Evaluation of Blood Biochemical Parameters and Ratios in Piroplasmosis-Infected Horses in an Endemic Region
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Inclusion Criteria and Study Design
2.2. Biochemical Analysis
2.3. Indirect (Serological) Detection
2.3.1. cELISA
2.3.2. IFAT
2.4. Direct Detection
2.5. Statistical Analysis
3. Results
3.1. Differences in Biochemical Parameters and Ratios According to Diagnostic Method
3.2. Differences in Biochemical Parameters and Ratios According to the EP Status in PCR-Diagnosed Horses
3.3. Differences in Biochemical Parameters and Ratios According to the EP Status in Serologically Diagnosed Horses
3.4. Predictive Values of Biochemical Parameters and Ratios for EP Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyiche, T.E.; Suganuma, K.; Igarashi, I.; Yokoyama, N.; Xuan, X.; Thekisoe, O. A Review on equine piroplasmosis: Epidemiology, vector ecology, risk factors, host immunity, diagnosis and control. Int. J. Environ. Res. Public. Health 2019, 16, 1736. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; Taioe, M.O.; Molefe, N.I.; Biu, A.A.; Luka, J.; Omeh, I.J.; Yokoyama, N.; Thekisoe, O. Equine piroplasmosis: An insight into global exposure of equids from 1990 to 2019 by systematic review and meta-analysis. Parasitology 2020, 147, 1411–1424. [Google Scholar] [CrossRef]
- Mendoza, F.J.; Pérez-Écija, A.; Kappmeyer, L.S.; Suarez, C.E.; Bastos, R.G. New insights in the diagnosis and treatment of equine piroplasmosis: Pitfalls, idiosyncrasies, and myths. Front. Vet. Sci. 2024, 11, 1459989. [Google Scholar] [CrossRef]
- Rothschild, C.M. Equine piroplasmosis. J. Equine Vet. Sci. 2013, 33, 497–508. [Google Scholar] [CrossRef]
- Wise, L.N.; Pelzel-McCluskey, A.M.; Mealey, R.H.; Knowles, D.P. Equine piroplasmosis. Vet. Clin. N. Am. Equine Pract. 2014, 30, 677–693. [Google Scholar] [CrossRef]
- Bastos, R.G.; Sears, K.P.; Dinkel, K.D.; Kappmeyer, L.; Ueti, M.W.; Knowles, D.P.; Fry, L.M. Development of an indirect ELISA to detect equine antibodies to Theileria haneyi. Pathogens 2021, 10, 270. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty years of equine piroplasmosis research: Global distribution, molecular diagnosis, and phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef] [PubMed]
- Camacho, A.T.; Guitian, F.J.; Pallas, E.; Gestal, J.J.; Olmeda, A.S.; Habela, M.A.; Telford, S.R., 3rd; Spielman, A. Theileria (Babesia) equi and Babesia caballi infections in horses in Galicia, Spain. Trop. Anim. Health Prod. 2005, 37, 293–302. [Google Scholar] [CrossRef]
- Al-Obaidi, Q.T.; Mohd Mokhtar, A.; Al Sultan, I.I.; Azlinda, A.B.; Mohd Azam, K.G.K. Equine piroplasmosis in Kelantan, Malaysia: Clinicohemato-biochemical alterations in subclinically and clinically infected equids. Trop. Biomed. 2016, 33, 619–631. [Google Scholar]
- Camino, E.; Dorrego, A.; Carvajal, K.A.; Buendia-Andres, A.; de Juan, L.; Dominguez, L.; Cruz-Lopez, F. Serological, molecular and hematological diagnosis in horses with clinical suspicion of equine piroplasmosis: Pooling strengths. Vet. Parasitol. 2019, 275, 108928. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, S.; Chen, S.; Qin, S.; Chen, H.; Qin, S.; Huang, Z.; Zhou, F.; Qin, X. Diagnostic value of hematological parameters platelet to lymphocyte ratio and hemoglobin to platelet ratio in patients with colon cancer. Clin. Chim. Acta 2020, 501, 48–52. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Wang, M.; Gu, C.; Liu, J. Platelet-to-monocyte ratio as a novel promising agent for the prognosis of hepatitis B virus-associated decompensated cirrhosis. Can. J. Gastroenterol. Hepatol. 2023, 2023, 6646156. [Google Scholar] [CrossRef]
- Ergenc, Z.; Ergenç, H.; Araç, S.; Usanmaz, M.; Alkılınç, E.; Kaya, G.; Karacaer, C.; Nalbant, A.; Kaya, T. Novel biochemical prognostic indicators in COVID-19: Can CRP/albumin, urea/albumin, and LDH/albumin ratios be used to predict mortality and length of hospitalization? Novel biochemical prognostic indicators for COVID-19. Med. Sci. Discov. 2022, 9, 310–318. [Google Scholar] [CrossRef]
- Babovic, B.; Belada Babovic, N.; Tomovic, F.; Radovanovic, S.; Debeljevic, M.; Mustur, D.; Mihaljevic, O. The Importance of biochemical parameters, immunonutritional status, and social support for quality of life in chronic hemodialysis patients. Medicina 2024, 60, 1751. [Google Scholar] [CrossRef] [PubMed]
- Scalco, R.; de Oliveira, G.N.; da Rosa Curcio, B.; Wooten, M.; Magdesian, K.G.; Hidai, S.T.; Pandit, P.; Aleman, M. Red blood cell distribution width to platelet ratio in neonatal foals with sepsis. J. Vet. Intern. Med. 2023, 37, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Samuels, A.N.; Kamr, A.M.; Reed, S.M.; Slovis, N.M.; Hostnik, L.D.; Burns, T.A.; Toribio, R.E. Association of the neutrophil-lymphocyte ratio with outcome in sick hospitalized neonatal foals. J. Vet. Intern. Med. 2024, 38, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Duaso, J.; Perez-Ecija, A.; Martínez, E.; Navarro, A.; De Las Heras, A.; Mendoza, F.J. Assessment of common hematologic parameters and novel hematologic ratios for predicting piroplasmosis infection in horses. Animals 2025, 15, 1485. [Google Scholar] [CrossRef]
- Rodríguez, R.; Cerón, J.J.; Riber, C.; Castejón, F.; Gómez-Díez, M.; Serrano-Rodríguez, J.M.; Muñoz, A. Acute phase proteins in Andalusian horses infected with Theileria equi. Vet. J. 2014, 202, 182–183. [Google Scholar] [CrossRef]
- Real Federacion Hipica Española. II Estudio Sobre el Impacto Económico del Sector Ecuestre en España (Deloitte); Real Federacion Hipica Española: Madrid, Spain, 2022; Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.rfhe.com/wp-content/uploads/2018/01/DELOITTE-RESUMEN-EJECUTIVO.pdf (accessed on 1 February 2025).
- Tamzali, Y.; Guelfi, J.F.; Braun, J.P. Plasma fibrinogen measurement in the horse: Comparison of Millar’s technique with a chronometric technique and the QBC-Vet Autoreader. Res. Vet. Sci. 2001, 71, 213–217. [Google Scholar] [CrossRef]
- Siwinska, N.; Zak, A.; Slowikowska, M.; Niedzwiedz, A.; Paslawska, U. Serum symmetric dimethylarginine concentration in healthy horses and horses with acute kidney injury. BMC Vet. Res. 2020, 16, 396. [Google Scholar] [CrossRef]
- Bartolomé Del Pino, L.E.; Nardini, R.; Veneziano, V.; Iacoponi, F.; Cersini, A.; Autorino, G.L.; Buono, F.; Scicluna, M. Babesia caballi and Theileria equi infections in horses in Central-Southern Italy: Sero-molecular survey and associated risk factors. Ticks Tick. Borne Dis. 2016, 7, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé Del Pino, L.E.; Meana, A. Host and environmental factors as determinants of equine piroplasmosis seroprevalence in Central Spain. Span. J. Agric. Res. 2020, 18, e0108. [Google Scholar] [CrossRef]
- Graham, H.; van Kalsbeek, P.; van der Goot, J.; Koene, M.G.J. Low seroprevalence of equine piroplasmosis in horses exported from the Netherlands between 2015 and 2021. Front. Vet. Sci. 2022, 9, 954046. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.-M.; Bonsergent, C.; Josson, A.; Rocafort-Ferrer, G.; Le Guyader, M.; Angelloz-Pessey, S.; Leblond, A.; Malandrin, L. Evaluation of Theileria equi vertical transmission rate and routes in a cohort of asymptomatic mares and their foals. Ticks Tick. Borne Dis. 2025, 16, 102432. [Google Scholar] [CrossRef]
- Zobba, R.; Ardu, M.; Niccolini, S.; Chessa, B.; Manna, L.; Cocco, R.; Pinna Parpaglia, M.L. Clinical and laboratory findings in equine piroplasmosis. J. Equine Vet. Sci. 2008, 28, 301–308. [Google Scholar] [CrossRef]
- Sumbria, D.; Singla, L.D.; Kumar, S.; Sharma, A.; Dahiya, R.K.; Setia, R. Spatial distribution, risk factors and haemato-biochemical alterations associated with Theileria equi infected equids of Punjab (India) diagnosed by indirect ELISA and nested PCR. Acta Trop. 2016, 155, 104–112. [Google Scholar] [CrossRef]
- Sumbria, D.; Singla, L.D.; Sharma, A.; Bal, M.S.; Randhawa, C.S. Molecular survey in relation to risk factors and haemato-biochemical alteration in Theileria equi infection of equines in Punjab Province, India. Vet. Parasitol. Reg. Stud. Rep. 2017, 8, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Divers, T.J. The equine liver in health and disease. In Proceedings of the 61st Annual Convention of American Association of Equine Practitioners, Las Vegas, NV, USA, 5–9 December 2015. [Google Scholar]
- DeNotta, S.L.; Divers, T.J. Clinical Pathology in the Adult Sick Horse: The gastrointestinal system and liver. Vet. Clin. N. Am. Equine Pract. 2020, 36, 105–120. [Google Scholar] [CrossRef]
- Dorrego, A.; Camino, E.; Gago, P.; Buendia-Andres, A.; Acurio, K.; Gonzalez, S.; de Juan, L.; Cruz-Lopez, F. Haemato-biochemical characterization of equine piroplasmosis asymptomatic carriers and seropositive, real-time PCR negative horses. Vet. Parasitol. 2023, 323, 110046. [Google Scholar] [CrossRef]
- Mendoza, F.J.; Toribio, R.E.; Perez-Ecija, A. Metabolic and endocrine disorders in donkeys. Vet. Clin. N. Am. Equine Prac. 2019, 35, 399–417. [Google Scholar] [CrossRef]
- Borges, A.S.; Divers, T.J.; Stokol, T.; Mohammed, O.H. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Intern. Med. 2007, 21, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Takeet, M.I.; Adeleye, A.I.; Adebayo, O.O.; Akande, F.A. Haematology and serum biochemical alteration in stress induced equine theileriosis. A case report. Sci. World J. 2009, 4, 19–21. [Google Scholar] [CrossRef]
- Adam, M. Equine piroplasmosis—A case of severe Babesia caballi infection associated with acute renal failure. Berliner und Münchener Tierärztliche Wochenschrift 2016, 130, 113–118. [Google Scholar] [CrossRef]
- Toribio, R.E. Disorders of calcium and phosphate metabolism in horses. Vet. Clin. N. Am. Equine Pract. 2011, 27, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Fielding, C.L. Potassium homeostasis and derangements. In Equine Fluid Therapy, 1st ed.; Fielding, C., Magdesian, G., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2015; pp. 27–44. [Google Scholar] [CrossRef]
- Radakovic, M.; Davitkov, D.; Borozan, S.; Stojanovic, S.; Stevanovic, J.; Krstic, V.; Stanimirovic, Z. Oxidative stress and DNA damage in horses naturally infected with Theileria equi. Vet. J. 2016, 217, 112–118. [Google Scholar] [CrossRef]
- Muñoz, A.; Rodriguez, R.; Riber, C.; Trigo, P.; Gomez-Diez, M.; Castejon, F. Subclinical Theileria equi infection and rhabdomyolysis in three endurance horses. Pak. Vet. J. 2013, 33, 257–259. [Google Scholar]
- Hailat, N.Q.; Lafi, S.Q.; al-Darraji, A.M.; Al-Ani, F.K. Equine babesiosis associated with strenuous exercise: Clinical and pathological studies in Jordan. Vet. Parasitol. 1997, 69, 1–8. [Google Scholar] [CrossRef]
- Van Galen, G.; Divers, T.J.; Savage, V.; Schott, H.C., 2nd; Siwinska, N. ECEIM consensus statement on equine kidney disease. J. Vet. Intern. Med. 2024, 38, 2008–2025. [Google Scholar] [CrossRef]
- Coluccia, P.; Gizzarelli, M.; Scicluna, M.T.; Manna, G.; Foglia Manzillo, V.; Buono, F.; Auletta, L.; Palumbo, V.; Pasolini, M.P. A cross-sectional study on performance evaluation in Italian standardbred horses’ real-time PCR-positive for Theileria equi. BMC Vet. Res. 2024, 20, 79. [Google Scholar] [CrossRef]
- Divers, T.J. Acute kidney injury and renal failure in horses. Vet. Clin. N. Am. Equine Pract. 2022, 38, 13–24. [Google Scholar] [CrossRef]
- Beier, K.; Eppanapally, S.; Bazick, H.S.; Chang, D.; Mahadevappa, K.; Gibbons, F.K.; Christopher, K.B. Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of “normal” creatinine. Crit. Care Med. 2011, 39, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.-M.; Tortereau, A.; Riccio, B.; Desjardins, I. Fatal acute clinical babesiosis in an adult gelding pony living in an endemic area. Equine Vet. Educ. 2024, 36, e280–e287. [Google Scholar] [CrossRef]
- Gójska-Zygner, O.; Bartosik, J.; Górski, P.; Zygner, W. Hyponatraemia and syndrome of inappropriate antidiuretic hormone secretion in non-azotaemic dogs with babesiosis associated with decreased arterial blood pressure. J. Vet. Res. 2019, 63, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Du, L.; Zhou, S.; Bai, L.; Tang, H. Association of direct bilirubin to total bilirubin ratio with 90-day mortality in patients with acute-on-chronic liver failure. Front. Med. 2023, 10, 1286510. [Google Scholar] [CrossRef]
- Wise, L.N.; Kappmeyer, L.S.; Mealey, R.H.; Knowles, D.P. Review of equine piroplasmosis. J. Vet. Intern. Med. 2013, 27, 1334–1346. [Google Scholar] [CrossRef]
- Tang, W.; Yao, W.; Wang, W.; Lv, Q.; Ding, W.; He, R. Common hematological and biochemical parameters for predicting urinary tract infections in geriatric patients with hip fractures. Front. Med. 2024, 11, 1333472. [Google Scholar] [CrossRef]
GLU (mmol/L) | TGL (mmol/L) | URE (mmol/L) | CREA (µmol/L) | SDMA (µmol/L) | TPs (g/L) | ALB (g/L) | GLO (g/L) | FIB (g/L) | TB (µmol/L) | DB (µmol/L) | IB (µmol/L) | ALP (IU/L) | GGT (IU/L) | GLDH (IU/L) | BAs (μmol/L) | AST (IU/L) | CK (IU/L) | LDH (IU/L) | Na (mmol/L) | K (mmol/L) | Cl (mmol/L) | Ca (mmol/L) | P (mmol/L) | Mg (mmol/L) | Fe (µmol/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCR− S− | 4.8 (2.1) | 0.4 (0.3) | 5.2 (2.0) | 115 (44) | 0.1 (0.06) | 68 ± 1.0 | 36 (7) | 31 (10) | 3.0 (3.0) | 36 (20) | 5.1 (3.4) | 27 (19) | 455 (251) | 16.1 (10.7) | 3.5 (5.7) | 5.5 (5.6) | 231 (111) | 216 (114) | 585 (465) | 135 (7) | 4.2 (0.9) | 100 (5) | 2.9 (0.4) | 1.0 (0.5) | 0.8 (0.2) | 26.3 ± 0.9 |
PCR+ S− | 4.9 (2.2) | 0.5 (1.0) a | 5.2 (2.5) | 115 (44) | 0.1 (0.06) | 68 ± 1.0 | 35 (6) | 32 (9) | 3.0 (2.0) | 36 (53) | 5.1 (6.8) | 34 (65) | 500 (261) | 17.2 (11.6) | 3.8 (7.1) | 5.1 (3.7) | 203 (158) | 169 (137) a | 585 (509) | 134 (8) | 4.4 (1.0) | 99 (5) | 2.9 (0.5) | 0.9 (0.6) | 0.8 (0.2) | 25.4 ± 2.3 |
PCR− S+ | 4.5 (2.2) b | 0.4 (0.4) | 5.6 (2.0) | 115 (26) | 0.08 (0.03) | 67 ± 1.0 | 36 (7) | 31 (9) | 3.0 (2.2) | 32 (32) | 5.1 (3.4) | 29 (26) | 392 (328) | 15.0 (8.7) | 3.9 (6.1) | 6.7 (6.8) | 237 (116) b | 206 (122) | 686 (431) | 135 (8) | 4.1 (1.3) | 99 (6) | 3.0 (0.4) | 1.1 (0.7) | 0.8 (0.2) | 27.8 ± 2.2 |
Reference range * | 4.4–6.1 | 0.2–0.6 | 2.5–6.7 | 71–177 | 0–1.4 | 55–75 | 25–40 | 20–40 | 1.0–4.0 | 5–43 | 1.7–8.5 | 3–34 | 60–550 | 5–35 | 0–12 | 0–15 | 100–350 | 50–350 | 0–700 | 133–150 | 3–5 | 95–105 | 2.6–3.4 | 0.6–1.8 | 0.7–1.0 | 14–42 |
ALB/GLO | DB/TB | URE/CREA | CREA/URE | URE/ALB | LDH/ALB | |
---|---|---|---|---|---|---|
PCR− S− | 1.1 ± 0.02 | 3.4 (1.7) | 0.04 (0.02) | 23.4 (10.3) | 0.14 (0.05) | 16.8 (13.8) |
PCR+ S− | 1.1 ± 0.04 | 3.4 (3.4) | 0.05 (0.03) | 21.8 (12.0) | 0.14 (0.07) | 18.3 (14.2) |
PCR− S+ | 1.1 ± 0.06 | 3.4 (3.4) | 0.05 (0.03) | 19.3 (11.5) | 0.16 (0.07) | 20.1 (11.0) |
GLU (mmol/L) | TGL (mmol/L) | URE mmol/L) | CREA (µmol/L) | SDMA (µmol/L) | TPs (g/L) | ALB (g/L) | GLO (g/L) | FIB (g/L) | TB (µmol/L) | DB (µmol/L) | IB (µmol/L) | ALP (IU/L) | GGT (IU/L) | GLDH (IU/L) | BAs (μmol/L) | AST (IU/L) | CK (IU/L) | LDH (IU/L) | Na (mmol/L) | K (mmol/L) | Cl (mmol/L) | Ca (mmol/L) | P (mmol/L) | Mg (mmol/L) | Fe (µmol/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B− T− | 4.7 (2.1) | 0.4 (0.3) | 5.0 (1.8) | 115 (36) | 0.09 (0.05) | 68 ± 1.0 | 36 (6) | 31 (10) | 3.0 (3.0) | 37 (29) | 5.1 (3.4) | 31 (22) | 458 (265) | 16.3 (9.0) | 4.0 (6.1) | 5.3 (6.1) | 227 (106) | 214 (126) | 536 (514) | 135 (7) | 4.2 (0.7) | 99 (5) | 2.9 (0.4) | 1.0 (0.4) | 0.8 (0.2) | 25.7 ± 1.2 |
B+ T− | 5.2 (2.9) | 0.8 (1.7) a,¶ | 5.5 (2.8) | 97 (26) | 0.12 (0.17) | 66 ± 2.0 | 33 (13) | 36 (11) | 3.0 (2.5) | 87 (97) a,¶ | 6.8 (22.2) | 106 (89) a,¶ | 428 (160) | 13.9 (14.0) | 5.6 (7.6) | 5.5 (17.7) | 193 (175) | 118 (233) | 621 (927) | 131 (3) a | 4.5 (1.2) | 97 (3) | 3.2 (0.3) | 0.8 (1.1) | 0.9 (0.3) | 26.9 ± 6.6 |
B− T+ | 4.8 (1.4) | 0.4 (0.8) a | 5.0 (2.7) | 115 (53) | 0.08 (0.06) | 68 ± 1.0 | 35 (6) | 31 (8) | 3.0 (2.0) | 31 (34) b | 5.1 (6.8) | 26 (26) b | 501 (318) | 19.2 (10.5) | 3.4 (4.8) | 5.0 (3.8) | 207 (138) | 175 (131) | 539 (352) | 137 (8) b | 4.4 (1.0) | 100 (3) b | 0.7 (0.4) | 0.9 (0.4) | 0.8 (0.3) | 27.4 ± 2.7 |
Reference range * | 4.4–6.1 | 0.2–0.6 | 2.5–6.7 | 71–177 | 0–1.4 | 55–75 | 25–40 | 20–40 | 1.0–4.0 | 5–43 | 1.7–8.5 | 3–34 | 60–550 | 5–35 | 0–12 | 0–15 | 100–350 | 50–350 | 0–700 | 133–150 | 3–5 | 95–105 | 2.6–3.4 | 0.6–1.8 | 0.7–1.0 | 14–42 |
ALB/GLO | DB/TB | URE/CREA | CREA/URE | URE/ALB | LDH/ALB | |
---|---|---|---|---|---|---|
B− T− | 1.2 ± 0.03 | 0.1 (0.2) | 0.04 (0.02) | 23.6 (9.4) | 0.14 (0.05) | 15.9 (14.3) |
B+ T− | 1.0 ± 0.13 | 0.1 (0.2) | 0.05 (0.03) | 19.8 (9.4) a | 0.17 (0.16) | 18.2 (38.1) |
B− T+ | 1.1 ± 0.05 b | 0.2 (0.1) | 0.04 (0.03) | 24.7 (16.2) | 0.12 (0.08) | 16.7 (10.9) |
GLU (mmol/L) | TGL (mmol/L) | URE (mmol/L) | CREA (µmol/L) | SDMA (µmol/L) | TPs (g/L) | ALB (g/L) | GLO (g/L) | FIB (g/L) | TB (µmol/L) | DB (µmol/L) | IB (µmol/L) | ALP (IU/L) | GGT (IU/L) | GLDH (IU/L) | BAs (μmol/L) | AST (IU/L) | CK (IU/L) | LDH (IU/L) | Na (mmol/L) | K (mmol/L) | Cl (mmol/L) | Ca (mmol/L) | P (mmol/L) | Mg (mmol/L) | Fe (μmol/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sB− sT− | 4.9 (2.1) | 0.35 (0.3) | 5.3 (2.08) | 124 (44.2) | 0.10 (0.06) | 67 ± 1.0 | 36 (7) | 32 (10) | 3.0 (3.0) | 32 (18) | 5.1 (3.4) | 23 (19) | 448 (299) | 15.9 (13.2) | 3.1 (5.1) | 6.3 (5.5) | 233 (109) | 219 (110) | 614 (399) | 135 (10) | 4.1 (0.9) | 100 (4) | 2.9 (0.3) | 0.9 (0.5) | 0.9 (0.1) | 26 ± 1.3 |
sB+ sT− | 3.9 (2.3) | 0.36 (0.2) | 5.7 (1.83) | 106 (26.5) | 0.08 (0.03) | 68 ± 1.0 | 36 (6) | 32 (10) | 2.5 (6.2) | 26 (15) | 6.8 (1.7) | 19 (27) | 402 (429) | 13.6 (34.4) | 2.1 (2.8) | 6.0 (4.7) | 226 (115) | 152 (156) a | 757 (403) ¶ | 140 (9) | 3.9 (0.5) | 101 (6) | 2.9 (0.4) | 1.0 (1.0) | 0.9 (0.2) | 28 ± 5.2 |
sB− sT+ | 4.7 (2.2) | 0.46 (0.9) | 5.7 (3.55) | 115 (35.4) | 0.08 (0.03) | 67 ± 1.0 | 36 (9) | 32 (8) | 3.0 (2.5) | 43 (53) b | 5.1 (3.4) | 32 (41) | 418 (457) | 15.1 (12.0) | 4.2 (5.7) a | 7.7 (7.6) | 253 (133) | 213 (131) | 618 (662) | 134 (11) | 4.3 (1.8) b | 98 (5) | 2.9 (0.5) | 1.1 (0.8) | 0.8 (0.3) | 27 ± 2.6 |
Reference range * | 4.4–6.1 | 0.2–0.6 | 2.5–6.7 | 71–177 | 0–1.4 | 55–75 | 25–40 | 20–40 | 1.0–4.0 | 5–43 | 1.7–8.5 | 3–34 | 60–550 | 5–35 | 0–12 | 0–15 | 100–350 | 50–350 | 0–700 | 133–150 | 3–5 | 95–105 | 2.6–3.4 | 0.6–1.8 | 0.7–1.0 | 14–42 |
ALB/GLO | DB/TB | URE/CREA | CREA/URE | URE/ALB | LDH/ALB | |
---|---|---|---|---|---|---|
sB− sT− | 1.1 ± 0.1 | 0.2 (0.1) | 0.04 (0.03) | 22.7 (12.7) | 0.15 (0.07) | 18.3 (10.1) |
sB+ sT− | 1.1 ± 0.1 | 0.3 (0.2) | 0.06 (0.02) | 17.8 (9.1) | 0.16 (0.05) | 20.7 (9.3) |
sB− sT+ | 1.1 ± 0.1 | 0.1 (0.2) b | 0.05 (0.04) | 20.4 (13.0) | 0.16 (0.09) | 16.9 (18.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duaso, J.; Perez-Ecija, A.; Navarro, A.; Martínez, E.; De Las Heras, A.; Mendoza, F.J. Evaluation of Blood Biochemical Parameters and Ratios in Piroplasmosis-Infected Horses in an Endemic Region. Vet. Sci. 2025, 12, 643. https://doi.org/10.3390/vetsci12070643
Duaso J, Perez-Ecija A, Navarro A, Martínez E, De Las Heras A, Mendoza FJ. Evaluation of Blood Biochemical Parameters and Ratios in Piroplasmosis-Infected Horses in an Endemic Region. Veterinary Sciences. 2025; 12(7):643. https://doi.org/10.3390/vetsci12070643
Chicago/Turabian StyleDuaso, Juan, Alejandro Perez-Ecija, Ana Navarro, Esther Martínez, Adelaida De Las Heras, and Francisco J. Mendoza. 2025. "Evaluation of Blood Biochemical Parameters and Ratios in Piroplasmosis-Infected Horses in an Endemic Region" Veterinary Sciences 12, no. 7: 643. https://doi.org/10.3390/vetsci12070643
APA StyleDuaso, J., Perez-Ecija, A., Navarro, A., Martínez, E., De Las Heras, A., & Mendoza, F. J. (2025). Evaluation of Blood Biochemical Parameters and Ratios in Piroplasmosis-Infected Horses in an Endemic Region. Veterinary Sciences, 12(7), 643. https://doi.org/10.3390/vetsci12070643