ranging bottlenose dolphins (Tursiops truncatus): Influence of age, sex and location. Mar. Pollut. Bull. 2008, 56, 348–379. [Google Scholar] [CrossRef] [PubMed]
- Stavros, H.C.; Bossart, G.D.; Hulsey, T.C.; Fair, P.A. Trace element concentrations in skin of free-ranging bottlenose dolphins (Tursiops truncatus) from the southeast Atlantic coast. Sci. Total Environ. 2007, 388, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Woshner, V.; Knott, K.; Wells, R.; Willetto, C.; Swor, R.; O’Hara, T. Mercury and selenium blood and epidermis of bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, FL: Interaction and relevance to life history and hematologic parameters. EcoHealth 2008, 5, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Bryan, C.E.; Christopher, S.J.; Balmer, B.C.; Wells, R.S. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: Implications for non-invasive monitoring. Sci. Total. Environ. 2007, 388, 325–342. [Google Scholar] [CrossRef] [PubMed]
- Nigro, M.; Campana, A.; Lanzillotta, E.; Ferrara, R. Mercury exposure and elimination rates in captive bottlenose dolphins. Mar. Pollut. Bull. 2002, 44, 1071–1075. [Google Scholar] [CrossRef]
- Hong, Y.S.; Hull, P.; Rifkin, E.; Bouwer, E.J. Bioaccumulation and biomagnification of mercury and selenium in the Sarasota Bay ecosystem. Environ. Toxicol. Chem. 2013, 5, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.M.; Titcomb, E.M.; Fair, P.A.; Stavros, H.C.; Mazzoil, M.; Bossart, G.D.; Reif, J.S. Mercury concentrations in Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon, Florida: Patterns of spatial and temporal distribution. Mar. Poll. Bull. 2015, 97, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Mazzoil, M.; McCulloch, S.D.; Murdoch, M.E.; Bechdel, S.E.; Howells, E.; Youngbluth, M.; Hansen, L.J.; Reif, J.S.; Bossart, G.D. Home ranges of bottlenose dolphins (Tursiops truncatus) in the Indian River Lagoon, Florida: Environmental correlates and implications for management strategies. EcoHealth 2008, 5, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Sigua, G.C.; Steward, J.S.; Tweedale, W.A. Water-quality monitoring and biological integrity assessment in the Indian River Lagoon, Florida: Status, trends, and loadings (1988–1994). Environ. Manag. 2000, 25, 199–209. [Google Scholar] [CrossRef] [PubMed]
- St. Sime, P. Lucie Estuary and Indian River Lagoon conceptual ecological model. Wetlands 2005, 25, 898–907. [Google Scholar] [CrossRef]
- Wiener, J.G.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, A.M. Ecotoxicology of Mercury. In Handbook of Ecotoxicology, 2nd ed.; Hoffman, D.J., Rattner, D.A., Burton, G.A., Cains, J., Eds.; Lewis: Boca Raton, FL, USA, 2003; pp. 409–663. [Google Scholar]
- Gabriel, M.C.; Howard, N.; Osborne, T.Z. Fish mercury and surface water sulfate relationships in the Everglades protection area. Environ. Manag. 2014, 53, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, A.T.; Argue, D.M.; Gay, D.A.; Brigham, M.E.; Schmitt, C.J.; Lorenz, D.L. Mercury trends in fish from rivers and lakes in the United States, 1969–2005. Environ. Monit. Assess. 2011, 175, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Guentzel, J.L.; Landing, W.M.; Gill, G.A.; Pollman, C.D. Processes influencing rainfall deposition of mercury in Florida. Environ. Sci. Technol. 2001, 35, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Fair, P.A.; Adams, J.D.; Zolman, E.; McCulloch, S.D.; Goldstein, J.D.; Murdoch, M.E.; Varela, R.; Hansen, L.; Townsend, F.; Kucklick, J.; et al. Protocols for Conducting Dolphin Capture-Release Health Assessment Studies; NOAA/National Ocean Service: Charleston, SC, USA, 2006. [Google Scholar]
- Schaefer, A.M.; Stavros, H.W.; Reif, J.S.; Fair, P.A.; Bossart, G.D. Effects of mercury on hepatic, renal, endocrine and hematological parameters in Atlantic bottlenose dolphins (Tursiops truncatus) along the eastern coast of Florida and South Carolina. Arch. Environ. Contam. 2011, 61, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, F.; Cardellicchio, N.; Zambonin, P.G. Speciation of mercury in dolphin liver: A two-stage mechanism for the demethylation accumulation process and role of selenium. Mar. Environ. Res. 1995, 40, 109–121. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, F.Y. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Y.; Chen, Y.W.; Gunn, J.M.; Belzile, N. Selenium and mercury in organisms: Interactions and mechanisms. Environ. Rev. 2008, 16, 71–92. [Google Scholar] [CrossRef]
- Rawson, A.J.; Patton, G.W.; Hofmann, S.; Pietra, G.G.; Johns, L. Liver abnormalities associated with chronic mercury accumulation in stranded Atlantic bottlenose dolphins. Ecotox. Environ. Saf. 1993, 25, 41–47. [Google Scholar] [CrossRef]
- Reif, J.S.; Schaefer, A.M.; Stavros, A.C.; Peden-Adams, M.M.; Romano, T.A.; Rice, C.D.; Fair, P.A.; Bossart, G.D. Bottlenose dolphins as sentinels for exposure to mercury: Effects on immune function. In Proceedings of the 18th Biennial Conference on the Biology of Marine Mammals, Quebec, QC, Canada, 12–16 October 2009.
- Bennett, P.M.; Jepson, P.D.; Law, R.J.; Jones, B.R.; Kuiken, T.; Baker, J.R.; Rogan, E.; Kirkwood, J.K. Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environ. Pollut. 2001, 112, 33–40. [Google Scholar] [CrossRef]
- National Research Council. Health effects of methylmercury. In Toxicology Effects of Methylmercury; National Academy Press: Washington, DC, USA, 2000; pp. 147–249. [Google Scholar]
- Crompton, P.; Ventura, A.M.; de Souza, J.M.; Santos, E.; Strickland, G.T.; Silbergeld, E. Assessment of mercury exposure and malaria in a Brazilian Amazon riverine community. Environ. Res. 2002, 90, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J.F.; Fillion, M.; Barbosa, F; Shirley, D.L.; Chine, C.; Lemire, M.; Mergler, D.; Silbergeld, E.K. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ. Health Perspect. 2011, 119, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.M.; Nyland, J.F.; Silva, I.A.; Ventura, A.M.; de Souza, J.M.; Silbergeld, E.K. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: A cross-sectional study. Environ. Res. 2010, 110, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Pollard, K.M.; Hultman, P.; Kono, D.H. Immunology and genetics of induced systemic autoimmunity. Autoimmun Rev. 2005, 4, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K. The discovery of the causal agent of Minamata disease. Am. J. Ind. Med. 1992, 21, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.H.; Smith, A.E. An assessment of the cord blood: maternal blood methylmercury ratio: Implications for risk assessment. Environ. Health Perspect. 2003, 111, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Bakir, F.; Damluji, S.F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N.Y.; Tikriti, S.; Dhahir, H.I.; Clarkson, T.W.; Smith, J.C.; et al. Methylmercury poisoning in Iraq. Science 1973, 181, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Weihe, P.; White, R.F. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Davidson, P.W.; Myers, G.J.; Cox, C.; Axtell, C.; Shamlaye, C.; Sloane-Reeves, J.; Cernichiari, E.; Needham, L.; Choi, A.; Wang, Y.; et al. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: Outcomes at 66 months of age in the Seychelles Child Development Study. JAMA 1998, 280, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.J.; Davidson, P.W.; Bonham, M.P.; Duffy, E.M.; Stokes-Riner, A.; Thurston, S.W.; Wallace, J.M.W.; Robson, P.J.; Shamlaye, C.F.; Georger, L.A.; et al. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study. Neurotoxicology 2008, 29, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.; Rich-Edwards, J.W.; Gillman, M.W. Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ. Health Perspect. 2005, 10, 1376–1380. [Google Scholar] [CrossRef]
- Grandjean, P.; Satoh, H.; Murata, K.; Eto, K. Adverse effects of methylmercury: Environmental health research implications. Environ. Health Perspect. 2010, 118, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.L.; Longnecker, M.P.; Rowland, A.S.; Golding, J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 2004, 4, 394–402. [Google Scholar] [CrossRef]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Kitamura, S. Determination on mercury content in bodies of inhabitants, cats, fishes and shells in Minamata district and the mud of Minamata bay. In Minamata Disease; Kutsuna, M., Ed.; Study Group of Minamata Disease, Kumamoto University: Kumamoto, Japan, 1968; pp. 257–266. [Google Scholar]
- Takeuchi, T.; D’Itri, F.M.; Fischer, P.V.; Annett, C.S.; Okabe, M. The outbreak of Minamata disease (methylmercury poisoning) in cats on northwestern Ontario’s reserves. Environ. Res. 1977, 13, 215–225. [Google Scholar] [CrossRef]
- Mahaffey, K.R.; Clickner, R.P.; Jeffries, R.A. Adult women’s blood mercury concentrations vary regionally in the United States: Association with patterns of fish consumption (NHANES 1999–2004). Environ. Health Perspect. 2009, 117, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Gobeille, A.K.; Morland, K.B.; Bopp, R.F.; Godbold, J.H.; Landrigan, P.J. Body burdens of mercury in lower Hudson River area anglers. Environ. Res. 2006, 10, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Knobeloch, L.; Gliori, G.; Anderson, H. Assessment of methylmercury exposure in Wisconsin. Environ. Res. 2007, 2, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, R.A.; Shine, J.P.; Chesney, E.J.; Vorhees, D.J.; Grandjean, P.; Senn, D.B. Fish consumption and mercury exposure among Louisiana recreational anglers. Environ. Health Perspect. 2011, 2, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobeloch, L.; Anderson, H.; Imma, P.; Petersa, D.; Smith, A. Fish consumption, advisory awareness, and hair mercury levels among women of childbearing age. Environ. Res. 2005, 97, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Degner, R.L.; Adams, C.M.; Moss, S.D.; Mack, S.K. Per Capita Fish and Shellfish Consumption in Florida; Florida Agricultural Market Research Center, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2004. [Google Scholar]
- Schaefer, A.M.; Jensen, E.; Bossart, G.D.; Reif, J.S. Hair mercury concentrations and fish consumption patterns in florida residents. Int. J. Environ. Res. Public Health 2014, 11, 6709–6726. [Google Scholar] [CrossRef] [PubMed]
- Zareba, G.; Cernichiari, E.; Goldsmith, L.A.; Clarkson, T.W. Validity of methlymercury hair analysis; Mercury monitoring in human scalp/nude mouse model. J. Appl. Toxicol. 2008, 28, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.C.; Schoeny, R.; Mahaffey, K. Methods and rationale for derivation of a reference dose for methylmercury by the U.S. EPA. Risk Anal. 2003, 23, 107–115. [Google Scholar] [CrossRef] [PubMed]
- McDowell, M.A.; Dillon, C.F.; Osterloh, J.; Bolger, P.M.; Pellizzari, E.; Fernando, R.; de Montes Oca, R.; Schober, S.E.; Sinks, T.; Jones, R.L.; et al. Hair mercury levels in U.S. children and women of childbearing age: Reference range data from NHANES 1999–2000. Environ. Health Perspect. 2004, 112, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Kosatsky, T.; Przybysz, R.; Armstrong, B. Mercury exposure in Montrealers who eat St. Lawrence river sportfish. Environ. Res. 2000, 84, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Warner, K. Mercury Levels in Hair of Coastal Alabama Anglers and Residents. Report Oceana, Washington, DC. 2007. Available online: http://oceana.org/sites/default/files/reports/Rodeo_Hair_Report_Final.pdf (accessed on 1 February 2014).
- Barros, N.B.; Odell, D.K. Food habits of bottlenose dolphins in the southeastern United States. In The Bottlenose Dolphin; Leatherwood, S., Reeves, R.R., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 309–328. [Google Scholar]
- Glickman, L.T.; Domanski, L.M.; Maguire, T.G.; Dubielzig, R.R.; Churg, A. Mesothelioma in pet dogs associated with exposure of their owners to asbestos. Environ. Res. 1983, 32, 305–313. [Google Scholar] [CrossRef]
- Mahaffey, K.R.; Sunderland, E.M.; Chan, H.M.; Choi, A.L.; Grandjean, P.; Mariën, K.; Oken, E.; Sakamoto, M.; Schoeny, R.; Weihe, P.; et al. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption. Nutr. Rev. 2011, 69, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.E.; McDonough, N.; Austen, M.; Mee, L.; Moore, M.; Hess, P.; Depledge, M.H.; White, M.; Philippart, K.; Bradbrook, P.; et al. Oceans and Human Health: A rising tide of challenges and opportunities for Europe. Mar. Environ. Res. 2014, 99, 16–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fury, C.A.; Reif, J.S. Incidence of poxvirus-like lesions in two estuarine dolphin populations in Australia: Links to flood events. Sci. Total Environ. 2012, 416, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D.; Baden, D.G.; Ewing, R.; Roberts, B.; Wright, S.D. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: Gross, histologic and immunohistochemical features. Toxicol. Pathol. 1998, 26, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Fair, P.A.; Adams, J.; Mitchum, G.; Hulsey, T.C.; Reif, J.S.; Houde, M.; Muir, D.; Wirth, E.; Wetzel, D.; Zolman, E.; et al. Contaminant blubber burdens in Atlantic bottlenose dolphins (Tursiops truncatus) from two southeast U.S. estuarine areas: Concentrations and patterns of PCBs, pesticides, PBDEs, PFCs, and PAHs. Sci. Total Environ. 2010, 408, 1577–1597. [Google Scholar] [CrossRef] [PubMed]
- Schwacke, L.H.; Smith, C.R.; Townsend, F.I.; Wells, R.S.; Hart, L.B.; Balmer, B.C.; Collier, T.K.; de Guise, S.; Fry, M.M.; Guillette, L.J.; et al. Health of common bottlenose dolphins (Tursiops truncatus ) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. Environ. Sci. Technol. 2014, 48, 93–103. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reif, J.S.; Schaefer, A.M.; Bossart, G.D. Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop. Vet. Sci. 2015, 2, 407-422. https://doi.org/10.3390/vetsci2040407
Reif JS, Schaefer AM, Bossart GD. Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop. Veterinary Sciences. 2015; 2(4):407-422. https://doi.org/10.3390/vetsci2040407
Chicago/Turabian StyleReif, John S., Adam M. Schaefer, and Gregory D. Bossart. 2015. "Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop" Veterinary Sciences 2, no. 4: 407-422. https://doi.org/10.3390/vetsci2040407
APA StyleReif, J. S., Schaefer, A. M., & Bossart, G. D. (2015). Atlantic Bottlenose Dolphins (Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop. Veterinary Sciences, 2(4), 407-422. https://doi.org/10.3390/vetsci2040407