Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Sample Preparation, Library Construction, and RNA-Sequencing
2.3. RNA-Sequencing Data Quality Control and Analysis
2.4. Gene Expression Analysis
2.5. Differentially Expressed Genes (DEGs) Analysis
2.5.1. Clustering Analysis
2.5.2. Gene Ontology (GO) Enrichment Analysis of DEGs
2.5.3. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis of DEGs
2.6. Real-Time Quantitative PCR (RT-qPCR) Validation of the RNA-Seq
2.7. Statistical Analysis
3. Results
3.1. Growth Kinetics of FPLV in F81 Cells
3.2. Transcriptome Sequencing and Mapping with Reference Genome
3.3. Correlation Analysis of Gene Expression Levels Between Samples
3.4. Analysis of Differentially Expressed Genes (DEGs) upon FPLV Infection
3.5. Gene Ontology (GO) Enrichment Analysis of Differentially Expressed Genes (DEGs)
3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of Differentially Expressed Genes (DEGs)
3.7. Validation of the RNA-Seq Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Gao, D.; Chen, P.; Mouzahim, M.; Muhammad, S.; Weidong, Y.; Zhongqi, Q.; Yilmaz, A.; Yilmaz, H.; Umar, S. Genetic Analysis of Feline Parvovirus Reveals Predominance of Feline Parvovirus-G1 Group among Cats in China. J. Vet. Med. Sci. 2024, 86, 1032–1039. [Google Scholar] [CrossRef]
- Li, J.; Peng, J.; Zeng, Y.; Wang, Y.; Li, L.; Cao, Y.; Cao, L.; Chen, Q.; Ye, Z.; Zhou, D.; et al. Isolation of a Feline-Derived Feline Panleukopenia Virus with an A300P Substitution in the VP2 Protein and Confirmation of Its Pathogenicity in Dogs. Anim. Dis. 2024, 4, 5. [Google Scholar] [CrossRef]
- Verge, J.; Christoforoni, N. La Gastroenterite Infectieuse Des Chats Est Elle Due a Uvirus Filtrable? In Proceedings of the Comptes Rendus des Seances de la Societe de Biologie, Paris, France, 22 January 1928; Volume 99, pp. 312–314. [Google Scholar]
- Johnson, R.H. Feline Panleucopaenia. I. Identification of a Virus Associated with the Syndrome. Res. Vet. Sci. 1965, 6, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, Z.; Liu, H.; Wang, W.; Liu, Y.; Zhu, X.; Tian, L.; Zhao, J.; Peng, Q.; Bi, Z. Prevalence and Molecular Evolution of Parvovirus in Cats in Eastern Shandong, China, between 2021 and 2022. Transbound. Emerg. Dis. 2024, 2024, 5514806. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, J.; Zhou, Y.; Yue, H.; Zhou, N.; Tang, C. Circulation of Heterogeneous Carnivore Protoparvovirus 1 in Diarrheal Cats and Prevalence of an A91S Feline Panleukopenia Virus Variant in China. Transbound. Emerg. Dis. 2022, 69, e2913–e2925. [Google Scholar] [CrossRef] [PubMed]
- Chiok, K.R.; Baid, K.; Banerjee, A. Applications of Quantitative PCR (qPCR) in Studies of Virus-Host Interactions. In Intracellular Pathogens: Methods and Protocols; Springer: New York, NY, USA, 2024; pp. 125–135. [Google Scholar]
- Strumillo, S.T.; Kartavykh, D.; de Carvalho, F.F.J.; Cruz, N.C.; de Souza Teodoro, A.C.; Sobhie Diaz, R.; Curcio, M.F. Host-Virus Interaction and Viral Evasion. Cell Biol. Int. 2021, 45, 1124–1147. [Google Scholar] [CrossRef]
- Fan, X.X.; Gao, Y.; Shu, L.; Wei, Y.Q.; Yao, X.P.; Cao, S.Z.; Peng, G.N.; Liu, X.T.; Sun, S.Q. Transcriptome Profiling Indicating Canine Parvovirus Type 2a as a Potential Immune Activator. Virus Genes 2016, 52, 768–779. [Google Scholar] [CrossRef]
- Vannamahaxay, S.; Sornpet, B.; Pringproa, K.; Patchanee, P.; Chuammitri, P. Transcriptome Analysis of Infected Crandell Rees Feline Kidney (CRFK) Cells by Canine Parvovirus Type 2c Laotian Isolates. Gene 2022, 822, 146324. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, F.; Jia, F. Early Transcriptional Changes in Feline Herpesvirus-1-Infected Crandell-Rees Feline Kidney Cells. Vet. Sci. 2024, 11, 529. [Google Scholar] [CrossRef]
- Lopez, J.V.; Cevario, S.; O’Brien, S.J. Complete Nucleotide Sequences of the Domestic Cat (Felis Catus) Mitochondrial Genome and a Transposed mtDNA Tandem Repeat (Numt) in the Nuclear Genome. Genomics 1996, 33, 229–246. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq--a Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential Analysis of Gene Regulation at Transcript Resolution with RNA-Seq. Nat. Biotechnol. 2012, 31, 46–53. [Google Scholar] [CrossRef]
- McDermaid, A.; Monier, B.; Zhao, J.; Liu, B.Q.; Ma, Q. Interpretation of differential gene expression results of RNA-seq data: Review and integration. Brief Bioinform. 2019, 20, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Martella, V.; Decaro, N.; Elia, G.; Buonavoglia, C. Surveillance Activity for Canine Parvovirus in Italy. J. Vet. Med. Ser. B 2005, 52, 312–315. [Google Scholar] [CrossRef]
- Battilani, M.; Balboni, A.; Ustulin, M.; Giunti, M.; Scagliarini, A.; Prosperi, S. Genetic complexity and multiple infections with more Parvovirus species in naturally infected cats. Vet. Res. 2011, 42, 43. [Google Scholar] [CrossRef]
- Callaway, H.M.; Feng, K.H.; Lee, D.W.; Allison, A.B.; Pinard, M.; McKenna, R.; Agbandje-McKenna, M.; Hafenstein, S.; Parrish, C.R. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages. J. Virol. 2017, 91, e01871-16. [Google Scholar] [CrossRef]
- Oluwayelu, D.O.; Desario, C.; Babalola, E.T.; Pratelli, A.; Daodu, O.B.; Elia, G.; Odemuyiwa, S.O.; Buonavoglia, C.; Decaro, N.; Diakoudi, G. Genetic Characterization of Parvoviruses Identified in Stray Cats in Nigeria. Acta Trop. 2024, 250, 107108. [Google Scholar] [CrossRef]
- Gorham, J.R.; Hartsough, G.R.; Burger, D.; Lust, S.; Sato, N. The Preliminary Use of Attenuated Feline Panleukopenia Virus to Protect Cats against Panleukopenia and Mink against Virus Enteritis. Cornell Vet. 1965, 55, 559–566. [Google Scholar]
- Sampson, G.R.; Counter, F.T.; Schlegel, B.F.; Rathmacher, R.P. Antibody Response of Cats Vaccinated with an Inactivated Cell Culture Feline Panleukopenia Vaccine. J. Am. Vet. Med. Assoc. 1972, 160, 1619–1621. [Google Scholar] [CrossRef]
- Kircheis, R.; Planz, O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. Int. J. Mol. Sci. 2023, 24, 6701. [Google Scholar] [CrossRef]
- Lu-jiao, D.; Zhi-juan, L.; Ying-Li, S.; Hua, F.; Wen-qian, L.; Hui-ning, Z.; Jun, P.; Zhi-jing, X. Mink Enteritis Virus Infection Induced Cell Cycle Arrest and Autophagy for Its Replication. Vet. Microbiol. 2025, 302, 110374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, Y.; Zhang, J.; Shao, T.; Chen, S.; Miao, B.; Wang, Z.; Du, Q.; Huang, Y.; Tong, D. Autophagy Promotes Porcine Parvovirus Replication and Induces Non-Apoptotic Cell Death in Porcine Placental Trophoblasts. Viruses 2019, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Perng, Y.-C.; Lenschow, D.J. ISG15 in Antiviral Immunity and Beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef]
- Morales, D.J.; Lenschow, D.J. The Antiviral Activities of ISG15. J. Mol. Biol. 2013, 425, 4995–5008. [Google Scholar] [CrossRef] [PubMed]
- Busse, D.C.; Habgood-Coote, D.; Clare, S.; Brandt, C.; Bassano, I.; Kaforou, M.; Herberg, J.; Levin, M.; Eléouët, J.F.; Kellam, P.; et al. Interferon-Induced Protein 44 and Interferon-Induced Protein 44-Like Restrict Replication of Respiratory Syncytial Virus. J. Virol. 2020, 94, e00297-20. [Google Scholar] [CrossRef]
- Yánez, D.C.; Ross, S.; Crompton, T. The IFITM Protein Family in Adaptive Immunity. Immunology 2020, 159, 365–372. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y.; Zhang, Y.; Zhang, L.; Wang, Z.; Zhang, X.; Gui, L.; Huang, J. IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PLoS ONE 2015, 10, e0132743. [Google Scholar] [CrossRef]
Genome | GCF_018350175.1_F. catus_Fca126 _mat1.0_genomic.fna |
---|---|
Gene built by | https://www.ncbi.nlm.nih.gov/assembly/GCF_018350175.1 (accessed on 15 April 2023) |
Base Pairs | 2425747038 |
Gene | Primer | Sequence (5′–3′) | Product Size (bp) |
---|---|---|---|
IGSF6 | F | TCTCTTTTATGTTGGTGCTGCT | 147 |
R | CACAGGCTTCTTGGTTGCTC | ||
IFI44L | F | GCATCAGAGTTGGAGCTGGA | 120 |
R | CAGCCTTCCTCCCTGTTTCA | ||
IFI6 | F | GACCTACATGGCTGTCGGAG | 186 |
R | CCACCACTAGCCCCGAG | ||
IFITM10 | F | GGCCTACTCCCTCAAAGTTCG | 124 |
R | GATGATACAAGAGGCCGCCA | ||
IL1R1 | F | TGGAGGATTATTTGCCAGTGGA | 130 |
R | TCTGTATTCTTGGCTACACAGGT | ||
JAK3 | F | GCCCCCAGACCCAAAGAAAA | 132 |
R | GTCAGCGGGGATCTTGTGAA | ||
GAPDH | F | ACCATCTTCCAGGAGCGAGAT | 141 |
R | GATGATGACCCTCTTGGCCC | ||
FPLV | F | GAAGCGTCTACACAAGGGC | 155 |
Sample | Reads No. | Clean Reads No. | Clean Reads (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|
Mock_1 | 45844098 | 43396820 | 94.66 | 98.09 | 94.64 |
Mock_2 | 46432876 | 43999136 | 94.75 | 98.08 | 94.46 |
Mock_3 | 48594575 | 45110578 | 94.59 | 98.01 | 94.35 |
6hpi_1 | 47041828 | 44555458 | 94.71 | 98.05 | 94.4 |
6hpi_2 | 44583130 | 42199820 | 94.55 | 98.08 | 94.53 |
6hpi_3 | 54755355 | 51851725 | 94.59 | 98.12 | 94.5 |
12hpi_1 | 52183988 | 49454432 | 94.78 | 98.06 | 94.37 |
12hpi_2 | 53055038 | 50253352 | 94.72 | 98.13 | 94.53 |
12hpi_3 | 41943112 | 39753022 | 94.8 | 97.91 | 94.02 |
24hpi_1 | 50211258 | 47555192 | 94.73 | 98.11 | 94.47 |
24hpi_2 | 45590044 | 43103750 | 94.54 | 97.77 | 93.9 |
24hpi_3 | 50799730 | 48133754 | 94.75 | 97.8 | 93.55 |
48hpi_1 | 49314514 | 45592438 | 94.47 | 98.2 | 94.95 |
48hpi_2 | 45585320 | 43244954 | 94.55 | 98.12 | 94.47 |
48hpi_3 | 45205355 | 43723212 | 94.52 | 98.02 | 94.35 |
Sample | Total Mapped/% | Mapped Events | ||
---|---|---|---|---|
Uniquely Mapped/% | Mapped Gene/% | Mapped Exon/% | ||
Mock_1 | 95.65% | 96.63% | 96.21% | 93.86% |
Mock_2 | 95.86% | 96.64% | 96.39% | 94.54% |
Mock_3 | 95.50% | 96.65% | 96.22% | 93.59% |
6hpi_1 | 95.99% | 96.64% | 96.47% | 93.92% |
6hpi_2 | 96.03% | 96.60% | 96.51% | 93.83% |
6hpi_3 | 96.01% | 96.46% | 96.62% | 94.71% |
12hpi_1 | 95.82% | 96.43% | 96.01% | 93.68% |
12hpi_2 | 96.52% | 96.52% | 96.38% | 93.35% |
12hpi_3 | 95.23% | 96.50% | 96.09% | 93.31% |
24hpi_1 | 95.34% | 96.56% | 95.80% | 93.13% |
24hpi_2 | 95.84% | 95.84% | 96.47% | 95.65% |
24hpi_3 | 96.37% | 96.37% | 96.96% | 96.35% |
48hpi_1 | 96.16% | 96.16% | 96.38% | 95.52% |
48hpi_2 | 95.74% | 95.74% | 96.04% | 92.51% |
48hpi_3 | 96.45% | 96.45% | 95.49% | 91.55% |
Sample | Guide_RNA | snoRNA | Protein Coding | tRNA | snRNA | rRNA | MiscRNA | lncRNA |
---|---|---|---|---|---|---|---|---|
Mock_1 | 54 | 3230 | 16616396 | 1270 | 265 | 7297 | 1045 | 143635 |
Mock_2 | 45 | 2596 | 17062110 | 1557 | 282 | 8387 | 1092 | 138324 |
Mock_3 | 77 | 3033 | 17638131 | 1111 | 294 | 7774 | 1054 | 158523 |
6hpi_1 | 79 | 2918 | 17274359 | 1113 | 283 | 8083 | 1097 | 137411 |
6hpi_2 | 51 | 2833 | 16391432 | 1150 | 233 | 7256 | 1044 | 131000 |
6hpi_3 | 54 | 3020 | 20318234 | 1256 | 272 | 7349 | 1235 | 154339 |
12hpi_1 | 77 | 2190 | 18856856 | 2373 | 326 | 18854 | 1165 | 171334 |
12hpi_2 | 67 | 2871 | 19143685 | 1972 | 350 | 13840 | 1023 | 157359 |
12hpi_3 | 67 | 2095 | 15052592 | 1664 | 289 | 12232 | 1019 | 135855 |
24hpi_1 | 77 | 2342 | 17556534 | 2462 | 342 | 29830 | 1090 | 178996 |
24hpi_2 | 38 | 1437 | 16442456 | 1501 | 232 | 27734 | 686 | 166990 |
24hpi_3 | 41 | 2162 | 18304926 | 1666 | 166 | 18533 | 925 | 124312 |
48hpi_1 | 80 | 1872 | 17420227 | 1653 | 213 | 67920 | 729 | 174961 |
48hpi_2 | 40 | 2056 | 14586176 | 2333 | 240 | 127689 | 723 | 137485 |
48hpi_3 | 55 | 2593 | 15556719 | 1947 | 358 | 46398 | 878 | 169124 |
Time | IGSF6 | IFI44L | IFI6 | IFITM10 | IL1R1 | JAK3 |
---|---|---|---|---|---|---|
Mock | 1.000 c | 1.000 c | 1.000 ab | 1.000 b | 1.000 b | 1.000 c |
6hpi | 1.070 c | 1.065 c | 0.273 b | 1.028 b | 1.071 b | 0.789 d |
12hpi | 0.748 c | 1.192 c | 1.777 ab | 0.996 b | 0.870 b | 1.254 bc |
24hpi | 2.148 b | 2.060 b | 2.009 a | 1.478 b | 1.077 b | 1.434 b |
48hpi | 7.794 a | 3.966 a | 1.273 a | 5.003 a | 2.891 a | 2.057 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, E.; Wu, S.; Cheng, S.; Cheng, Y. Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq. Vet. Sci. 2025, 12, 748. https://doi.org/10.3390/vetsci12080748
Feng E, Wu S, Cheng S, Cheng Y. Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq. Veterinary Sciences. 2025; 12(8):748. https://doi.org/10.3390/vetsci12080748
Chicago/Turabian StyleFeng, Erkai, Shun Wu, Shipeng Cheng, and Yuening Cheng. 2025. "Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq" Veterinary Sciences 12, no. 8: 748. https://doi.org/10.3390/vetsci12080748
APA StyleFeng, E., Wu, S., Cheng, S., & Cheng, Y. (2025). Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq. Veterinary Sciences, 12(8), 748. https://doi.org/10.3390/vetsci12080748