Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Inorganic Analysis
2.3. Organic Contaminant Analysis
3. Results
3.1. Inorganic Elements
3.1.1. Essential and Macroelements
3.1.2. Toxic Elements and Potentially Toxic Elements
3.2. Organic Contaminants
4. Discussion
4.1. Inorganic Elements
4.1.1. Essential and Macroelements
4.1.2. Toxic and Potentially Toxic Elements
4.2. Organic Contaminants
5. Conclusions
- Use serum panels to obtain preliminary baselines at the herd level; for metals of toxicological concern (particularly Pb, Hg), individual risk assessment requires confirmation with whole-blood testing.
- Review mineral supplementation in late gestation and young animals to prevent subclinical imbalances.
- Maintain treatment records and withdrawal-time compliance; unexpected serum findings (e.g., antimicrobials) warrant record checks and follow-up.
- Prioritize water/feed quality surveillance in semi-extensive systems as a preventive measure.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faye, B. Is the Camel Conquering the World? Anim. Front. 2022, 12, 8–16. [Google Scholar] [CrossRef]
- Smits, M.; Joosten, H.; Faye, B.; Burger, P.A. The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals 2023, 13, 47. [Google Scholar] [CrossRef]
- Muthukumaran, M.S.; Mudgil, P.; Baba, W.N.; Ayoub, M.A.; Maqsood, S. A Comprehensive Review on Health Benefits, Nutritional Composition and Processed Products of Camel Milk. Food Rev. Int. 2023, 39, 3080–3116. [Google Scholar] [CrossRef]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.S.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E.; et al. Nutritional, Antimicrobial and Medicinal Properties of Camel’s Milk: A Review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef] [PubMed]
- Schulz, U. El Camello En Lanzarote; Asociación para el Desarrollo Rural de Lanzarote (ADERLAN): Arrecife, Lanzarote, Spain, 2008; p. 204. ISBN 978-84-612-6276-2. [Google Scholar]
- Hamed Hammad Mohammed, H.; Jin, G.; Ma, M.; Khalifa, I.; Shukat, R.; Elkhedir, A.E.; Zeng, Q.; Noman, A.E. Comparative Characterization of Proximate Nutritional Compositions, Microbial Quality and Safety of Camel Meat in Relation to Mutton, Beef, and Chicken. LWT 2020, 118, 108714. [Google Scholar] [CrossRef]
- Alimi, D.; Hajaji, S.; Rekik, M.; Abidi, A.; Gharbi, M.; Akkari, H. First Report of the in Vitro Nematicidal Effects of Camel Milk. Vet. Parasitol. 2016, 228, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy Metals Levels in Raw Cow Milk and Health Risk Assessment across the Globe: A Systematic Review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef]
- Ahmed, E.B.; Hamed, M.S.E.M.; Moktar, B.S.; Pino, A.S.-D.; Brahim, M.; Issa, M.Y.; Zamel, M.L.; Montesdeoca-Esponda, S. Assessment of Trace Metals in Camelus Dromedarius Meat from Mauritania. Biol. Trace Elem. Res. 2023, 201, 170–179. [Google Scholar] [CrossRef]
- Ajarem, J.S.; Hegazy, A.K.; Allam, G.A.; Allam, A.A.; Maodaa, S.N.; Mahmoud, A.M. Heavy Metal Accumulation, Tissue Injury, Oxidative Stress, and Inflammation in Dromedary Camels Living near Petroleum Industry Sites in Saudi Arabia. Animals 2022, 12, 707. [Google Scholar] [CrossRef]
- Sallam, K.I.; Mohammed Ali Morshedy, A.E. Organochlorine Pesticide Residues in Camel, Cattle and Sheep Carcasses Slaughtered in Sharkia Province, Egypt. Food Chem. 2008, 108, 154–164. [Google Scholar] [CrossRef]
- Guvvala, P.R.; Ravindra, J.P.; Selvaraju, S. Impact of Environmental Contaminants on Reproductive Health of Male Domestic Ruminants: A Review. Environ. Sci. Pollut. Res. 2020, 27, 3819–3836. [Google Scholar] [CrossRef]
- Ullah, S.; Ennab, W.; Wei, Q.; Wang, C.; Quddus, A.; Mustafa, S.; Hadi, T.; Mao, D.; Shi, F. Impact of Cadmium and Lead Exposure on Camel Testicular Function: Environmental Contamination and Reproductive Health. Animals 2023, 13, 2302. [Google Scholar] [CrossRef] [PubMed]
- Wrzecińska, M.; Kowalczyk, A.; Cwynar, P.; Czerniawska-Piątkowska, E. Disorders of the Reproductive Health of Cattle as a Response to Exposure to Toxic Metals. Biology 2021, 10, 882. [Google Scholar] [CrossRef]
- Haddad, M. Banned Organochlorine Pesticides Residues in Camel Milk, Meat, and Liver: A Case Study from Jordan. Jordanian J. Eng. Chem. Ind. (JJECI) 2021, 4, 31–37. [Google Scholar] [CrossRef]
- Osesua, A.; Omoniyi, F. Determination of Pesticide Residues in Muscle and Organs of Cow, Camel and Goat in Birnin Kebbi, Kebbi State, Nigeria. Int. J. Environ. Sci. 2022, 5, 33–56. [Google Scholar] [CrossRef]
- Henríquez-Hernández, L.A.; Luzardo, O.P.; Arellano, J.L.P.; Carranza, C.; Sánchez, N.J.; Almeida-González, M.; Ruiz-Suárez, N.; Valerón, P.F.; Camacho, M.; Zumbado, M.; et al. Different Pattern of Contamination by Legacy POPs in Two Populations from the Same Geographical Area but with Completely Different Lifestyles: Canary Islands (Spain) vs. Morocco. Sci. Total Environ. 2016, 541, 51–57. [Google Scholar] [CrossRef]
- Buck, A.; Carrillo-Hidalgo, J.; Camarero, P.R.; Mateo, R. Organochlorine Pesticides and Polychlorinated Biphenyls in Common Kestrel Eggs from the Canary Islands: Spatiotemporal Variations and Effects on Eggshell and Reproduction. Chemosphere 2020, 261, 127722. [Google Scholar] [CrossRef]
- Tansel, B. From Electronic Consumer Products to E-Wastes: Global Outlook, Waste Quantities, Recycling Challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef]
- Johnson-Davis, K.L.; Farnsworth, C.; Law, C.; Parker, R. Method Validation for a Multi-Element Panel in Serum by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Clin. Biochem. 2020, 82, 90–98. [Google Scholar] [CrossRef]
- Meyer, S.; Markova, M.; Pohl, G.; Marschall, T.A.; Pivovarova, O.; Pfeiffer, A.F.H.; Schwerdtle, T. Development, Validation and Application of an ICP-MS/MS Method to Quantify Minerals and (Ultra-)Trace Elements in Human Serum. J. Trace Elem. Med. Biol. 2018, 49, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Henríquez-Hernández, L.A.; Boada, L.D.; Carranza, C.; Pérez-Arellano, J.L.; González-Antuña, A.; Camacho, M.; Almeida-González, M.; Zumbado, M.; Luzardo, O.P. Blood Levels of Toxic Metals and Rare Earth Elements Commonly Found in E-Waste May Exert Subtle Effects on Hemoglobin Concentration in Sub-Saharan Immigrants. Environ. Int. 2017, 109, 20–28. [Google Scholar] [CrossRef]
- Rial-Berriel, C.; Ramos-Luzardo, Á.; Acosta-Dacal, A.; Macías-Montes, A.; Fernández-Valerón, P.; Henríquez-Hernández, L.A.; Zumbado, M.; Boada, L.D.; Luzardo, O.P. Validation of a Method Scope Extension for Simple Biomonitoring of 353 Pollutants in Serum Samples. Toxics 2023, 11, 498. [Google Scholar] [CrossRef]
- EURL. SANTE/12682 Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed; European Commission, Health & Consumer Protection Directorate-General: Brussels, Belgium, 2019; pp. 2–44. [Google Scholar]
- European Commission. Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed (SANTE/12682/2019); European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Tasic, A.M.; Ninković, M.; Pavlović, I. Validation and Application of a Method for Determination of Multi-Class Pesticides in Muscle Chicken Breast Fillets Using QuEChERS Extraction and GC/MS. J. Vet. Res. 2024, 68, 223–232. [Google Scholar] [CrossRef]
- Saint-Hilaire, M.; Plumain, D.; Thomé, J.P.; Adam, C.; Scholl, G.; Vedy, S.; Ferdinand, S.; Talarmin, A.; Guyomard-Rabenirina, S. Validation of an HPLC-MS/MS Method with QuEChERS Extraction Using Isotopic Dilution to Analyze Chlordecone in Human Serum. J. Chromatogr. B 2023, 1229, 123894. [Google Scholar] [CrossRef] [PubMed]
- Shawaf, T.; Almathen, F.; Meligy, A.; El-Deeb, W.; Al-Bulushi, S. Biochemical Analysis of Some Serum Trace Elements in Donkeys and Horses in Eastern Region of Kingdom of Saudi Arabia. Vet. World 2017, 10, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Stowe, H.D.; Herdt, T.H. Clinical Assessment of Selenium Status of Livestock. J. Anim. Sci. 1992, 70, 3928–3933. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of Copper on Mitochondrial Function and Metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef]
- Jensen, E.L.; Gonzalez-Ibanez, A.M.; Mendoza, P.; Ruiz, L.M.; Riedel, C.A.; Simon, F.; Schuringa, J.J.; Elorza, A.A. Copper Deficiency-Induced Anemia Is Caused by a Mitochondrial Metabolic Reprograming in Erythropoietic Cells. Metallomics 2019, 11, 282–290. [Google Scholar] [CrossRef]
- Howes, A.D.; Dyer, I.A. Diet and Supplemental Mineral Effects on Manganese Metabolism in Newborn Calves. J. Anim. Sci. 1971, 32, 141–145. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The Role of Essential Trace Elements in Embryonic and Fetal Development in Livestock. Vet. J. 2003, 166, 125–139. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Essawi, W.; Gouda, H. Inter-Relationship between Some Trace Elements during Pregnancy and Newborn Birth Weight in Dromedary Camels. Zagazig Vet. J. 2020, 48, 319–327. [Google Scholar] [CrossRef]
- Dias Betini, R.S.; López, S.; Montanholi, Y.R.; France, J. Interactions Between Trace Elements and Macro Minerals in Pregnant Heifers. Agriculture 2025, 15, 167. [Google Scholar] [CrossRef]
- Kachuee, R.; Abdi-Benemar, H.; Mansoori, Y.; Sánchez-Aparicio, P.; Seifdavati, J.; Elghandour, M.M.M.Y.; Guillén, R.J.; Salem, A.Z.M. Effects of Sodium Selenite, L-Selenomethionine, and Selenium Nanoparticles During Late Pregnancy on Selenium, Zinc, Copper, and Iron Concentrations in Khalkhali Goats and Their Kids. Biol. Trace Elem. Res. 2019, 191, 389–402. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Hanif, A.; Khan, M.Y.; Waqas, M.R.; Ahmad, Z.; Ashraf, M.R.; Naveed, M. Elemental Sulphur with Sulphur Oxidizing Bacteria Enhances Phosphorus Availability and Improves Growth and Yield of Wheat in Calcareous Soil. Arch. Agron. Soil. Sci. 2023, 69, 1494–1502. [Google Scholar] [CrossRef]
- Köhler, O.M.; Grünberg, W.; Schnepel, N.; Muscher-Banse, A.S.; Rajaeerad, A.; Hummel, J.; Breves, G.; Wilkens, M.R. Dietary Phosphorus Restriction Affects Bone Metabolism, Vitamin D Metabolism and Rumen Fermentation Traits in Sheep. J. Anim. Physiol. Anim. Nutr. 2021, 105, 35–50. [Google Scholar] [CrossRef]
- Jacob, S.K.; Philomina, P.T.; Ramnath, V. Serum Profile of Calcium, Phosphorus and Magnesium in Crossbred Heifers as Influenced by Gestation and Early Lactation. Indian J. Physiol. Pharmacol. 2002, 46, 245–248. [Google Scholar]
- Asli, M.; Azizzadeh, M.; Moghaddamjafari, A.; Mohsenzadeh, M. Copper, Iron, Manganese, Zinc, Cobalt, Arsenic, Cadmium, Chrome, and Lead Concentrations in Liver and Muscle in Iranian Camel (Camelus Dromedarius). Biol. Trace Elem. Res. 2020, 194, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Fazio, F.; Cicero, N.; Piccione, G.; Giannetto, C.; Licata, P. Blood Response to Mercury Exposure in Athletic Horse From Messina, Italy. J. Equine Vet. Sci. 2020, 84, 102837. [Google Scholar] [CrossRef] [PubMed]
- Doğan, E.; Fazio, F.; Aragona, F.; Nava, V.; De Caro, S.; Zumbo, A. Toxic Element (As, Cd, Pb and Hg) Biodistribution and Blood Biomarkers in Barbaresca Sheep Raised in Sicily: One Health Preliminary Study. Environ. Sci. Pollut. Res. 2024, 31, 43903–43912. [Google Scholar] [CrossRef]
- Silbergeld, E.K. Lead in Bone: Implications for Toxicology during Pregnancy and Lactation. Environ. Health Perspect. 1991, 91, 63–70. [Google Scholar] [CrossRef]
- Pors Nielsen, S. The Biological Role of Strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.; Zhu, Y.; Gu, Q.; Martín, J.D. Speciation, in Vitro Bioaccessibility and Health Risk of Antimony in Soils near an Old Industrial Area. Sci. Total Environ. 2023, 854, 158767. [Google Scholar] [CrossRef]
- Sarparandeh, M.; Hezarkhani, A. Principal Component Analysis of Rare Earth Elements in Sechahun Iron Deposit, Central Iran. Int. J. Adv. Geosci. 2018, 6, 205–208. [Google Scholar] [CrossRef]
- Jurjanz, S.; Nurseitova, M.; Toregozhina, Z.; Konuspayeva, G.; Faye, B. Kinetics of Polychlorinated Biphenyls in Bactrian Camels. Emir. J. Food Agric. 2018, 30, 312–319. [Google Scholar] [CrossRef]
- Pierina Vega Quispe, A.; Efrain Merma Chacca, D.; Maldonado, I.; Jack Colque Ayma, E.; Roberto Guimarães Guilherme, L.; Andrés Jiménez Jiménez, P.; Rivera Campano, M.R.; Luis Ramos Tejeda, J.; Zirena Vilca, F. Presence and Leaching of PAHs in Soils of High Andean Grasslands Affected by Intentional Burning. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100915. [Google Scholar] [CrossRef]
- EC. EU Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 9 March 2025).
- Groot, M.J.; van Dijk, A.; van Baak, M.J.; Boshuis, P.; van de Braak, A.E.; Zuidema, T.; Sterk, S.S. 4-Acetaminophen (Paracetamol) Levels in Treated and Untreated Veal Calves, an Update. Food Control 2023, 147, 109577. [Google Scholar] [CrossRef]
- Zakaria, A.M.; Amin, Y.A.; Zakaria, H.M.; Farrag, F.; Fericean, L.; Banatean-Dunea, I.; Abdo, M.; Hafez, A.; Mohamed, R.H. Impact of Grazing around Industrial Areas on Milk Heavy Metals Contamination and Reproductive Ovarian Hormones of She-Camel with Assessment of Some Technological Processes on Reduction of Toxic Residue Concentrations. BMC Vet. Res. 2024, 20, 34. [Google Scholar] [CrossRef]
- Ibrahim, M.S.I.; Hafez, A.-E.E.; El Bayomi, R.M.; Mahmoud, A.F.A. Review on Camel Meat: Health Benefits, Chemical Contaminants, Health Risks, and Mitigation Strategies. Egypt. J. Vet. Sci. 2025, 56, 515–526. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Alhidary, I.A.; Aljumaah, R.S.; Faye, B. Blood Trace Element Status in Camels: A Review. Animals 2022, 12, 2116. [Google Scholar] [CrossRef] [PubMed]
(A) Essential Elements (µg/L) | |||||||||
Element | Mean ± SD | Median | P25–P75 Range | Sex p-Value | Age p-Value | Pregnancy p-Value | Sex Difference | Age Difference | Pregnancy Difference |
Mn | 3.01 ± 3.93 | 2.55 | 1.40–4.26 | 0.004 | <0.001 | 0.822 | ♂ > ♀ | Calf > Adult | n.s. |
Fe | 3031.8 ± 1684.2 | 2372.0 | 1810–4190 | <0.001 | 0.034 | 0.008 | ♀ > ♂ | Calf > Adult | No > Yes |
Co | 0.82 ± 0.54 | 0.73 | 0.52–1.00 | 0.205 | <0.001 | 0.970 | n.s. | Adult > Calf | n.s. |
Zn | 339.8 ± 89.5 | 322.0 | 281–392 | 0.870 | <0.001 | 0.005 | n.s. | Calf > Adult | No > Yes |
Cu | 626.2 ± 127.3 | 625.0 | 528–710 | <0.001 | 0.375 | 0.354 | ♂ > ♀ | n.s. | n.s. |
Se | 76.3 ± 58.2 | 60.8 | 40.0–95.3 | <0.001 | <0.001 | 0.018 | ♂ > ♀ | Adult > Calf | No > Yes |
Mo | 6.87 ± 20.6 | 0.00 | 0.00–3.30 | 0.887 | 0.301 | 0.835 | n.s. | n.s. | n.s. |
(B) Macroelements (mg/L) | |||||||||
Element | Mean ± SD | Median | P25–P75 Range | Sex p-value | Age p-value | Pregnancy p-value | Sex Difference | Age Difference | Pregnancy Difference |
Na | 3386 ± 208 | 3363 | 3245–3500 | 0.028 | <0.001 | 0.053 | ♂ > ♀ | Calf > Adult | n.s. |
Mg | 25.6 ± 2.24 | 25.6 | 23.9–27.1 | 0.550 | 0.284 | <0.001 | n.s. | n.s. | Yes > No |
P | 86.1 ± 22.1 | 77.5 | 69.3–98.5 | 0.078 | <0.001 | 0.002 | n.s. | Calf > Adult | No > Yes |
S | 878 ± 75.6 | 884 | 830–928 | 0.092 | 0.001 | 0.221 | n.s. | Calf > Adult | n.s. |
K | 1025 ± 578 | 1229 | 730–1400 | 0.729 | 0.022 | <0.001 | n.s. | Adult > Calf | Yes > No |
Ca | 101 ± 10.0 | 100 | 93.0–108 | 0.012 | <0.001 | 0.608 | ♂ > ♀ | Calf > Adult | n.s. |
(A) Toxic Elements (µg/L) | |||||||||
Element | Mean ± SD | Median | P25–P75 Range | Sex p-Value | Age p-Value | Pregnancy p-Value | Sex Difference | Age Difference | Pregnancy Difference |
As | 0.1605 ± 0.8678 | 0.00 | 0.00–0.00 | 0.883 | 0.208 | 0.837 | n.s. | n.s. | n.s. |
Cd | 0.0010 ± 0.0098 | 0.00 | 0.00–0.00 | 0.445 | 0.449 | 0.523 | n.s. | n.s. | n.s. |
Hg | 0.0623 ± 0.1291 | 0.00 | 0.00–0.10 | 0.078 | 0.011 | 0.628 | n.s. | Adult > Calf | n.s. |
Pb | 0.1646 ± 0.3905 | 0.00 | 0.00–0.00 | 0.301 | 0.679 | 0.001 | n.s. | n.s. | Yes > No |
(B) Potentially Toxic Elements (µg/L) | |||||||||
Element | Mean ± SD | Median | P25–P75 range | Sex p-value | Age p-value | Pregnancy p-value | Sex Difference | Age Difference | Pregnancy Difference |
Sr | 172 ± 63 | 157 | 130–206 | 0.001 | <0.001 | 0.594 | ♂ > ♀ | Adult < Calf | n.s. |
Ba | 40.1 ± 15.2 | 37.4 | 30.7–48.0 | 0.014 | <0.001 | <0.001 | ♂ > ♀ | Adult > Calf | No > Yes |
Sb | 3.53 ± 2.74 | 3.14 | 1.70–5.20 | 0.054 | 0.069 | <0.001 | ♂ > ♀ (borderline) | n.s. | Yes > No |
Pt | 0.186 ± 0.280 | 0.00 | 0.00–0.30 | 0.047 | 0.002 | 0.001 | ♂ > ♀ | Calf > Adult | Yes > No |
Sum REEs | 0.466 ± 0.970 | 0.00 | 0.00–0.15 | 0.025 | 0.004 | 0.036 | ♂ > ♀ | Adult > Calf | No > Yes |
Compound | Detected (n) | Detected (%) | Mean ± SD (µg/L) | Median (µg/L) | Range (µg/L) |
---|---|---|---|---|---|
Acenaphthene | 63 | 55.3 | 0.59 ± 0.45 | 0.52 | 0.0–2.19 |
Procymidone | 37 | 32.5 | 38.03 ± 21.37 | 33.17 | 3.43–86.20 |
Fluorene | 14 | 12.3 | 0.59 ± 0.07 | 0.59 | 0.49–0.73 |
Acetaminophen (Paracetamol) | 5 | 4.4 | 0.93 ± 0.25 | 0.84 | 0.68–1.25 |
Hexachlorobenzene | 5 | 4.4 | 0.05 ± 0.01 | 0.05 | 0.04–0.05 |
Dieldrin | 5 | 4.4 | 0.27 ± 0.22 | 0.32 | 0.03–0.56 |
Acephate | 3 | 2.6 | 0.89 ± 0.34 | 0.72 | 0.68–1.28 |
Chlorantraniliprole | 3 | 2.6 | 1.25 ± 1.64 | 0.33 | 0.28–3.14 |
Imazalil (Enilconazole) | 2 | 1.8 | 0.29 ± 0.03 | 0.29 | 0.28–0.31 |
Thiabendazole | 2 | 1.8 | 12.91 ± 17.26 | 12.91 | 0.71–25.12 |
Thiacloprid | 2 | 1.8 | 0.17 ± 0.07 | 0.17 | 0.12–0.22 |
Penicillin G | 2 | 1.8 | 102.11 ± 23.18 | 102.11 | 85.71–118.49 |
Pendimethalin | 1 | 0.9 | 1.12 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Dacal, A.; Melián Henríquez, A.; Corbera, J.A.; Macías-Montes, A.; Zumbado, M.; Ruiz-Suárez, N.; Martín-Barrasa, J.L.; Luzardo, O.P.; Tejedor-Junco, M.T. Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment. Vet. Sci. 2025, 12, 829. https://doi.org/10.3390/vetsci12090829
Acosta-Dacal A, Melián Henríquez A, Corbera JA, Macías-Montes A, Zumbado M, Ruiz-Suárez N, Martín-Barrasa JL, Luzardo OP, Tejedor-Junco MT. Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment. Veterinary Sciences. 2025; 12(9):829. https://doi.org/10.3390/vetsci12090829
Chicago/Turabian StyleAcosta-Dacal, Andrea, Adrián Melián Henríquez, Juan Alberto Corbera, Ana Macías-Montes, Manuel Zumbado, Norberto Ruiz-Suárez, José Luis Martín-Barrasa, Octavio P. Luzardo, and María Teresa Tejedor-Junco. 2025. "Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment" Veterinary Sciences 12, no. 9: 829. https://doi.org/10.3390/vetsci12090829
APA StyleAcosta-Dacal, A., Melián Henríquez, A., Corbera, J. A., Macías-Montes, A., Zumbado, M., Ruiz-Suárez, N., Martín-Barrasa, J. L., Luzardo, O. P., & Tejedor-Junco, M. T. (2025). Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment. Veterinary Sciences, 12(9), 829. https://doi.org/10.3390/vetsci12090829