Antimicrobial Activity of Bioactive Peptides on Resistant Enterobacteriaceae and the Viability of Giardia duodenalis Cysts Isolated from Healthy Dogs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Antimicrobial Peptides
2.3. Bacterial Isolation and Identification
2.4. Giardia Cyst Isolation and Identification
2.5. Antimicrobial Susceptibility Test
2.6. Antimicrobial Activity Assays of Peptides
2.6.1. Determination of the Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC)
2.6.2. Antimicrobial Activity on the Viability of Giardia Cysts
2.7. Statistical Analysis
3. Results
3.1. Antibiotic Susceptibility Profiles of Isolates
3.2. Antibacterial Activity of Temporins
3.3. Activity of Temporins on Giardia Cyst Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMP | Antimicrobial Peptides |
| AMR | Antimicrobial Resistance |
| MIC | Minimum Inhibitory Concentration |
| MBC | Minimum Bactericidal Concentration |
References
- EFSA. Foodborne Zoonotic Diseases. Available online: https://www.efsa.europa.eu/en/topics/topic/foodborne-zoonotic-diseases (accessed on 31 October 2025).
- Ebani, V.V.; Mancianti, F. Bacterial, Fungal, and Parasitic Zoonoses. Pathogens 2023, 13, 5. [Google Scholar] [CrossRef]
- Cross, A.R.; Baldwin, V.M.; Roy, S.; Essex-Lopresti, A.E.; Prior, J.L.; Harmer, N.J. Zoonoses under our noses. Microbes Infect. 2019, 21, 10–19. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. 2024. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 30 September 2025).
- Davin-Regli, A.; Pagès, J.M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 2015, 6, 392. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef]
- Smith, K.; Hunter, I.S. Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J. Med. Microbiol. 2008, 57, 966–973. [Google Scholar] [CrossRef]
- Dietrich, J.; LeCuyer, T.E.; Hendrix, G.K.; Burbick, C.R.; Jacob, M.E.; Byrne, B.A.; Olsen, K.; Mitchell, M.; Ceric, O.; Lin, R.; et al. Prevalence and molecular epidemiology of carbapenemase-producing Enterobacterales isolated from dog and cat faeces submitted to veterinary laboratories in the USA. Zoonoses Public Health 2024, 71, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Espelid, W.; Uzuegbunam, C.U.; Carag, J.H.; Hargita, M.N.; Page, A.M.; Stallworth, T.C.; Makkaoui, N.; Satola, S.W.; Rouphael, N.G.; Sanchez, S.; et al. No evidence of multidrug-resistant Enterobacterales transmission between healthy companion animals and pet owners in the greater Atlanta area: A pilot study. Microbiol. Spectr. 2025, 13, e0050325. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.; Bloos, F.; Vylkova, S. Bloodstream infection due to Enterobacter ludwigii, correlating with massive aggregation on the surface of a central venous catheter. Infection 2020, 48, 955–958. [Google Scholar] [CrossRef]
- Argüello-García, R.; Leitsch, D.; Skinner-Adams, T.; Ortega-Pierres, M.G. Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. Adv. Parasitol. 2020, 107, 201–282. [Google Scholar]
- Dixon, B.R. Giardia duodenalis in humans and animals—Transmission and disease. Res. Vet. Sci. 2021, 135, 283–289. [Google Scholar] [CrossRef]
- Riches, A.; Hart, C.J.S.; Trenholme, K.R.; Skinner-Adams, T.S. Anti-Giardia Drug Discovery: Current Status and Gut Feelings. J. Med. Chem. 2020, 63, 13330–13354. [Google Scholar] [CrossRef]
- Loderstädt, U.; Frickmann, H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis—A narrative review. Eur. J. Microbiol. Immunol. 2021, 11, 29–43. [Google Scholar] [CrossRef]
- Carter, E.R.; Nabarro, L.E.; Hedley, L.; Chiodini, P.L. Nitroimidazole-refractory giardiasis: A growing problem requiring rational solutions. Clin. Microbiol. Infect. 2018, 24, 37–42. [Google Scholar] [CrossRef]
- Manciu, F.S.; Guerrero, J.; Pence, B.C.; Martinez Lopez, L.V.; Das, S. Assessment of drug activities against Giardia using hyperspectral raman microscopy. Pathogens 2024, 13, 358. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Surveillance of Antimicrobial Resistance in Europe 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 30 September 2025).
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Migura, L.; Hendriksen, R.S.; Fraile, L.; Aarestrup, F.M. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 2014, 170, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; Grazia, A.D.; Cappiello, F.; Casciaro, B.; Luca, V. Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More. Curr. Top. Med. Chem. 2016, 16, 54–64. [Google Scholar] [CrossRef]
- Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol. 2015, 1268, 43–66. [Google Scholar]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Heimlich, D.R.; Harrison, A.; Mason, K.M. Host antimicrobial peptides in bacterial homeostasis and pathogenesis of disease. Antibiotics 2014, 3, 645–676. [Google Scholar] [CrossRef]
- Tajer, L.; Paillart, J.C.; Dib, H.; Sabatier, J.M.; Fajloun, Z.; Abi Khattar, Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024, 12, 1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveira Júnior, N.G.; Souza, C.M.; Buccini, D.F.; Cardoso, M.H.; Franco, O.L. Antimicrobial peptides: Structure, functions and translational applications. Nat. Rev. Microbiol. 2025, 23, 687–700. [Google Scholar] [CrossRef]
- Bellavita, R.; Falanga, A.; Merlino, F.; D’Auria, G.; Molfetta, N.; Saviano, A.; Maione, F.; Galdiero, U.; Catania, M.R.; Galdiero, S.; et al. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J. Enzym. Inhib. Med. Chem. 2023, 38, 36–50. [Google Scholar] [CrossRef]
- Rinaldi, A.C.; Mangoni, M.L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao, H.; Kinnunen, P.K.J.; Bozzi, A.; Di Giulio, A.; Simmaco, M. Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem. J. 2002, 368, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L. Temporins, anti-infective peptides with expanding properties. Cell Mol. Life Sci. 2006, 63, 1060–1069. [Google Scholar] [CrossRef]
- Mangoni, M.L.; Rinaldi, A.C.; Di Giulio, A.; Mignogna, G.; Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur. J. Biochem. 2000, 267, 1447–1454. [Google Scholar] [CrossRef]
- Buommino, E.; Carotenuto, A.; Antignano, I.; Bellavita, R.; Casciaro, B.; Loffredo, M.R.; Merlino, F.; Novellino, E.; Mangoni, M.L.; Nocera, F.P.; et al. The outcomes of decorated prolines in the discovery of antimicrobial peptides from Temporin-L. Chem. Med. Chem. 2019, 14, 1283–1290. [Google Scholar] [CrossRef]
- Ohkusu, K. Cost-effective and rapid presumptive identification of gram-negative bacilli in routine urine, pus and stool culture: Evaluation of the use of CHROMagar orientation medium in conjunction with biochemical tests. J. Clin. Microbiol. 2000, 38, 4586–4592. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Maurelli, M.P.; Ianniello, D.; Alves, L.C.; Amadesi, A.; Laricchiuta, P.; Silvestre, P.; Campolo, M.; Cringoli, G.; Rinaldi, L. Use of Mini-FLOTAC and Fill-FLOTAC for rapidly diagnosing parasitic infections in zoo mammals. Rev. Bras. Parasitol. Vet. 2019, 28, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Morgoglione, M.E.; Bosco, A.; Ciuca, L.; Pepe, P.; Coles, G.C.; Cringoli, G.; Rinaldi, L. In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study. Vet. Sci. 2021, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Ciuca, L.; Pepe, P.; Bosco, A.; Caccio, S.M.; Maurelli, M.P.; Sannella, A.R.; Cringoli, G.; Kramer, L.; Rinaldi, L.; Genchi, M. Effectiveness of Fenbendazole and Metronidazole Against Giardia Infection in Dogs Monitored for 50-Days in Home-Conditions. Front. Vet. Sci. 2021, 8, 626424. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 24th ed.; Approved Standard M100-S24; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Dehghani-Samani, A.; Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali, Y. In-vitro antigiardial activity and GC-MS analysis of Eucalyptus globulus and Zingiber officinalis essential oils against Giardia lamblia cysts in simulated condition to human’s body. Ann. Parasitol. 2019, 65, 129–138. [Google Scholar]
- Tewari, N.; Dey, P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol. Res. 2024, 286, 127832. [Google Scholar] [CrossRef] [PubMed]
- Davin-Regli, A.; Masi, M.; Bialek, S.; Nicolas-Chanoine, M.H.; Pagès, J.M. Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella. In Efflux-Mediated Antimicrobial Resistance in Bacteria; Chapter 11; Springer International Publishing: Cham, Switzerland, 2016; pp. 281–306. [Google Scholar]
- Akbari, M.; Bakhshi, B.; Najar Peerayeh, S. Particular distribution of Enterobacter cloacae strains isolated from urinary tract infection within clonal complexes Iron. Biomed. J. 2026, 20, 49–55. [Google Scholar]
- Sanders, W.E.; Sanders, C.C. Enterobacter spp.: Pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 1997, 10, 220–241. [Google Scholar] [CrossRef]
- Patel, B.; Patel, K.; Shetty, A.; Soman, R.; Rodrigues, C. Fosfomycin susceptibility in urinary tract Enterobacteriaceae. J. Assoc. Physicians India 2017, 65, 14–16. [Google Scholar]
- Santaniello, A.; Sansone, M.; Fioretti, A.; Menna, L.F. Systematic review and meta-analysis of the occurrence of eskape bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. Animals 2020, 17, 3278. [Google Scholar] [CrossRef]
- Di Somma, A.; Avitabile, C.; Cirillo, A.; Moretta, A.; Merlino, A.; Paduano, L.; Duilio, A.; Romanelli, A. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim. Biophys. Acta—Gen. Subj. 2020, 1864, 129606. [Google Scholar] [CrossRef]
- Pérez, A.; Poza, M.; Fernández, A.; Fernández, M.d.C.; Mallo, S.; Merino, M.; Rumbo-Feal, S.; Cabral, M.P.; Bou, G. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob. Agents Chemother. 2012, 56, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Chollet, R.; Bollet, C.; Chevalier, J.; Malléa, M.; Pagès, J.M.; Davin-Regli, A. Mar operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob. Agents Chemother. 2002, 46, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Zhao, Y.; Jiang, F.; Shang, D. Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs. Bioorg. Chem. 2022, 119, 105544. [Google Scholar] [CrossRef]
- Roscetto, E.; Bellavita, R.; Paolillo, R.; Merlino, F.; Molfetta, N.; Grieco, P.; Buommino, E.; Catania, M.R. Antimicrobial activity of a lipidated Temporin L analogue against Carbapenemase-Producing Klebsiella pneumoniae clinical isolates. Antibiotics 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, C.L.; Macedo, A.J.; Tasca, T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitol. Res. 2024, 123, 122. [Google Scholar] [CrossRef]
- Solaymani-Mohammadi, S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front. Immunol. 2022, 17, 817468. [Google Scholar] [CrossRef]
- Aley, S.B.; Zimmerman, M.; Hetsko, M.; Selsted, M.E.; Gillin, F.D. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 1994, 62, 5397–5403. [Google Scholar] [CrossRef]
- Leitsch, D. A review on metronidazole: An old warhorse in antimicrobial chemotherapy. Parasitology 2019, 146, 1167–1178. [Google Scholar] [CrossRef]
| Acronym | Peptides | Sequence |
|---|---|---|
| TL | Temporin L | FVQWFSKFLGRIL-NH2 |
| TL-34 | Temporin L 34 | FVPWFSKFdLGRIL-NH2 |
| TL-48 | Temporin L 48 | FVPWFSKFdLdKRIL-NH2 |
| TL-42 | Temporin L 42 | FVPWFSKFdLdPRIL-NH2 |
| TL-51 | Temporin L 51 | FVPWFSKFdLXRIL-NH2 |
| RB-71 | Temporin L 71 | Lipid-XFVPWFSKFLKRIL-NH2 |
| RB-58 | Temporin L 58 | FVPWF[KKFdLE]RIL-NH2 |
| Strains | Antibiotics Tested | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CIP | TE | CN | SXT | NA | CRO | CTLC | PRL | C | NOR | ENR | IMI | ATM | AUG | |
| E. hormaechei | I | R | S | I | I | R | R | R | S | S | I | R | R | R |
| E. ludwigii | R | R | S | I | R | R | R | R | I | R | R | R | R | R |
| E. hormaechei ATCC 700323 | S | S | S | S | S | S | R | S | S | S | S | S | R | S |
| Strains | MIC Values (µg/mL) of Temporins | |||||
|---|---|---|---|---|---|---|
| TL-34 | TL-42 | TL-48 | TL-51 | RB-58 | RB-71 | |
| E. hormaechei | 125 | nd | 125 | nd | nd | 62.5 |
| E. ludwigii | 125 | nd | 125 | nd | nd | 31 |
| E. hormaechei ATCC 700323 | 15 | nd | 62.5 | nd | nd | 62.5 |
| Bioactive Peptides | Time Exposure (Min) | Non-Viable Cysts (%) | |||
|---|---|---|---|---|---|
| Concentration (mg/mL) | |||||
| 0.15 | 0.3 | 0.6 | 1.2 | ||
| TL-34 | 30 | 0.0 | 21.0 | 36.0 | 74.8 |
| 60 | 69.2 | 65.2 | 81.4 | 89.5 | |
| 180 | 70.0 | 87.5 | 100.0 | 100.0 | |
| TL-48 | 30 | 21.0 | 22.20 | 36.0 | 78.0 |
| 60 | 21.20 | 68.9 | 94.3 | 100.0 | |
| 180 | 50.0 | 75.0 | 100.0 | 100.0 | |
| TL-42 | 30 | 8.0 | 11.1 | 59.0 | 100.0 |
| 60 | 12.5 | 66.7 | 78.0 | 100.0 | |
| 180 | 50.0 | 100.0 | 100.0 | 100.0 | |
| TL-51 | 30 | 25.5 | 33.30 | 50.0 | 77.40 |
| 60 | 52.5 | 60.0 | 89.8 | 100.0 | |
| 180 | 80.0 | 93.0 | 98.8 | 100.0 | |
| RB-71 | 30 | 0.0 | 33.3 | 40.0 | 70.0 |
| 60 | 11.2 | 26.7 | 53.0 | 73.3 | |
| 180 | 56.0 | 78.8 | 89.0 | 100.0 | |
| RB-58 | 30 | 0.0 | 25.0 | 33.3 | 42.5 |
| 60 | 15.0 | 39.0 | 52.9 | 61.5 | |
| 180 | 86.0 | 100.0 | 100.0 | 100.0 | |
| Positive Control Metronidazole (50 μg/mL) | 30 | 81.5 | |||
| 60 | 89.8 | ||||
| 180 | 100.0 | ||||
| Negative Control (PBS 1%) | 30 | 0.0 | |||
| 60 | 0.0 | ||||
| 180 | 0.0 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Santaniello, A.; Roscetto, E.; Galdiero, U.; Pepe, P.; Bosco, A.; Boccino, I.; Dipineto, L.; Catania, M.R.; Grieco, P. Antimicrobial Activity of Bioactive Peptides on Resistant Enterobacteriaceae and the Viability of Giardia duodenalis Cysts Isolated from Healthy Dogs. Vet. Sci. 2026, 13, 44. https://doi.org/10.3390/vetsci13010044
Santaniello A, Roscetto E, Galdiero U, Pepe P, Bosco A, Boccino I, Dipineto L, Catania MR, Grieco P. Antimicrobial Activity of Bioactive Peptides on Resistant Enterobacteriaceae and the Viability of Giardia duodenalis Cysts Isolated from Healthy Dogs. Veterinary Sciences. 2026; 13(1):44. https://doi.org/10.3390/vetsci13010044
Chicago/Turabian StyleSantaniello, Antonio, Emanuela Roscetto, Umberto Galdiero, Paola Pepe, Antonio Bosco, Ida Boccino, Ludovico Dipineto, Maria Rosaria Catania, and Paolo Grieco. 2026. "Antimicrobial Activity of Bioactive Peptides on Resistant Enterobacteriaceae and the Viability of Giardia duodenalis Cysts Isolated from Healthy Dogs" Veterinary Sciences 13, no. 1: 44. https://doi.org/10.3390/vetsci13010044
APA StyleSantaniello, A., Roscetto, E., Galdiero, U., Pepe, P., Bosco, A., Boccino, I., Dipineto, L., Catania, M. R., & Grieco, P. (2026). Antimicrobial Activity of Bioactive Peptides on Resistant Enterobacteriaceae and the Viability of Giardia duodenalis Cysts Isolated from Healthy Dogs. Veterinary Sciences, 13(1), 44. https://doi.org/10.3390/vetsci13010044

