Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection for Temperament Using Arena Test of Behavior
2.2. Animal Feeding and Management
2.3. Rumen Sample Collection and Processing
2.4. Measurement Indices and Methods
2.4.1. Determination of Growth Performance Indicators
2.4.2. Determination of Rumen Fermentation Parameters
2.4.3. Determination of Rumen Epithelium Antioxidant Properties
2.4.4. Determination of Tyrosine Content in Rumen
2.4.5. DNA Extraction and Metagenomics
2.5. Statistical and Abundance Analysis
3. Results
3.1. Effect of Tyrosine on Growth and Feed Utilization of Altay Sheep with Different Temperaments
3.2. Effect of Tyrosine on Behavior of Altay Sheep with Different Temperaments
3.3. Rumen Fermentation Parameters
3.4. Tyrosine Content in Rumen Fluid
3.5. Antioxidant Properties of Rumen Epithelium Tissues
3.6. Effect of Tyrosine on Rumen Microbial Structure of Altay Sheep with Different Temperaments
3.6.1. Rumen Microbial Sequencing and Alpha Diversities
3.6.2. Effect of Tyrosine on Relative Abundance of Rumen Bacterial Community at Phylum and Genus Levels
3.7. Prediction of Gene Functions Through KEGG
3.8. Correlation Analysis Between Abundant Microbiota, Rumen Epithelium Antioxidant Properties, and Abundant Functional Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TYR | Tyrosine |
TH | Tyrosine hydroxylase |
DA | Dopamine |
NE | Norepinephrine |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
SOD | Superoxide dismutase |
CAT | Catalase |
ROS | Reactive oxygen species |
GSH | Glutathione |
GSH-Px | Glutathione peroxide |
MDA | Malondialdehyde |
T-AOC | Total antioxidant capacity |
FCR | Feed conversion ratio |
ADG | Average daily gain |
References
- Boissy, A.; Fisher, A.D.; Bouix, J.; Hinch, G.N.; Le Neindre, P. Genetics of Fear in Ruminant Livestock. Livest. Prod. Sci. 2005, 93, 23–32. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Rogers, A.R.; Verkerk, G.A. The Effect of Temperament and Responsiveness towards Humans on the Behavior, Physiology and Milk Production of Multi-Parous Dairy Cows in a Familiar and Novel Milking Environment. Physiol. Behav. 2012, 107, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, T.G.; Edwards, L. Chronic Stress and the HPA Axis. Standard 2010, 9, 1–12. [Google Scholar]
- Blache, D.; Bickell, S.L. Temperament and Reproductive Biology: Emotional Reactivity and Reproduction in Sheep. Rev. Bras. Zootec. 2010, 39, 401–408. [Google Scholar] [CrossRef]
- Careau, V.; Garland, T., Jr. Performance, Personality, and Energetics: Correlation, Causation, and Mechanism. Physiol. Biochem. Zool. 2012, 85, 543–571. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, A.C.; Valente, T.D.S.; Magalhães, A.F.B.; Espigolan, R.; Ceballos, M.C.; de Albuquerque, L.G.; Paranhos da Costa, M.J.R. Relationships between Temperament, Meat Quality, and Carcass Traits in Nellore Cattle. J. Anim. Sci. 2019, 97, 4721–4731. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.F.; Bill, E. Kunkle Interdisciplinary Beef Symposium: Temperament and Acclimation to Human Handling Influence Growth, Health, and Reproductive Responses in Bos Taurus and Bos Indicus Cattle. J. Anim. Sci. 2014, 92, 5325–5333. [Google Scholar] [CrossRef] [PubMed]
- Sewalem, A.; Miglior, F.; Kistemaker, G.J. Genetic Parameters of Milking Temperament and Milking Speed in Canadian Holsteins. J. Dairy Sci. 2011, 94, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Stephansen, R.S.; Fogh, A.; Norberg, E. Genetic Parameters for Handling and Milking Temperament in Danish First-Parity Holstein Cows. J. Dairy Sci. 2018, 101, 11033–11039. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, R.; Juozaitienė, V.; Jonike, V.; Čukauskas, V.; Urbšienė, D.; Urbšys, A.; Baumgartner, W.; Paulauskas, A. Relationship between Temperament and Stage of Lactation, Productivity and Milk Composition of Dairy Cows. Animals 2021, 11, 1840. [Google Scholar] [CrossRef] [PubMed]
- D’Eath, R.B.; Turner, S.P.; Kurt, E.; Evans, G.; Thölking, L.; Looft, H.; Wimmers, K.; Murani, E.; Klont, R.; Foury, A. Pigs’ Aggressive Temperament Affects Pre-Slaughter Mixing Aggression, Stress and Meat Quality. Animal 2010, 4, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Brown, J. Effects of Temperament and Handling Experience on the Stress Response and Meat Quality of Pigs. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2009. [Google Scholar]
- Murphy, P.M. Maternal Behaviour and Rearing Ability of Merino Ewes Can Be Improved by Strategic Feed Supplementation during Late Pregnancy and Selection for Calm Temperament. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 1999. [Google Scholar]
- Peeva, Z.H. The Effect of Temperament over the Maternal Behavior in Primiparous Dairy Sheep. Bulg. J. Agric. Sci. 2009, 15, 84–89. [Google Scholar]
- Yang, F.L.; Anschutz, K.S.; Ball, J.J.; Hornsby, P.; Reynolds, J.L.; Pohlman, F.W. Evaluating the Relationship of Animal Temperament to Carcass Characteristics and Meat Quality. Meat Muscle Biol. 2019, 3, 70–75. [Google Scholar] [CrossRef]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; McIntyre, B.L.; Geesink, G.H.; Greenwood, P.L. Cattle Temperament: Persistence of Assessments and Associations with Productivity, Efficiency, Carcass and Meat Quality Traits. J. Anim. Sci. 2011, 89, 1452–1465. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Pfeiffer, C.E.S.; Randel, R.D.; Welsh Jr, T.H.; Oliphint, R.A.; Baird, B.E.; Curley Jr, K.O.; Vann, R.C.; Hale, D.S.; Savell, J.W. Influence of Animal Temperament and Stress Responsiveness on the Carcass Quality and Beef Tenderness of Feedlot Cattle. Meat Sci. 2006, 74, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qian, S.; Chen, J.; Ding, L.; Wang, M.; Maloney, S.K.; Blache, D. Calm Hu Ram Lambs Assigned by Temperament Classification Are Healthier and Have Better Meat Quality than Nervous Hu Ram Lambs. Meat Sci. 2021, 175, 108436. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ding, L.; Wang, J.; Chen, Q.; Thapa, A.; Mao, J.; Wang, M. Calm Hu Sheep Have a Different Microbiome Profile and Higher Energy Utilization Efficiency Than Nervous Hu Sheep. Fermentation 2023, 9, 470. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Jin, H.; Qian, S.; Chen, P.; Wang, M.; Chen, N.; Ding, L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants 2023, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Vavricka, C.J.; Christensen, B.M.; Li, J. Melanization in Living Organisms: A Perspective of Species Evolution. Protein Cell 2010, 1, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, C.R.; Castellani, J.; Kramer, F.M.; Young, A.; Lieberman, H.R. Tyrosine Supplementation Mitigates Working Memory Decrements during Cold Exposure. Physiol. Behav. 2007, 92, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Keshavan, M.S.; Nasrallah, H.A. Schizophrenia, “Just the Facts” What We Know in 2008. 2. Epidemiology and Etiology. Schizophr. Res. 2008, 102, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Gorman, D.; Nagel, B.J. Tyrosine Supplements for ADHD Symptoms with Comorbid Phenylketonuria. J. Neuropsychiatry Clin. Neurosci. 2009, 21, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Dauer, W.; Przedborski, S. Parkinson’s Disease: Mechanisms and Models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, J.; Zeng, Y. Overview of Tyrosine Hydroxylase in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets-CNS Neurol. Disord. 2012, 11, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.; Wildgoose, J. Tyrosine Supplementation for Phenylketonuria. Cochrane Database Syst. Rev. 2010, 8, CD001507. [Google Scholar] [CrossRef]
- Remmington, T.; Smith, S. Tyrosine Supplementation for Phenylketonuria. Cochrane Database Syst. Rev. 2021, 1, CD001507. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R.; Lockwood, P.A.; Singh, A.; Deuster, P.A. Tyrosine Improves Working Memory in a Multitasking Environment. Pharmacol. Biochem. Behav. 1999, 64, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Sellaro, R.; Hommel, B.; Colzato, L.S. Tyrosine Promotes Cognitive Flexibility: Evidence from Proactive vs. Reactive Control during Task Switching Performance. Neuropsychologia 2015, 69, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.A.; Krajek, A.C.; Schwartz, K.S.; Rand, J.E. Oral L-Tyrosine Supplementation Improves Core Temperature Maintenance in Older Adults. Med. Sci. Sports Exerc. 2020, 52, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Banderet, L.E.; Lieberman, H.R. Treatment with Tyrosine, a Neurotransmitter Precursor, Reduces Environmental Stress in Humans. Brain Res. Bull. 1989, 22, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Gloaguen, M.; Le Floc’h, N.; Primot, Y.; Corrent, E.; Van Milgen, J. Performance of Piglets in Response to the Standardized Ileal Digestible Phenylalanine and Tyrosine Supply in Low-Protein Diets. Animal 2014, 8, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.N. Effect of Tyrosine, Vitamin E and Butylated Hydroxytoluene Without or with Sodium Sulphate on Broiler Performance. Egypt. Poult. Sci. J. 2019, 39, 809–824. [Google Scholar] [CrossRef]
- Abdel Magied, H.A.A.; Ali, M.N.; Waly, A.H.; Habib, H.H. Improving the Utilization of Broiler Low Protein Diets Using Tyrosine, Tryptophan, Citric Acid and Sulphate. Egypt. Poult. Sci. J. 2022, 42, 265–279. [Google Scholar] [CrossRef]
- Salamanca, N.; Giráldez, I.; Morales, E.; de La Rosa, I.; Herrera, M. Phenylalanine and Tyrosine as Feed Additives for Reducing Stress and Enhancing Welfare in Gilthead Seabream and Meagre. Animals 2020, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, N.; Moreno, O.; Giráldez, I.; Morales, E.; de la Rosa, I.; Herrera, M. Effects of Dietary Phenylalanine and Tyrosine Supplements on the Chronic Stress Response in the Seabream (Sparus aurata). Front. Physiol. 2022, 12, 775771. [Google Scholar] [CrossRef] [PubMed]
- Yong, E. I Contain Multitudes: The Microbes Within Us and a Grander View of Life; Ecco: New York, NY, USA, 2016. [Google Scholar]
- De Nardi, R.; Marchesini, G.; Li, S.; Khafipour, E.; Plaizier, K.J.C.; Gianesella, M.; Ricci, R.; Andrighetto, I.; Segato, S. Metagenomic Analysis of Rumen Microbial Population in Dairy Heifers Fed a High Grain Diet Supplemented with Dicarboxylic Acids or Polyphenols. BMC Vet. Res. 2016, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Cholewińska, P.; Czyż, K.; Nowakowski, P.; Wyrostek, A. The Microbiome of the Digestive System of Ruminants—A Review. Anim. Health Res. Rev. 2020, 21, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, Q.; Wang, L.; Wang, J.; Guo, W.; Zhou, M. The Impact of Diet on the Composition and Relative Abundance of Rumen Microbes in Goat. Asian-Australas. J. Anim. Sci. 2016, 30, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Schwarzkopf, S.; Kinoshita, A.; Tröscher-Mußotter, J.; Dänicke, S.; Camarinha-Silva, A.; Huber, K.; Frahm, J.; Seifert, J. Evolution of Rumen and Oral Microbiota in Calves Is Influenced by Age and Time of Weaning. Anim. Microbiome 2021, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Q.; Wang, G.; Niu, X.; Wang, W.; Li, F.; Li, F.; Zhang, Z. The Functional Development of the Rumen Is Influenced by Weaning and Associated with Ruminal Microbiota in Lambs. Anim. Biotechnol. 2022, 33, 612–628. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Zhang, Y.; Yun, Y.; Ji, W.; Jin, Z.; Wang, C.; Yu, Z. Weaning Age Affects the Development of the Ruminal Bacterial and Archaeal Community in Hu Lambs during Early Life. Front. Microbiol. 2021, 12, 636865. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kong, F.; Liu, J.; Xia, J.; Du, W.; Li, S.; Wang, W. Comparative Analysis of Rumen Microbiota Composition in Dairy Cows with Simple Indigestion and Healthy Cows. Microorganisms 2023, 11, 2673. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; He, Y.; Xiang, K.; Zhao, C.; He, Z.; Qiu, M.; Hu, X.; Zhang, N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022, 10, 1495. [Google Scholar] [CrossRef] [PubMed]
- Sales, G.F.C.; Carvalho, B.F.; Schwan, R.F.; de Figueiredo Vilela, L.; Meneses, J.A.M.; Gionbelli, M.P.; da Silva Avila, C.L. Heat Stress Influence the Microbiota and Organic Acids Concentration in Beef Cattle Rumen. J. Therm. Biol. 2021, 97, 102897. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Min, L.; Zheng, N.; Wang, J. Effect of Heat Stress on Bacterial Composition and Metabolism in the Rumen of Lactating Dairy Cows. Animals 2019, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Church, D.C. Digestive Physiology and Nutrition of Ruminants. Volume 2. Nutrition; O&B Books: Toronto, ON, Canada, 1979; ISBN 0960158650. [Google Scholar]
- Baaske, L.; Gäbel, G.; Dengler, F. Ruminal Epithelium: A Checkpoint for Cattle Health. J. Dairy Res. 2020, 87, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Aschenbach, J.R.; Zebeli, Q.; Patra, A.K.; Greco, G.; Amasheh, S.; Penner, G.B. Symposium Review: The Importance of the Ruminal Epithelial Barrier for a Healthy and Productive Cow. J. Dairy Sci. 2019, 102, 1866–1882. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Ding, J.; Zhang, Y.; Hou, C.; Shen, W.; Wu, X.; Zhu, J. Effects of Hypoxia Stress on Oxidative Stress, Apoptosis and Microorganisms in the Intestine of Large Yellow Croaker (Larimichthys crocea). Aquaculture 2024, 581, 740444. [Google Scholar] [CrossRef]
- Martin, C.R.; Mayer, E.A. Gut-Brain Axis and Behavior. In Proceedings of the Nestlé Nutrition Institute Workshop Series, Dubai, United Arab Emirates, 27–29 March 2017; Volume 88, p. 45. [Google Scholar]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Amaral, F.A.; Sachs, D.; Costa, V.V.; Fagundes, C.T.; Cisalpino, D.; Cunha, T.M.; Ferreira, S.H.; Cunha, F.d.Q.; Silva, T.A.; Nicoli, J.R. Commensal Microbiota Is Fundamental for the Development of Inflammatory Pain. Proc. Natl. Acad. Sci. USA 2008, 105, 2193–2197. [Google Scholar] [CrossRef] [PubMed]
- Thirion, F.; Speyer, H.; Hansen, T.H.; Nielsen, T.; Fan, Y.; Le Chatelier, E.; Fromentin, S.; Berland, M.; Oñate, F.P.; Pons, N. Alteration of Gut Microbiome in Patients with Schizophrenia Indicates Links between Bacterial Tyrosine Biosynthesis and Cognitive Dysfunction. Biol. Psychiatry Glob. Open Sci. 2023, 3, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef] [PubMed]
- Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S.G.; Velge, P.; Rychlik, I.; Volf, J.; Creach, P.; Smith, A.; Colles, F.; Leterrier, C. Influence of the Microbiota-Gut-Brain Axis on Behavior and Welfare in Farm Animals: A Review. Physiol. Behav. 2019, 210, 112658. [Google Scholar] [CrossRef] [PubMed]
- Beausoleil, N.J.; Stafford, K.J.; Mellor, D.J. Sheep Show More Aversion to a Dog than to a Human in an Arena Test. Appl. Anim. Behav. Sci. 2005, 91, 219–232. [Google Scholar] [CrossRef]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen Fluid from Slaughtered Animals: A Standardized Procedure for Sampling, Storage and Use in Digestibility Trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.S. Slaughtered Cattle as a Source of Rumen Fluid to Evaluate Supplements for in Vitro Degradation of Grass Nuts and Barley Straw. Open Vet. Sci. J. 2008, 2, 16–22. [Google Scholar] [CrossRef]
- Kristensen, N.B. Quantification of Whole Blood Short-Chain Fatty Acids by Gas Chromatographic Determination of Plasma 2-Chloroethyl Derivatives and Correction for Dilution Space in Erythrocytes. Acta Agric. Scand. Sect. A-Anim. Sci. 2000, 50, 231–236. [Google Scholar] [CrossRef]
- Stanwood, G.D. Dopamine and Stress. In Stress: Physiology, Biochemistry, and Pathology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–114. [Google Scholar]
- Ali, B.H.; Al-Qarawi, A.A.; Mousa, H.M.; Mohammed, S.M. Tyrosine Ameliorates Some of the Clinical, Biochemical and Haematological Effects of Acute Stress Associated with Transportation of Desert Sheep. Vet. Res. Commun. 2001, 25, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hu, Z.; Zhang, S.; Cheng, G.; Hou, Q.; Wang, Y.; Yan, Z.; Shi, K.; Wang, Z. A Study on the Mechanism Regulating Acetate to Propionate Ratio in Rumen Fermentation by Dietary Carbohydrate Type. Adv. Biosci. Biotechnol. 2020, 11, 369–390. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2021; ISBN 1003092748. [Google Scholar]
- Saha, S.K.; Pathak, N.N.; Saha, S.K.; Pathak, N.N. Digestion, Absorption and Metabolism of Nutrients. In Fundamentals of Animal Nutrition; Springer: Singapore, 2021; pp. 219–246. [Google Scholar]
- Qu, S.; Yu, Z.; Zhou, Y.; Wang, S.; Jia, M.; Chen, T.; Zhang, X. Gut Microbiota Modulates Neurotransmitter and Gut-Brain Signaling. Microbiol. Res. 2024, 287, 127858. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I. Comparison of in Vitro Antioxidant and Antiradical Activities of L-Tyrosine and L-Dopa. Amino Acids 2007, 32, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, L.G.R.P.; Carvalho-Silva, M.; Ferreira, G.K.; Vieira, J.S.; Olegário, N.; Gonçalves, R.C.; Vuolo, F.S.; Ferreira, G.C.; Schuck, P.F.; Dal-Pizzol, F. Effect of Acute Administration of L-Tyrosine on Oxidative Stress Parameters in Brain of Young Rats. Neurochem. Res. 2013, 38, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, X.; Xu, D.; Zhang, D.; Zhang, Y.; Song, Q.; Li, X.; Zhao, Y.; Zhao, L.; Li, W. Relationship between Rumen Microbial Differences and Traits among Hu Sheep, Tan Sheep, and Dorper Sheep. J. Anim. Sci. 2022, 100, skac261. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.I.; Ando, S.; Takahashi, T.; Morita, T.; Onodera, R. In Vitro Metabolism of Tyrosine by Rumen Bacteria, Protozoa and Their Mixture. Anim. Sci. J. 2003, 74, 295–302. [Google Scholar] [CrossRef]
- de Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Tótola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the Microbiota across the Gastrointestinal Tract of a Brazilian Nelore Steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Steele, M.A.; Northwood, K.S.; Dijkstra, J.; France, J.; Wright, A.-D.G.; McBride, B.W. Impact of Subacute Ruminal Acidosis (SARA) Adaptation and Recovery on the Density and Diversity of Bacteria in the Rumen of Dairy Cows. FEMS Microbiol. Ecol. 2011, 78, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Pitta, D.W.; Pinchak, W.E.; Dowd, S.; Dorton, K.; Yoon, I.; Min, B.R.; Fulford, J.D.; Wickersham, T.A.; Malinowski, D.P. Longitudinal Shifts in Bacterial Diversity and Fermentation Pattern in the Rumen of Steers Grazing Wheat Pasture. Anaerobe 2014, 30, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, Y.; Bao, Z.; Gui, X.; Li, A.N.; Yang, Z.; Li, M.D. Clostridiales Are Predominant Microbes That Mediate Psychiatric Disorders. J. Psychiatr. Res. 2020, 130, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, Y.; Li, X.; Xu, X.; Zhao, Y.; Xu, L.; Gao, Y.; Li, Y.; Tan, Y.; Qian, P. Tyrosine Supplement Ameliorates Murine AGVHD by Modulation of Gut Microbiome and Metabolome. EBioMedicine 2020, 61, 103048. [Google Scholar] [CrossRef] [PubMed]
Items | Content |
---|---|
Silage corn % | 6.0 |
Alfalfa % | 12.0 |
Wheat straw % | 12.0 |
Cotton residue % | 30.0 |
Corn % | 25.4 |
Soybean meal % | 5.2 |
Bran % | 8.0 |
NaCl % | 1.0 |
Premix % | 0.4 |
Total % | 100 |
Nutrients | |
Digestible energy (MJ/KG)2 | 11.2 |
Crude protein | 15.06 |
Neutral detergent fiber | 36.03 |
Acid detergent fiber | 25.51 |
Alpha Diversity Index | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temperament × TYR | ||
Richness | 2501.2 | 2408 | 2785.8 | 2615.6 | 61.458 | 0.046 | 0.265 | 0.740 |
Shannon | 5.341 | 5.226 | 5.680 | 5.566 | 0.099 | 0.182 | 0.776 | 0.783 |
Simpson | 0.914 | 0.907 | 0.929 | 0.933 | 0.008 | 0.259 | 0.928 | 0.739 |
Items | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temperament × TYR | ||
Relative abundance of microorganisms at phylum level (%) | ||||||||
Bacteroidota | 43.07 | 48.6 | 40.91 | 39.56 | 2.164 | 0.137 | 0.869 | 0.541 |
Bacillota A | 35.86 | 33.59 | 35.03 | 41.67 | 1.530 | 0.118 | 0.257 | 0.221 |
Bacillota C | 10.08 | 5.45 | 7.28 | 3.94 | 1.400 | 0.387 | 0.149 | 0.903 |
Bacillota | 1.78 | 3.44 | 2.63 | 4.26 | 0.475 | 0.902 | 0.512 | 0.330 |
Planctomycetota | 1.31 | 1.06 | 3.02 | 2.07 | 0.300 | 0.013 | 0.341 | 0.625 |
Chloroflexota | 1.86 | 1.7 | 1.71 | 1.79 | 0.207 | 0.990 | 0.990 | 0.757 |
Pseudomonadota | 1.14 | 1.17 | 1.8 | 1.18 | 0.160 | 0.251 | 0.453 | 0.378 |
Verrucomicrobiota | 1.22 | 0.77 | 1.36 | 0.89 | 0.145 | 0.523 | 0.213 | 0.830 |
Items | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temperament × TYR | ||
Relative abundance of microorganisms at genus level (%) | ||||||||
Cryptobacteroides | 16.75 | 14.37 | 16.60 | 13.96 | 1.484 | 0.931 | 0.442 | 0.968 |
Prevotella | 14.41 | 18.30 | 12.50 | 11.57 | 1.986 | 0.300 | 0.742 | 0.551 |
Limivicinus | 6.51 | 8.13 | 7.68 | 7.83 | 0.870 | 0.819 | 0.642 | 0.701 |
Quinella | 5.41 | 2.02 | 5.32 | 1.18 | 1.200 | 0.851 | 0.142 | 0.879 |
UBA1711 | 3.64 | 2.80 | 1.62 | 6.19 | 0.634 | 0.545 | 0.109 | 0.025 |
RUG740 | 4.41 | 2.75 | 1.86 | 4.22 | 0.468 | 0.546 | 0.700 | 0.035 |
Saccharofermentans | 2.77 | 2.02 | 2.96 | 4.91 | 0.483 | 0.108 | 0.520 | 0.157 |
Limimorpha | 2.37 | 3.84 | 3.33 | 1.90 | 0.621 | 0.712 | 0.987 | 0.279 |
Sodaliphilus | 1.46 | 2.65 | 2.41 | 1.11 | 0.440 | 0.748 | 0.950 | 0.186 |
Flexilinea | 1.84 | 1.69 | 1.69 | 1.82 | 0.206 | 0.979 | 0.993 | 0.759 |
Others | 35.94 | 34.78 | 38.03 | 37.28 | 1.327 | 0.429 | 0.741 | 0.943 |
Items | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temperament × TYR | ||
Metabolism | 133,199.2 | 131,954.8 | 126,077.1 | 120,634.6 | 2269.366 | 0.032 | 0.365 | 0.536 |
Genetic information processing | 52,317.47 | 52,991.09 | 50,399.99 | 50,487.23 | 662.972 | 0.117 | 0.775 | 0.832 |
Environmental information processing | 33,470.16 | 31,483.46 | 31,429.53 | 31,432.38 | 664.059 | 0.423 | 0.445 | 0.517 |
Cellular processes | 24,455.08 | 23,012.84 | 23,757.06 | 21,446.68 | 605.790 | 0.328 | 0.121 | 0.680 |
Organismal systems | 7601.302 | 7549.636 | 7294.472 | 7056.052 | 108.048 | 0.061 | 0.449 | 0.607 |
Pathways | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temp × TYR | ||
Global and overview maps | 125,658.9 | 124,094.7 | 118,649.9 | 112,534.1 | 2132.28 | 0.029 * | 0.336 | 0.556 |
Carbohydrate metabolism | 43,722.5 | 44,147.8 | 41,715.01 | 40,728.57 | 656.26 | 0.044 * | 0.824 | 0.577 |
Energy metabolism | 20,338.4 | 19,943.35 | 19,068.3 | 18,515.84 | 344.75 | 0.058 | 0.484 | 0.907 |
Lipid metabolism | 9983.62 | 9940.1 | 9531.09 | 9162.43 | 152.58 | 0.048 * | 0.484 | 0.58 |
Amino acid metabolism | 32,456.23 | 31,725.05 | 30,432.46 | 28,875.08 | 625.27 | 0.056 | 0.347 | 0.731 |
Metabolism of other amino acids | 9449.35 | 9584.69 | 8920.58 | 8816.18 | 151.56 | 0.038 * | 0.958 | 0.681 |
Glycan biosynthesis and metabolism | 13,990.73 | 14,617.92 | 13,203.62 | 12,231.99 | 319.66 | 0.009 ** | 0.752 | 0.155 |
Metabolism of terpenoids and polyketides | 5501.22 | 5344.6 | 5061.04 | 4871.98 | 94.32 | 0.014 | 0.312 | 0.923 |
Folding, sorting, and degradation | 10,196.51 | 10,161.66 | 9669.84 | 9615.84 | 125.86 | 0.039 | 0.855 | 0.969 |
Cellular community (eukaryotes) | 14.18 | 4.61 | 19.01 | 10.18 | 2.01 | 0.154 | 0.018 | 0.917 |
Pathways | Calm Type | Nervous Type | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON1 | TYR1 | CON | TYR | Temperament | TYR | Temp × TYR | ||
Metabolic pathways | 123,510.76 | 122,158.84 | 116,671.92 | 110,787.2 | 2075.331 | 0.028 | 0.35 | 0.555 |
Biosynthesis of secondary metabolites | 55,713.56 | 54,795.24 | 52,161.55 | 59,868.52 | 1044.726 | 0.047 | 0.426 | 0.731 |
Biosynthesis of antibiotics | 37,008.85 | 36,082.38 | 24,559.97 | 32,960.55 | 662.321 | 0.037 | 0.317 | 0.787 |
Carbon metabolism | 16,390.99 | 16,117.45 | 15,442.19 | 14,895.3 | 243.168 | 0.026 | 0.367 | 0.761 |
Amino sugar and nucleotide sugar metabolism | 10,932.43 | 11,056.11 | 10,375.66 | 9966.83 | 172.297 | 0.016 | 0.646 | 0.395 |
Two-component system | 11,465.86 | 10,711.98 | 10,843.11 | 9881.02 | 228.17 | 0.095 | 0.052 | 0.803 |
Thyroid hormone synthesis | 572.7 | 580.77 | 513.32 | 506.94 | 13.891 | 0.018 | 0.974 | 0.778 |
Oxidative phosphorylation | 4462.99 | 4575.76 | 4160.62 | 3990.58 | 95.025 | 0.02 | 0.869 | 0.421 |
Tyrosine metabolism | 685.31 | 632.4 | 681.93 | 639.15 | 19.366 | 0.967 | 0.254 | 0.902 |
Phenylalanine, tyrosine, and tryptophan biosynthesis | 4425.01 | 3988.04 | 3955.29 | 3646.95 | 131.691 | 0.126 | 0.158 | 0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, A.; Huang, W.; Rehman, S.U.; Zafar, M.H.; Zhang, J.; Ding, L.; Wang, M. Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments. Vet. Sci. 2025, 12, 684. https://doi.org/10.3390/vetsci12080684
Thapa A, Huang W, Rehman SU, Zafar MH, Zhang J, Ding L, Wang M. Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments. Veterinary Sciences. 2025; 12(8):684. https://doi.org/10.3390/vetsci12080684
Chicago/Turabian StyleThapa, Asmita, Weidong Huang, Shahab Ur Rehman, Muhammad Hammad Zafar, Jinying Zhang, Luoyang Ding, and Mengzhi Wang. 2025. "Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments" Veterinary Sciences 12, no. 8: 684. https://doi.org/10.3390/vetsci12080684
APA StyleThapa, A., Huang, W., Rehman, S. U., Zafar, M. H., Zhang, J., Ding, L., & Wang, M. (2025). Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments. Veterinary Sciences, 12(8), 684. https://doi.org/10.3390/vetsci12080684