Cytogenomics of Feline Cancers: Advances and Opportunities
Abstract
:1. Introduction
2. Gross Karyotypic Organization in the Domestic Cat
3. Generation of a Reference Cat Genome Sequence Assembly
4. Fundamentals of Cancer Cytogenomics
5. Injection-Site Sarcoma
6. Lymphoma
7. Mammary Carcinoma
8. Conclusions
Conflicts of Interest
References
- Cannon, C. Cats, cancer and comparative oncology. Vet. Sci. 2015, 2, 111–126. [Google Scholar] [CrossRef]
- American Veterinary Medical Association (AVMA). U.S. Pet Ownership and Demographics Sourcebook; AVMA: Schaumburg, IL, USA, 2012. [Google Scholar]
- Online Mendelian Inheritance in Animals (OMIA). Faculty of Veterinary Science, University of Sydney. Available online: http://omia.angis.org.au (accessed on 28 May 2015).
- Montague, M.J.; Li, G.; Gandolfi, B.; Khan, R.; Aken, B.L.; Searle, S.M.; Minx, P.; Hillier, L.W.; Koboldt, D.C.; Davis, B.W.; et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc. Natl. Acad. Sci. USA 2014, 111, 17230–17235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamazian, G.; Simonov, S.; Dobrynin, P.; Makunin, A.; Logachev, A.; Komissarov, A.; Shevchenko, A.; Brukhin, V.; Cherkasov, N.; Svitin, A.; et al. Annotated features of domestic cat-Felis catus genome. Gigascience 2014, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, W.G.; O’Brien, S.J. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: Carnivores and primates. Proc. Natl. Acad. Sci. USA 1982, 79, 6631–6635. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Graphodatsky, A.S.; O’Brien, P.C.; Colabella, A.; Solanky, N.; Squire, M.; Sargan, D.R.; Ferguson-Smith, M.A. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 2000, 8, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Rettenberger, G.; Klett, C.; Zechner, U.; Bruch, J.; Just, W.; Vogel, W.; Hameister, H. Zoo-FISH analysis: Cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res. 1995, 3, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Stanyon, R.; Yang, F.; Cavagna, P.; O’Brien, P.C.; Bagga, M.; Ferguson-Smith, M.A.; Wienberg, J. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet. Cell Genet. 1999, 84, 150–155. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J.; Johnson, W.; Driscoll, C.; Pontius, J.; Pecon-Slattery, J.; Menotti-Raymond, M. State of cat genomics. Trends Genet. 2008, 24, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Graphodatsky, A.S.; Trifonov, V.A.; Stanyon, R. The genome diversity and karyotype evolution of mammals. Mol. Cytogenet. 2011, 4. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.U.; Mullikin, J.C.; Smith, D.R.; Lindblad-Toh, K.; Gnerre, S.; Clamp, M.; Chang, J.; Stephens, R.; Neelam, B.; Volfovsky, N.; et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007, 17, 1675–1689. [Google Scholar] [CrossRef] [PubMed]
- Lindblad-Toh, K.; Garber, M.; Zuk, O.; Lin, M.F.; Parker, B.J.; Washietl, S.; Kheradpour, P.; Ernst, J.; Jordan, G.; Mauceli, E.; et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011, 478, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernheim, A. Cytogenomics of cancers: From chromosome to sequence. Mol. Oncol. 2010, 4, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.A.; Meloni-Ehrig, A.M. Cytogenetics and genetics of human cancer: Methods and accomplishments. Cancer Genet. Cytogenet. 2010, 203, 102–126. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Johansson, B.; Mertens, F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. Available online: http://cgap.nci.nih.gov/chromosomes/mitelman (accessed on 31 May 2015).
- Le Scouarnec, S.; Gribble, S.M. Characterising chromosome rearrangements: Recent technical advances in molecular cytogenetics. Heredity (Edinb) 2012, 108, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Breen, M. Comparative Cytogenetics. Available online: http://www.els.net (accessed on 22 July 2015).
- Schiffman, J.D.; Breen, M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Phil. Trans. Roy. Soc. B-Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, M.J.; Goldschmidt, M.H. Do injection site reactions induce fibrosarcomas in cats? J. Amer. Vet. Med. Assoc. 1991. Avaiable online: http://europepmc.org/abstract/med/1748617 (accessed 28 August 2015).
- Martano, M.; Morello, E.; Buracco, P. Feline injection-site sarcoma: Past, present and future perspectives. Vet. J. 2011, 188, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Woodward, K.N. Origins of injection-site sarcomas in cats: The possible role of chronic inflammation—A review. ISRN Vet. Sci. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; Stedman, N.L.; Richey, L.J. Histology and immunohistochemistry of seven ferret vaccination-site fibrosarcomas. Vet. Pathol. 2003, 40, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, M.; Melchiotti, E.; Bozza, M.A.; Mutinelli, F. Fibrosarcomas at presumed sites of injection in dogs: Characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J. Vet. Med. A-Physiol. Pathol. Clin. Med. 2003, 50, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Moizhess, T.G. Carcinogenesis induced by foreign bodies. Biochemistry (Mosc.) 2008, 73, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, M.J. Musings on feline injection site sarcomas. Vet. J. 2011, 188, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Ladlow, J. Injection site-associated sarcoma in the cat: Treatment recommendations and results to date. J. Feline Med. Surg. 2013, 15, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.M.; Demetriou, J.; Seguin, B. Chapters 20: Skin tumors and 22: Injection site sarcomas. In Feline Soft Tissue and General Surgery, 1st ed.; Langley-Hobbs, S., Demetriou, J., Ladlow, J., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2013; pp. 209–242. [Google Scholar]
- Kalat, M.; Mayr, B.; Schleger, W.; Wagner, B.; Reifinger, M. Chromosomal hyperdiploidy in a feline sarcoma. Res. Vet. Sci. 1991, 51, 227–228. [Google Scholar] [CrossRef]
- Mayr, B.; Bockstahler, B.; Loupal, G.; Reifinger, M.; Schleger, W. Cytogenetic variation between four cases of feline fibrosarcoma. Res. Vet. Sci. 1996, 61, 268–270. [Google Scholar] [CrossRef]
- Mayr, B.; Eschborn, U.; Kalat, M. Near triploidy in a feline fibrosarcoma. Zentralbl. Veterinarmed. A 1991, 38, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Hofstadler, E.; Schleger, W.; Reifinger, M.; Eisenmenger, E. Trisomy D1, marker F1: New cytogenetic findings in two cases of feline fibrosarcoma. Zentralbl. Veterinarmed. A 1994, 41, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Chaves, R.; Adega, F.; Bastos, E.; Guedes-Pinto, H. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. J. Hered. 2006, 97, 114–118. [Google Scholar] [CrossRef] [PubMed]
- von Erichsen, J.; Hecht, W.; Lohberg-Gruene, C.; Reinacher, M. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations. Vet. Pathol. 2012, 49, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Valli, V.E.; Ellis, P.; Bell, J.; Karlsson, E.K.; Cullen, J.; Lindblad-Toh, K.; Langford, C.F.; Breen, M. Microarray-based cytogenetic profiling reveals recurrent and subtype-associated genomic copy number aberrations in feline sarcomas. Chromosome Res. 2009, 17, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Michalak, E. FISH-localization of the nucleolar organizer region on the feline E1p12 chromosome. Anim. Genet. 2003, 34, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, S.N.; Scase, T.J.; Oberthaler, K.T.; Craft, D.M.; McKnight, J.A.; Leibman, N.F.; Charney, S.C.; Bergman, P.J. Association of argyrophilic nucleolar organizing regions, Ki-67, and proliferating cell nuclear antigen scores with histologic grade and survival in dogs with soft tissue sarcomas: 60 cases (1996–2002). J. Am. Vet. Med. Assoc. 2006, 228, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Pontius, J.; Borst, L.; Lamm, C.; Breen, M. Development Of A Genome-Anchored Microarray Platform for Identification of Clinically Predictive Somatic DNA Copy Number Aberrations in Feline Cancers. In Proceedings of the 7th International Conference on Advances in Canine and Feline Genomics and Inherited Diseases, Cambridge, MA, USA, 23–27 September 2013.
- Smith, A.J.; Njaa, B.L.; Lamm, C.G. Immunohistochemical expression of c-KIT protein in feline soft tissue fibrosarcomas. Vet. Pathol. 2009, 46, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.F.; Rodriguez-Bertos, A.; Kass, P.H. Feline gastrointestinal lymphoma: Mucosal architecture, immunophenotype, and molecular clonality. Vet. Pathol. 2011, 49, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Iijima, K.; Tsujimoto, H.; Tamura, Y.; Higurashi, M. Chromosomal translocations in two feline T-cell lymphomas. Leuk. Res. 1995, 19, 857–860. [Google Scholar] [CrossRef]
- Fujino, Y.; Ma, Z.; Satoh, H.; Mizuno, T.; Hisasue, M.; Baba, K.; Masuda, K.; Ohno, K.; Onishi, T.; Tsujimoto, H. Characterization of a newly established nonproducer lymphoma cell line for feline leukemia virus. Vet. Immunol. Immunopathol. 2004, 102, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Breen, M.; Modiano, J.F. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—Man and his best friend share more than companionship. Chromosome Res. 2008, 16, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Seiser, E.L.; Motsinger-Reif, A.; Borst, L.; Valli, V.E.; Kelley, K.; Suter, S.E.; Argyle, D.; Burgess, K.; Bell, J.; et al. Refining tumor-associated aneuploidy through “genomic recoding” of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk. Lymphoma 2011, 52, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.M. Feline alimentary lymphoma: Demystifying the enigma. Top. Companion Anim. Med. 2008, 23, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.M. Chapter 324: Hematopoetic tumors. In Textbook of Veterinary Internal Medicine, 7th ed.; Ettinger, S.N., Feldman, E.C., Eds.; Saunders: Philadelphia, PA, USA, 2009; p. 2148. [Google Scholar]
- Rissetto, K.; Villamil, J.A.; Selting, K.A.; Tyler, J.; Henry, C.J. Recent trends in feline intestinal neoplasia: An epidemiologic study of 1129 cases in the veterinary medical database from 1964 to 2004. J. Am. Anim. Hosp. Assoc. 2011, 47, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Jasdanwala, S.; Pitchumoni, C. Epidemiological spectrum of gastrointestinal lymphoma. Pract. Gastroenterol. 2014, 38, 8–28. [Google Scholar]
- Moore, P.F.; Woo, J.C.; Vernau, W.; Kosten, S.; Graham, P.S. Characterization of feline T cell receptor gamma (TCRG) variable region genes for the molecular diagnosis of feline intestinal T cell lymphoma. Vet. Immunol. Immunopathol. 2005, 106, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Waly, N.E.; Gruffydd-Jones, T.J.; Stokes, C.R.; Day, M.J. Immunohistochemical diagnosis of alimentary lymphomas and severe intestinal inflammation in cats. J. Comp. Pathol. 2005, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, K.A.; Krockenberger, M.; Beatty, J.A.; Crowley, A.; Dennis, M.M.; Canfield, P.J.; Dhand, N.; Lingard, A.E.; Barrs, V.R. Histopathological and immunohistochemical evaluation of 53 cases of feline lymphoplasmacytic enteritis and low-grade alimentary lymphoma. J. Comp. Pathol. 2011, 145, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Pohlman, L.M.; Higginbotham, M.L.; Welles, E.G.; Johnson, C.M. Immunophenotypic and histologic classification of 50 cases of feline gastrointestinal lymphoma. Vet. Pathol. 2009, 46, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.D.; Zoran, D.L.; Mansell, J.; Norby, B.; Willard, M.D. Utility of endoscopic biopsies of the duodenum and ileum for diagnosis of inflammatory bowel disease and small cell lymphoma in cats. J. Vet. Intern. Med. 2011, 25, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; et al. Genomic profiling of feline gastrointestinal lymphoma (To be submitted).
- Hughes, K.; Dobson, J.M. Prognostic histopathological and molecular markers in feline mammary neoplasia. Vet. J. 2012, 194, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Burrai, G.P.; Mohammed, S.I.; Miller, M.A.; Marras, V.; Pirino, S.; Addis, M.F.; Uzzau, S.; Antuofermo, E. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. BMC Cancer 2010, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenez, F.; Hecht, S.; Craig, L.E.; Legendre, A.M. Early detection, aggressive therapy: Optimizing the management of feline mammary masses. J. Feline Med. Surg. 2010, 12, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Zappulli, V.; De Zan, G.; Cardazzo, B.; Bargelloni, L.; Castagnaro, M. Feline mammary tumours in comparative oncology. J. Dairy Res. 2005, 72, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 207. [Google Scholar] [PubMed]
- Seixas, F.; Palmeira, C.; Pires, M.A.; Bento, M.J.; Lopes, C. Grade is an independent prognostic factor for feline mammary carcinomas: A clinicopathological and survival analysis. Vet. J. 2011, 187, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [PubMed]
- Kiyose, S.; Igarashi, H.; Nagura, K.; Kamo, T.; Kawane, K.; Mori, H.; Ozawa, T.; Maeda, M.; Konno, K.; Hoshino, H.; et al. Chromogenic in situ hybridization (CISH) to detect HER2 gene amplification in breast and gastric cancer: Comparison with immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Pathol. Int. 2012, 62, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Rasotto, R.; Caliari, D.; Castagnaro, M.; Zanetti, R.; Zappulli, V. An immunohistochemical study of HER-2 expression in feline mammary tumours. J. Comp. Pathol. 2011, 144, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Jugl, M.; Brem, G.; Reifinger, M.; Loupal, G. Cytogenetic variation in six cases of feline mammary tumours. Zentralbl. Veterinarmed. A 1999, 46, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Mayr, B.; Ortner, W.; Reifinger, M.; Loupal, G. Loss of chromosome B2-material in three cases of feline mammary tumours. Res. Vet. Sci 1995, 59, 61–63. [Google Scholar] [CrossRef]
- Thomas, R.; Seixas, F.; Borst, L.; Breen, M. Landscapes of Genomic Copy Number Aberrations in Feline Mammary Cancer. In Proceedings of the 8th International Conference on Advances in Canine and Feline Genomics and Inherited Diseases, Cambridge, UK; Available online: http://www.caninefelinegenomicsconference.org/ (accessed on 22–26 June 2015).
- Ressel, L.; Millanta, F.; Caleri, E.; Innocenti, V.M.; Poli, A. Reduced pten protein expression and its prognostic implications in canine and feline mammary tumors. Vet. Pathol. 2009, 46, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Lynch, A.G.; Dunning, M.J.; Spiteri, I.; Marioni, J.C.; Hadfield, J.; Chin, S.F.; Brenton, J.D.; Tavare, S.; Caldas, C. The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genom. 2009, 10. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, R. Cytogenomics of Feline Cancers: Advances and Opportunities. Vet. Sci. 2015, 2, 246-258. https://doi.org/10.3390/vetsci2030246
Thomas R. Cytogenomics of Feline Cancers: Advances and Opportunities. Veterinary Sciences. 2015; 2(3):246-258. https://doi.org/10.3390/vetsci2030246
Chicago/Turabian StyleThomas, Rachael. 2015. "Cytogenomics of Feline Cancers: Advances and Opportunities" Veterinary Sciences 2, no. 3: 246-258. https://doi.org/10.3390/vetsci2030246
APA StyleThomas, R. (2015). Cytogenomics of Feline Cancers: Advances and Opportunities. Veterinary Sciences, 2(3), 246-258. https://doi.org/10.3390/vetsci2030246