Molecular Prevalence and Genotypic Diversity of Theileria equi in Xinjiang, China, Based on Three Genes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Sample Collection and DNA Extraction
2.2. PCR Detection of T. equi
2.3. PCR Detection and Sequencing of T. equi Genotypes
2.4. Phylogenetic Analysis Based on Multi-Gene Sequences
2.5. Statistical Analyses
3. Results
3.1. Molecular Detection of T. equi
3.2. Phylogenetic Analyses
3.3. Haplotype Analyses
3.3.1. 18S rRNA Gene
3.3.2. EMA-1 Gene
3.3.3. COI Gene
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| T. equi | Theileria equi |
| PCR | Polymerase Chain Reaction |
| T. haneyi | Theileria haneyi |
| B. caballi | Babesia caballi |
| T. annulata | Theileria annulata |
| T. parva | Theileria parva |
| T. buffeli | Theileria buffeli |
References
- Nugraha, A.B.; Cahyaningsih, U.; Amrozi, A.; Ridwan, Y.; Agungpriyono, S.; Taher, D.M.; Guswanto, A.; Gantuya, S.; Tayebwa, D.S.; Tuvshintulga, B.; et al. Serological and molecular prevalence of equine piroplasmosis in Western Java, Indonesia. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 1–6. [Google Scholar] [CrossRef]
- Wise, L.; Kappmeyer, L.; Mealey, R.; Knowles, D. Review of equine piroplasmosis. J. Vet. Intern. Med. 2013, 27, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Tamzali, Y. Equine piroplasmosis: An updated review. Equine Vet. Educ. 2013, 25, 590–598. [Google Scholar] [CrossRef]
- Knowles, D.P.; Kappmeyer, L.S.; Haney, D.; Herndon, D.R.; Fry, L.M.; Munro, J.B.; Sears, K.; Ueti, M.W.; Wise, L.N.; Silva, M. Discovery of a novel species, Theileria haneyi n. sp., infective to equids, highlights exceptional genomic diversity within the genus Theileria: Implications for apicomplexan parasite surveillance. Int. J. Parasitol. 2018, 48, 679–690. [Google Scholar] [CrossRef]
- Kalantari, M.; Sharifiyazdi, H.; Ghaemi, M.; Ghane, M.; Nazifi, S. Theileria equi in the horses of Iran: Molecular detection, genetic diversity, and hematological findings. Vet. Parasitol. Reg. Stud. Rep. 2022, 36, 100792. [Google Scholar] [CrossRef]
- Camacho, A.; Guitian, F.; Pallas, E.; Gestal, J.; Olmeda, A.; Habela, M.; Telford Iii, S.; Spielman, A. Theileria (Babesia) equi and Babesia caballi infections in horses in Galicia, Spain. Trop. Anim. Health Prod. 2005, 37, 293–302. [Google Scholar] [CrossRef]
- Maharana, B.R.; Ganguly, A.; Potliya, S.; Kumar, B.; Singh, H.; Dash, A.; Khanna, S. Molecular detection and characterization of prevailing Theileria equi genotype in equine from northern India. Res. Vet. Sci. 2024, 173, 105277. [Google Scholar] [CrossRef]
- Knowles, D., Jr.; Kappmeyer, L.; Stiller, D.; Hennager, S.; Perryman, L. Antibody to a recombinant merozoite protein epitope identifies horses infected with Babesia equi. J. Clin. Microbiol. 1992, 30, 3122–3126. [Google Scholar] [CrossRef]
- Uilenberg, G. Babesia—A historical overview. Vet. Parasitol. 2006, 138, 3–10. [Google Scholar] [CrossRef]
- de Waal, D.T. Equine piroplasmosis: A review. Br. Vet. J. 1992, 148, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, C.M. Equine piroplasmosis. J. Equine Vet. Sci. 2013, 33, 497–508. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef] [PubMed]
- Sears, K.P.; Kappmeyer, L.S.; Wise, L.N.; Silva, M.; Ueti, M.W.; White, S.; Reif, K.E.; Knowles, D.P. Infection dynamics of Theileria equi and Theileria haneyi, a newly discovered apicomplexan of the horse. Vet. Parasitol. 2019, 271, 68–75. [Google Scholar] [CrossRef]
- Atabek, B.; Zhyldyz, A.; Aitakin, K.; Rysbek, N.; Jailobek, O.; Ahedor, B.; Mumbi, N.N.M.; Ma, Y.; Otgonsuren, D.; Perera, W.; et al. Molecular prevalence and genotypic diversity of Theileria equi and Babesia caballi infecting horses in Kyrgyzstan. Parasitol. Int. 2024, 102, 102915. [Google Scholar] [CrossRef] [PubMed]
- Traub-Dargatz, J.; Bischoff, B.; James, A.; Freier, J. A Literature Review of Equine Piroplasmosis. 2010. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113188077#core-collateral-purchase-access (accessed on 6 July 2011).
- Ahedor, B.; Sivakumar, T.; Valinotti, M.F.R.; Otgonsuren, D.; Yokoyama, N.; Acosta, T.J. PCR detection of Theileria equi and Babesia caballi in apparently healthy horses in Paraguay. Vet. Parasitol. Reg. Stud. Rep. 2023, 39, 100835. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; Suganuma, K.; Igarashi, I.; Yokoyama, N.; Xuan, X.; Thekisoe, O. A review on equine piroplasmosis: Epidemiology, vector ecology, risk factors, host immunity, diagnosis and control. Int. J. Environ. Res. Public Health 2019, 16, 1736. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cui, Y.; Yu, F.; Muhatai, G.; Tao, D.; Zhao, A.; Ning, C.; Qi, M. Prevalence and genetic characterization of Theileria equi and Babesia caballi in grazing horses in Xinjiang, northwestern China. Parasitol. Res. 2023, 122, 387–394. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Moumouni, P.F.A.; Lee, S.H.; Galon, E.M.; Tumwebaze, M.A.; Yang, H.; Huercha; Liu, M.; Guo, H.; et al. First description of Coxiella burnetii and Rickettsia spp. infection and molecular detection of piroplasma co-infecting horses in Xinjiang Uygur Autonomous Region, China. Parasitol. Int. 2020, 76, 102028. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Cao, M.; Yu, F.; Zhao, A.; Tao, D.; Zhu, T.; Zhang, Z.; Qi, M. Molecular detection of piroplasms in domestic donkeys in Xinjiang, China. Vet. Med. Sci. 2024, 10, e1468. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Q.; Laven, R.; Li, C.; He, W.; Zheng, H.; Liu, S.; Lu, M.; Yang, D.A.; Guo, Q. Prevalence and genetic diversity of Theileria equi from horses in Xinjiang Uygur Autonomous region, China. Ticks Tick-Borne Dis. 2023, 14, 102193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chahan, B.; Liu, S.; Song, R.; Li, Y.; Guo, Q.; Wu, H.; Zhu, Y. Epidemiologic studies on Theileria equi infections for grazing horses in Ili of Xinjiang province. Vet. Parasitol. 2017, 244, 111–113. [Google Scholar] [CrossRef]
- Kappmeyer, L.S.; Thiagarajan, M.; Herndon, D.R.; Ramsay, J.D.; Caler, E.; Djikeng, A.; Gillespie, J.J.; Lau, A.O.; Roalson, E.H.; Silva, J.C.; et al. Comparative genomic analysis and phylogenetic position of Theileria equi. BMC Genom. 2012, 13, 603. [Google Scholar] [CrossRef]
- Mehlhorn, H.; Schein, E. Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitol. Res. 1998, 84, 467–475. [Google Scholar] [CrossRef]
- Ahedor, B.; Otgonsuren, D.; Zhyldyz, A.; Guswanto, A.; Ngigi, N.M.M.; Valinotti, M.F.R.; Kothalawala, H.; Kalaichelvan, N.; Silva, S.S.P.; Kothalawala, H.; et al. Development and evaluation of specific polymerase chain reaction assays for detecting Theileria equi genotypes. Parasites Vectors 2023, 16, 435. [Google Scholar] [CrossRef]
- Ueti, M.W.; Mealey, R.H.; Kappmeyer, L.S.; White, S.N.; Kumpula-McWhirter, N.; Pelzel, A.M.; Grause, J.F.; Bunn, T.O.; Schwartz, A.; Traub-Dargatz, J.L. Re-emergence of the apicomplexan Theileria equi in the United States: Elimination of persistent infection and transmission risk. PLoS ONE 2012, 7, e44713. [Google Scholar] [CrossRef] [PubMed]
- Sears, K.; Knowles, D.; Dinkel, K.; Mshelia, P.W.; Onzere, C.; Silva, M.; Fry, L. Imidocarb dipropionate lacks efficacy against Theileria haneyi and fails to consistently clear Theileria equi in horses co-infected with T. haneyi. Pathogens 2020, 9, 1035. [Google Scholar] [CrossRef]
- Bhoora, R.; Quan, M.; Matjila, P.T.; Zweygarth, E.; Guthrie, A.J.; Collins, N.E. Sequence heterogeneity in the equi merozoite antigen gene (ema-1) of Theileria equi and development of an ema-1-specific TaqMan MGB™ assay for the detection of T. equi. Vet. Parasitol. 2010, 172, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Manna, G.; Cersini, A.; Nardini, R.; Del Pino, L.E.B.; Antognetti, V.; Zini, M.; Conti, R.; Lorenzetti, R.; Veneziano, V.; Autorino, G.L. Genetic diversity of Theileria equi and Babesia caballi infecting horses of Central-Southern Italy and preliminary results of its correlation with clinical and serological status. Ticks Tick-Borne Dis. 2018, 9, 1212–1220. [Google Scholar] [CrossRef]
- Kumar, B.; Maharana, B.R.; Thakre, B.; Brahmbhatt, N.N.; Joseph, J.P. 18S rRNA gene-based piroplasmid PCR: An assay for rapid and precise molecular screening of Theileria and Babesia species in animals. Acta Parasitol. 2022, 67, 1697–1707. [Google Scholar] [CrossRef]
- Munkhjargal, T.; Sivakumar, T.; Battsetseg, B.; Nyamjargal, T.; Aboulaila, M.; Purevtseren, B.; Bayarsaikhan, D.; Byambaa, B.; Terkawi, M.A.; Yokoyama, N.; et al. Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia. Infect. Genet. Evol. 2013, 16, 178–185. [Google Scholar] [CrossRef]
- Gray, M.W.; Lang, B.F.; Burger, G. Mitochondria of protists. Annu. Rev. Genet. 2004, 38, 477–524. [Google Scholar] [CrossRef]
- Yang, X.; Tang, S.; Du, C.; Chen, Y.; Luo, Z.; Li, M.; Liu, S.; Duan, M.; Jiang, D.; Shen, Y.; et al. Insights into the mitochondrial genome structure and phylogenetic placement of Theileria velifera in comparison to other apicomplexan parasites. Sci. Rep. 2025, 15, 10637. [Google Scholar] [CrossRef] [PubMed]
- Ulucesme, M.C.; Aktas, M.; Ozubek, S. Mitochondrial Genome Analysis of Babesia ovis (Apicomplexa: Babesiidae) Endemic in Sheep in Türkiye. Vet. Sci. 2024, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Birth, D.; Kao, W.C.; Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 2014, 5, 4029. [Google Scholar] [CrossRef]
- Hikosaka, K.; Watanabe, Y.; Tsuji, N.; Kita, K.; Kishine, H.; Arisue, N.; Palacpac, N.M.; Kawazu, S.; Sawai, H.; Horii, T.; et al. Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol. Biol. Evol. 2010, 27, 1107–1116. [Google Scholar] [CrossRef]
- Hall, C.M.; Busch, J.D.; Scoles, G.A.; Palma-Cagle, K.A.; Ueti, M.W.; Kappmeyer, L.S.; Wagner, D.M. Genetic characterization of Theileria equi infecting horses in North America: Evidence for a limited source of U.S. introductions. Parasit. Vectors 2013, 6, 35. [Google Scholar] [CrossRef]
- Otgonsuren, D.; Amgalanbaatar, T.; Narantsatsral, S.; Enkhtaivan, B.; Munkhgerel, D.; Zoljargal, M.; Davkharbayar, B.; Myagmarsuren, P.; Battur, B.; Battsetseg, B.; et al. Epidemiology and genetic diversity of Theileria equi and Babesia caballi in Mongolian horses. Infect. Genet. Evol. 2024, 119, 105571. [Google Scholar] [CrossRef]
- Committee, S.A. GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of China. Beijing, China, 2018.
- Alhassan, A.; Pumidonming, W.; Okamura, M.; Hirata, H.; Battsetseg, B.; Fujisaki, K.; Yokoyama, N.; Igarashi, I. Development of a single-round and multiplex PCR method for the simultaneous detection of Babesia caballi and Babesia equi in horse blood. Vet. Parasitol. 2005, 129, 43–49. [Google Scholar] [CrossRef]
- Kumar, S.; Sudan, V.; Shanker, D.; Devi, A. Babesia (Theileria) equi genotype A among Indian equine population. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100367. [Google Scholar] [CrossRef]
- Dahmana, H.; Amanzougaghene, N.; Davoust, B.; Normand, T.; Carette, O.; Demoncheaux, J.P.; Mulot, B.; Fabrizy, B.; Scandola, P.; Chik, M.; et al. Great diversity of Piroplasmida in Equidae in Africa and Europe, including potential new species. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100332. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Salcedo, J.; McCormick, K. SPSS Statistics for Dummies; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Onyiche, T.E.; Taioe, M.O.; Molefe, N.I.; Biu, A.A.; Luka, J.; Omeh, I.J.; Yokoyama, N.; Thekisoe, O. Equine piroplasmosis: An insight into global exposure of equids from 1990 to 2019 by systematic review and meta-analysis. Parasitology 2020, 147, 1411–1424. [Google Scholar] [CrossRef]
- Phetkarl, T.; Fungwithaya, P.; Lewchalermvong, K.; Sontigun, N. Prevalence of gastrointestinal and blood parasites in horses of Nakhon Si Thammarat province, Thailand. Vet. World 2024, 17, 2460–2468. [Google Scholar] [CrossRef]
- Ahedor, B.; Kothalawala, H.; Kanagaratnam, R.; Vimalakumar, S.C.; Otgonsuren, D.; Tuvshintulga, B.; Batmagnai, E.; Silva, S.S.P.; Sivakumar, T.; Yokoyama, N. First detection of Theileria equi in free-roaming donkeys (Equus africanus asinus) in Sri Lanka. Infect. Genet. Evol. 2022, 99, 105244. [Google Scholar] [CrossRef]
- Jouglin, M.; Bonsergent, C.; de la Cotte, N.; Mège, M.; Bizon, C.; Couroucé, A.; Lallemand, É.A.; Leblond, A.; Lemonnier, L.C.; Leroux, A.; et al. Equine piroplasmosis in different geographical areas in France: Prevalence heterogeneity of asymptomatic carriers and low genetic diversity of Theileria equi and Babesia caballi. Ticks Tick. Borne Dis. 2025, 16, 102434. [Google Scholar] [CrossRef] [PubMed]
- Fanyao, K. Livestock Parasitology, 2nd ed.; China Agricultural University Press: Beijing, China, 2010. [Google Scholar]
- Liu, Z. Geographical Distribution and Molecular Characteristics of Ticks and Molecular Detection of Important Tick-borne Pathogens in Northern Xinjiang. Ph.D. Thesis, Shihezi University, Shihezi, China, 2019. [Google Scholar]
- Tang, L.; Wang, Y.; Liu, D.; Bu, S. Tick Distribution in Xinjiang and Research Progress of Tick-Borne Diseases. Chin. J. Anim. Infect. Dis. 2022, 30, 211–216. [Google Scholar]
- Zhang, L. Study on Geographical Distribution and Detection Pathogeny of Ticks. Master’s Thesis, North of Xinjiang, Shihezi University, Shihezi, China, 2014. [Google Scholar]
- Wang, B. Species Identification, Phylogenetic Analysis of Hyalomma Species and Molecular Detection of Theileriosis Carried by Hyalomma, Xinjiang. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2016. [Google Scholar]
- Peipei, X. Prokaryotic Expression of RAP-1 Protein of Theileria equi and Its Effect on PBMC of Horse; Xinjiang Agricultural University: Ürümqi, China, 2020. [Google Scholar]
- Yutao, Z.; Qiabudan, A.; Ruiqi, S.; Bingjie, W.; Tuerxun; Muheyati, S.; Bayinchahan. Preliminary report on detection of Babesia caballi and Theileria equi antibodies in herding horses in Fuyun county of Altay. Anim. Husb. Vet. Med. 2016, 3, 111–113. [Google Scholar]
- Matjila, P.; Carcy, B.; Leisewitz, A.; Schetters, T.; Jongejan, F.; Gorenflot, A.; Penzhorn, B. Preliminary evaluation of the Br EMA1 gene as a tool for associating Babesia rossi genotypes and clinical manifestation of canine babesiosis. J. Clin. Microbiol. 2009, 47, 3586–3592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, H.; Zhang, S.; Xie, S.; Li, H.; Zhang, X.; Jia, L. First report of genetic diversity and risk factor analysis of equine piroplasm infection in equids in Jilin, China. Parasit. Vectors 2020, 13, 459. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Z.; Yang, G.; Guo, W.; Qi, T.; Liu, D.; Wang, Y.; Du, C.; Wang, X. Development of a duplex real-time PCR assay for simultaneous detection and differentiation of Theileria equi and Babesia caballi. Transbound. Emerg. Dis. 2022, 69, e1338–e1349. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Yang, J.; Wang, X.; Li, Z.; Xu, J.; Li, X.; Xiang, Q.; Li, Y.; Liu, Z.; et al. The first molecular detection and genetic diversity of Babesia caballi and Theileria equi in horses of Gansu province, China. Ticks Tick. Borne Dis. 2019, 10, 528–532. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Han, Y.F.; Zeng, G.P.; Liang, J.D.; Chen, W.H.; Zhang, Z.Y.; Dong, C.B.; Shao, Q.Y. Haplotype and its application in fungal research. Mycosystema 2020, 15, 223–237. [Google Scholar]
- Nkhoma, S.C.; Ahmed, A.O.A.; Zaman, S.; Porier, D.; Baker, Z.; Stedman, T.T. Dissection of haplotype-specific drug response phenotypes in multiclonal malaria isolates. Int. J. Parasitol. Drugs Drug Resist. 2021, 15, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Onyango, S.A.; Machani, M.G.; Ochwedo, K.O.; Oriango, R.M.; Lee, M.C.; Kokwaro, E.; Afrane, Y.A.; Githeko, A.K.; Zhong, D.; Yan, G. Plasmodium falciparum Pfs47 haplotype compatibility to Anopheles gambiae in Kisumu, a malaria-endemic region of Kenya. Sci. Rep. 2025, 15, 6550. [Google Scholar] [CrossRef]
- Torres, R.; Hurtado, C.; Pérez-Macchi, S.; Bittencourt, P.; Freschi, C.; de Mello, V.V.C.; Machado, R.Z.; André, M.R.; Müller, A. Occurrence and Genetic Diversity of Babesia caballi and Theileria equi in Chilean Thoroughbred Racing Horses. Pathogens 2021, 10, 714. [Google Scholar] [CrossRef] [PubMed]







| Gene | Name | Primers (5′–3′) | Length | |
|---|---|---|---|---|
| 18S rRNA | 18s-F | CGAAGACGATCAGATACCGTCG | 430 bp | |
| 18s-R | TGCCTTAAACTTCCTTGCGAT | |||
| EMA1 | EMA-1F | GCATCCATTGCCATTTCGAG | 744 bp | |
| EMA-1R | TGCGCCATAGACGGAGAAGC | |||
| COI | COI-F | GTGAYGTTGTTTTTCCAAG | 750 bp | |
| COI-R | CCWGTTGTACCTCCAAYDAC | |||
| Thermal cycling | ||||
| Initial denaturation | Denaturation | Annealing | Extension | |
| 18S rRNA | 96 °C, 10 min | 96 °C, 1 min | 56 °C, 1 min | 72 °C, 1 min × 37 cycles |
| EMA1 | 95 °C, 6 min | 94 °C, 45 s | 68 °C, 45 s | 72 °C, 45 s × 35 cycles |
| COI | 95 °C, 15 min | 95 °C, 1 min | 55 °C, 30 s | 72 °C, 1 min × 40 cycles |
| Region | Positives | Total | Prevalence(%) | 95% Confidence Interval |
|---|---|---|---|---|
| Altay | 52 | 249 | 20.88 a | 16.11–26.57 |
| Ili | 44 | 88 | 50.00 b | 39.23–60.77 |
| Tacheng | 44 | 51 | 86.27 c | 73.12–93.85 |
| Urumqi | 29 | 52 | 55.77 b | 41.42–69.27 |
| Total | 169 | 440 | 38.41 | 33.87–43.15 |
| Gene | Origin | Number of Sequences | Number of Haplotypes | Haplotype Diversity | Nucleotide Diversity |
|---|---|---|---|---|---|
| 18S rRNA | Tacheng | 26 | 4 | 0.62462 | 0.00224 |
| Ili | 5 | 1 | 0.00000 | 0.00000 | |
| Urumqi | 5 | 4 | 0.90000 | 0.01747 | |
| Altay | 3 | 2 | 0.66667 | 0.00201 | |
| Total | 39 | 6 | 0.62618 | 0.00453 | |
| EMA-1 | Tacheng | 9 | 5 | 0.80556 | 0.00653 |
| Urumqi | 21 | 8 | 0.67143 | 0.00712 | |
| Altay | 3 | 3 | 1.00000 | 0.01688 | |
| Total | 33 | 11 | 0.76894 | 0.00789 | |
| COI | Tacheng | 3 | 3 | 1.00000 | 0.00344 |
| Urumqi | 4 | 4 | 1.00000 | 0.00580 | |
| Total | 7 | 7 | 1.00000 | 0.00608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qin, S.; Kulabieke, T.; Mizhamuhan, D.; Zhang, M.; Jin, M.; Abula, G.; Pi, M.; Wang, H.; Zhang, Y.; Guo, Q. Molecular Prevalence and Genotypic Diversity of Theileria equi in Xinjiang, China, Based on Three Genes. Vet. Sci. 2026, 13, 27. https://doi.org/10.3390/vetsci13010027
Qin S, Kulabieke T, Mizhamuhan D, Zhang M, Jin M, Abula G, Pi M, Wang H, Zhang Y, Guo Q. Molecular Prevalence and Genotypic Diversity of Theileria equi in Xinjiang, China, Based on Three Genes. Veterinary Sciences. 2026; 13(1):27. https://doi.org/10.3390/vetsci13010027
Chicago/Turabian StyleQin, Sinan, Telieke Kulabieke, Duman Mizhamuhan, Mengyuan Zhang, Min Jin, Gulibositan Abula, Mengjie Pi, Haorui Wang, Yang Zhang, and Qingyong Guo. 2026. "Molecular Prevalence and Genotypic Diversity of Theileria equi in Xinjiang, China, Based on Three Genes" Veterinary Sciences 13, no. 1: 27. https://doi.org/10.3390/vetsci13010027
APA StyleQin, S., Kulabieke, T., Mizhamuhan, D., Zhang, M., Jin, M., Abula, G., Pi, M., Wang, H., Zhang, Y., & Guo, Q. (2026). Molecular Prevalence and Genotypic Diversity of Theileria equi in Xinjiang, China, Based on Three Genes. Veterinary Sciences, 13(1), 27. https://doi.org/10.3390/vetsci13010027

