Effects of Zinc (Zn) from Different Sources on Production Performance, Health Status, Antioxidant Properties and Immune Regulation of Dairy Cows in Early Lactation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experimental Design and Diet
2.2. Sample Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Plasma Biochemical Indices
3.3. Antioxidant
3.4. Immune Function
3.5. Inflammatory Factor
3.6. Zn Content in Milk
4. Discussion
4.1. Effects of Different Zn Sources on Production Performance of Lactating Dairy Cows
4.2. Effects of Different Zn Sources on the Health Status of Lactating Dairy Cows
4.3. Effects of Different Zn Sources on Antioxidant Indicators in Lactating Dairy Cows
4.4. Effects of Different Zn Sources on Immune Function of Lactating Dairy Cows
4.5. Effects of Different Zn Sources on Inflammatory Factors in Lactating Dairy Cows
4.6. Effects of Different Zn Sources on Zn Content in Lactating Dairy Cows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Z.; Yue, W.; Hui, W.; Xuemei, N.; Yuming, G.; Benhai, X. Calcium propionate supplementation has minor effects on major ruminal bacterial community composition of early lactation dairy cows. Front. Microbiol. 2022, 13, 847488. [Google Scholar] [CrossRef]
- Jahani-Moghadam, M.; Chashnidel, Y.; Yansari, A.T.; Mahjoubi, E.; Dirandeh, E. Effect of oral calcium bolus administration on milk production, concentrations of minerals and metabolites in serum, early-lactation health status, and reproductive performance of Holstein dairy cows. N. Z. Vet. J. 2018, 66, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, W.; Jia, Y.; Ye, B.; Liu, S.; Fu, S.; Liu, J.; Hu, G. Menthol targeting ampk alleviates the inflammatory response of bovine mammary epithelial cells and restores the synthesis of milk fat and milk protein. Front. Immunol. 2021, 12, 782989. [Google Scholar] [CrossRef] [PubMed]
- Nadia, B.; Frédéric, G. Impact of Zn and arginine on antioxidant status of weanling piglets raised under commercial conditions. Anim. Nutr. 2019, 5, 227–233. [Google Scholar] [CrossRef]
- Dresler, S.; Illek, J.; Cebulska, K.; Šoch, M. Effect of organic zinc supplementation on hematological, mineral, and metabolic profile in dairy cows in early lactation. Pol. J. Vet. Sci. 2023, 26, 675–686. [Google Scholar] [CrossRef]
- Junhao, L.; Fengtao, M.; Degen, A.A.; Pu, S. The effects of Zn supplementation on growth, diarrhea, antioxidant capacity, and immune function in holstein dairy calves. Animals 2023, 13, 2493. [Google Scholar] [CrossRef]
- Yawei, Z.; Yang, L.; Chuang, L.; Xuan, H.; Xu, Z.; Ping, D.; Juan, C.; Shuisheng, W.; Huiyun, W.; Gaofei, J.; et al. Effects of supplementation of inorganic trace elements with organic trace elements chelated with hydroxy methionine on laying performance, egg quality, blood micronutrients, antioxidant capacity and immune function of laying ducks. Front. Anim. Sci. 2022, 3, 1070018. [Google Scholar] [CrossRef]
- Marija, T.; Milica, Z.; Brankica, T.; Aleksandar, S.; Mirjana, M.; Slavica, R.; Danijela, R.M. Zn deficiency, plasma fatty acid profile and desaturase activities in hemodialysis patients: Is supplementation necessary? Front. Nutr. 2021, 8, 700450. [Google Scholar] [CrossRef]
- Partha Sarathi, S.; Rajendran, D.; Rao, S.B.N.; George, D. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World 2015, 8, 888–891. [Google Scholar] [CrossRef]
- Raban Arved, H.; André, S.; Julian, S.; Patrick, H.; Tobias, B.; Theresa, W.; Albert, B.; Qian, S.; Lutz, S.; Arash, M.; et al. Zn concentration dynamics indicate neurological impairment odds after traumatic spinal cord injury. Antioxidants 2020, 9, 421. [Google Scholar] [CrossRef]
- Shima, A.; Omid, T.; Ahmad, J.; David, M.; Vivian, T.; Sepideh, S. Zn supplementation and body weight: A systematic review and dose–response meta-analysis of randomized controlled trials. Adv. Nutr. 2020, 11, 398–411. [Google Scholar] [CrossRef]
- Weronika, K.; Aneta, M.-H.; Adrianna, C.; Agnieszka, M.; Urszula, D.; Małgorzata, W.; Olga, C. Zn supplementation modulates nets release and neutrophils’ degranulation. Nutrients 2020, 13, 51. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, C.; Ji, X.; Wu, G.; Huang, X.; Zhang, Y.; Zhang, Y. Msc-ace2 ameliorates streptococcus uberis-induced inflammatory injury in mammary epithelial cells by upregulating the il-10/stat3/socs3 pathway. Front. Immunol. 2022, 13, 870780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-J.; Li, Z.-P.; Wang, J.-H.; Xing, X.-M.; Wang, Z.-Y.; Wang, L.; Wang, Z.-H. Effects of chelated zn/cu/mn on redox status, immune responses and hoof health in lactating holstein cows. J. Vet. Sci. 2015, 16, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Mohanned Naif, A.; Tiwari, S.K.; Panda, B.; Yogesh, P.; Lathwal, S.S.; Ajay Kumar, D. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J. Trace Elem. Med. Biol. 2021, 65, 126718. [Google Scholar] [CrossRef]
- Nemec, L.M.; Richards, J.D.; Atwell, C.A.; Dolores, D.A.; Zanton, G.I.; Marshall, S.S. Immune responses in lactating holstein cows supplemented with cu, mn, and zn as sulfates or methionine hydroxy analogue chelates. J. Dairy Sci. 2012, 95, 4568–4577. [Google Scholar] [CrossRef]
- Wang, R.L.; Liang, J.G.; Lu, L.; Zhang, L.Y.; Li, S.F.; Luo, X.G. Effect of Zn source on performance, Zn status, immune response, and rumen fermentation of lactating cows. Biol. Trace Elem. Res. 2013, 152, 16–24. [Google Scholar] [CrossRef]
- Kupczyński, R.; Szumny, A.; Wujcikowska, K.; Pachura, N. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals 2020, 10, 1379. [Google Scholar] [CrossRef]
- Oconitrillo, M.; Wickramasinghe, J.; Omale, S.; Beitz, D.; Appuhamy, R. Effects of elevating Zn supplementation on the health and production parameters of high-producing dairy cows. Animals 2024, 14, 395. [Google Scholar] [CrossRef]
- Villagómez-Estrada, S.; Pérez, J.F.; Darwich, L.; Vidal, A.; van Kuijk, S.; Melo-Durán, D.; Solà-Oriol, D. Effects of copper and Zn sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. J. Anim. Sci. 2020, 98, skaa117. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Q.; Duan, Y.; Lin, X.; Ni, H.; Zhou, C.; Li, F. Comparison of the effects of inorganic or amino acid-chelated Zn on mouse myoblast growth in vitro and growth performance and carcass traits in growing-finishing pigs. Front. Nutr. 2022, 9, 857393. [Google Scholar] [CrossRef]
- Skampardonis, V.; Lisgara, M.; Papatsiros, V.; Leontides, L. Effect of sow diets supplementation with chelated trace minerals on their reproductive performance. J. Hell. Vet. Med. Soc. 2018, 67, 123–128. [Google Scholar] [CrossRef]
- Yuanxiao, L.; Jialin, W.; Mengying, D.; Shuai, L.; Bichuan, Y.; Cuiyu, L.; Muhammad Zahoor, K.; Yinghui, Z.; Jianxin, X. Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Front. Vet. Sci. 2022, 9, 981757. [Google Scholar] [CrossRef]
- Brandon, W. 141 mineral requirements of dairy cattle: Emphasis on organic minerals. J. Anim. Sci. 2020, 98, 141. [Google Scholar] [CrossRef]
- Swartz, T.H.; Bradford, B.J.; Mamedova, L.K.; Estes, K.A. Effects of dietary rumen-protected choline supplementation to periparturient dairy cattle on inflammation, metabolism, and performance during an intramammary lipopolysaccharide challenge. J. Dairy Sci. 2023, 106, 8561–8582. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhang, X.; Wang, K.; Datsomor, O.; Li, X.; Lin, M.; Feng, C.; Zhao, G.; Zhan, K. Effect of slow-release urea partial replacement of soybean meal on lactation performance, heat shock signal molecules, and rumen fermentation in heat-stressed mid-lactation dairy cows. Animals. 2023, 13, 2771. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 22nd ed.; Latimer, G.W., Jr., Ed.; AOAC Publications: Rockville, MD, USA, 2023. [Google Scholar] [CrossRef]
- Soest, P.J.V.; James, B.R.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Filho, S.C.V.; Silva, F.A.S.; Pedro Del Bianco, B.; Mário Fonseca, P.; Chizzotti, M.L. Nutrient requirements of beef cattle in tropical climates. Energy Protein Metab. Nutr. 2019, 138, 89–104. [Google Scholar] [CrossRef]
- Novi, M.; Ahmad Fizri, A.; Endah, S.; Lia Budimulyati, S. Prepartum Zn supplementation in dairy cows and its effect on plasma calcium, titers antibodies and milk Zn content in postpartum dairy cow. Adv. Biol. Sci. Res. 2022, 187–190. [Google Scholar] [CrossRef]
- John, W.O. Inductively coupled plasma mass spectrometry. Nat. Rev. Methods Prim. 2023, 3, 2468–5747. [Google Scholar] [CrossRef]
- Jiang, M.; Datsomor, O.; Cheng, Z.; Meng, Z.; Zhan, K.; Yang, T.; Huang, Y.; Yan, Q.; Zhao, G. Partial substitution of alfalfa hay by stevia (Stevia rebaudiana) hay can improve lactation performance, rumen fermentation, and nitrogen utilization of dairy cows. Front. Vet. Sci. 2022, 9, 899148. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.; Aliarabi, H.; Rupert, M.B.; Rachael, G.C. Effect of different sources of supplemental Zn on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biol. Trace Elem. Res. 2018, 189, 75–84. [Google Scholar] [CrossRef]
- Amir, N.; Nathan, U.; Ekin, S.; Sanz-Fernandez, M.V.; DeFrain, J.M.; Patrick, J.G.; Lance, H.B. Effect of the ratio of Zn amino acid complex to Zn sulfate on the performance of holstein cows. J. Dairy Sci. 2014, 97, 4392–4404. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Caja, G.; Elena, A.; Such, X.; Casals, R.; Plaixats, J. Effect of the ratio of Zn amino acid complex to Zn sulfate on the performance of holstein cows. J. Dairy Res. 2003, 70, 9–17. [Google Scholar] [CrossRef]
- Dániel, S.; Santschi, D.E.; Durocher, J.; Daniel, L. Evaluation of the new differential somatic cell count parameter as a rapid and inexpensive supplementary tool for udder health management through regular milk recording. Prev. Vet. Med. 2020, 181, 105079. [Google Scholar] [CrossRef]
- Eman, A.A.; Mohamed, E.; Afaf, M.M. The prevalence and etiology of subclinical mastitis in sheep and goats. Zagazig Vet. J. 2018, 46, 96–104. [Google Scholar] [CrossRef]
- Overton, T.R.; Takashi, Y. Practical applications of trace minerals for dairy cattle1,2. J. Anim. Sci. 2014, 92, 416–426. [Google Scholar] [CrossRef]
- Zhong, Y.; Xue, M.; Liu, J. Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts. Front. Microbiol. 2018, 9, 3217. [Google Scholar] [CrossRef]
- Riad, W.A.; Ghada, S.E.-E.; Abed Elhalim Mohy, E.-D.; Mir, A.A.; Gaafar, H.M.A. Effect of supplementary chelated Zn and manganese methionine on productive and reproductive performance of friesian cows. Egypt. J. Agric. Res. 2018, 96, 289–302. [Google Scholar] [CrossRef]
- Daniel, R.S.M.; Valerie, M.; Michael Oresto, M.; Diana, M.; Andrew, M.; Elliott, M.H.; Amos, M.; Blandina, T.M.; David, S.; Odipo, O.; et al. Intra-household agreement of urinary elemental concentrations in Tanzania and Kenya: Potential surrogates in case–control studies. J. Expo. Sci. Environ. Epidemiol. 2018, 29, 335–343. [Google Scholar] [CrossRef]
- Mandal, G.P.; Dass, R.S.; Garg, A.K.; Vaibhav Kumar, V.; Arpita, M. Effect of zinc supplementation from inorganic and organic sources on growth and blood biochemical profile in crossbred calves. J. Anim. Feed Sci. 2008, 17, 147–156. [Google Scholar] [CrossRef]
- Seo, M.; Yamada, T.; Yasumura, Y.; Hikoso, S.; Sotomi, Y.; Tamaki, S.; Yano, M.; Hayashi, T.; Nakagawa, A.; Nakagawa, Y.; et al. Abstract 9557: Prognostic significance of serum chloride level in patients with acute decompensated heart failure with preserved ejection fraction: Insights from pursuit-hfpef registry. Circulation 2021, 144, A9557. [Google Scholar] [CrossRef]
- Liu, G.; Cao, W.; Fang, T.; Jia, G.; Zhao, H.; Chen, X.; Wu, C.; Wang, J. Urinary metabolomic approach provides new insights into distinct metabolic profiles of glutamine and n-carbamylglutamate supplementation in rats. Nutrients 2016, 8, 478. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, N.; Peng, S.; Zhang, Y.; Wang, H.; Huang, S.; Zhu, M.; Ma, Y. Effects of dietary valine chelated Zn supplementation on growth performance, antioxidant capacity, immunity, and intestine health in weaned piglets. Biol. Trace Elem. Res. 2023, 202, 2577–2587. [Google Scholar] [CrossRef]
- Zhu, X.; Shang, X.; Lin, G.; Li, H.; Feng, X.; Zhang, H. Effects of Zn glycinate on growth performance, serum biochemical indexes, and intestinal morphology of yellow feather broilers. Biol. Trace Elem. Res. 2021, 200, 4089–4097. [Google Scholar] [CrossRef]
- Manimaran, S.; Kekan, P.M.; Sudhir Bapurao, D.; Alok, W.; Munde, V.K.; Khose, K.K.; Bhagade, P.M. Effect of copper and Zn supplementation on antioxidants and biochemical status of osmanabadi goats. Indian J. Anim. Res. 2022, 58, 293–297. [Google Scholar] [CrossRef]
- Nagalakshmi, D.; Kandi, S.; Satyanarayana, M.; Ramulu, S.P.; Vishal Shesherao, N.; Vikram, L. Effect of replacing inorganic Zn with a lower level of organic Zn (Zn propionate) on performance, biochemical constituents, antioxidant, immune and mineral status in buffalo calves. Indian J. Anim. Res. 2017, 52, 1292–1297. [Google Scholar] [CrossRef]
- Ndlovu, T.; Chimonyo, M.; Okoh, A.I.; Voster, M.; Dzama, K.; Raats, J. Assessing the nutritional status of beef cattle: Current practices and future prospects. Afr. J. Biotechnol. 2007, 6, 2727–2734. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Mbajiorgu, C.A. Potentials of Dietary Zinc Supplementation in Improving Growth Performance, Health Status, and Meat Quality of Broiler Chickens. Biol. Trace Elem. Res. 2022, 201, 1418–1431. [Google Scholar] [CrossRef]
- Wang, S.; Geng, N.; Zhou, D.; Qu, Y.; Shi, M.; Xu, Y.; Liu, K.; Liu, Y.; Liu, J. Oral immunization of chickens with recombinant lactobacillus plantarum vaccine against early alv-j infection. Front. Immunol. 2019, 10, 2299. [Google Scholar] [CrossRef]
- Silje Fjellgård, J.; Børre, F.; Pål, A. Commentary: Gut antibody deficiency in a mouse model of cvid results in spontaneous development of a gluten-sensitive enteropathy. Front. Immunol. 2020, 11, 1921. [Google Scholar] [CrossRef]
- Inga, W.; Hajo, H.; Gabriela, E.; Lothar, R.; Peter, U. Zn deficiency induces production of the proinflammatory cytokines il-1β and tnfα in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013, 24, 289–297. [Google Scholar] [CrossRef]
- Zhang, W.; Ning, C.; Xu, W.; Hu, H.; Li, M.; Zhao, G.; Ding, J.; Chen, X. Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331–3347. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Chen, X.-J.; Zhang, L.; Pan, Y.-Y.; Gu, Z.-X.; Yuan, Y. Anti-inflammatory effects of eucommia ulmoides oliv. Male flower extract on lipopolysaccharide-induced inflammation. Chin. Med. J. 2019, 132, 319–328. [Google Scholar] [CrossRef]
- Akira, S.; Hirano, T.; Taga, T.; Kishimoto, T. Biology of multifunctional cytokines: Il 6 and related molecules (il 1 and tnf). Faseb J. 1990, 4, 2860–2867. [Google Scholar] [CrossRef]
- Kong, L.; Shen, X.; Lin, L.; Leitges, M.; Rosario, R.; Zou, Y.S.; Yan, S.F. Pkcβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic apoe null mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1779–1787. [Google Scholar] [CrossRef]
- Burhan Ud Din, S.; Ravindra, K.; Jadhav, S.E.; Junaid, K. Effect of Zn nanoparticles on milk yield, milk composition and somatic cell count in early-lactating barbari does. Biol. Trace Elem. Res. 2019, 196, 96–102. [Google Scholar] [CrossRef]
- Neelima, J.; Sajith, P.; Ally, K.; Deepa, A.; Shelley, S. Effect of supplementation of rumen protected choline and methionine on milk yield and composition of early lactating dairy cows. J. Vet. Anim. Sci. 2021, 52, 142–148. [Google Scholar] [CrossRef]
- Cai, J.; Miao, C.; Chen, Y.; Xie, Y.; Liu, J.; Wang, D. Nano-sized Zn addition enhanced mammary Zn translocation without altering health status of dairy cows. Anim. Nutr. 2021, 7, 1024–1030. [Google Scholar] [CrossRef]
- Ramirez-Agudelo, J.F.; Kebreab, E. Systematic review for optimizing sample size in dairy cow methane emission studies: A comprehensive methodological approach. Zenodo 2023, 107, 9442–9458. [Google Scholar] [CrossRef]
- Yoo, H.J.; You, D.-J.; Lee, K.-W. Characterization and Immunomodulatory Effects of High Molecular Weight Fucoidan Fration from the Sporophyll of Undaria pinnatifida in Cyclophosphamide-Induced Immunosuppressed Mice. Mar. Drugs 2019, 17, 447. [Google Scholar] [CrossRef] [PubMed]
Items | Treatments |
---|---|
Ingredient, % DM basis | |
Alfalfa | 8.39 |
Oat | 6.43 |
Whole corn silage | 52.18 |
Corn | 8.1 |
Soya bean meal | 10.8 |
Cotton seed meal | 6.8 |
DDGS 1 | 4.8 |
Premix 2 | 2.5 |
NEL balance (Mcal/kg) | 1.7 |
Crude protein (%) | 17.07 |
Neutral detergent fiber (%) | 34.94 |
Acid detergent fiber (%) | 25.63 |
Ether extract (%) | 3.85 |
Ash (%) | 7.03 |
Ca (%) | 0.88 |
P (%) | 0.41 |
Zn (mg/kg DM) | 60.00 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON | Zn-AA | Zn-Met | |||
DMI (kg/d) | 24.92 | 25.07 | 25.03 | 0.30 | 0.523 |
Milk yield (kg/d) | 38.67 | 38.89 | 38.78 | 0.29 | 0.105 |
FCR 1 | 1.54 | 1.43 | 1.56 | 0.06 | 0.176 |
4% FCM 2 | 39.28 | 37.94 | 39.38 | 2.24 | 0.282 |
Milk protein (%) | 3.23 | 3.37 | 3.35 | 0.24 | 0.414 |
Milk fat (%) | 4.21 | 4.24 | 4.23 | 0.29 | 0.973 |
Milk lactose (%) | 5.12 | 5. 09 | 5.12 | 0.03 | 0.945 |
Total solids (%) | 13.86 | 13.40 | 14.04 | 0.23 | 0.517 |
SCC (103/mL) | 164.48 a | 118.33 c | 135.52 b | 28.00 | 0.001 |
MUN (mg/dL) | 12.85 | 12.51 | 13.40 | 0.20 | 0.199 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON | Zn-AA | Zn-Met | |||
Glu(mmol/L) | 3.19 | 3.41 | 2.97 | 0.69 | 0.372 |
TG (mmol/L) | 0.10 | 0.09 | 0.07 | 0.03 | 0.077 |
NEFA (mmol/L) | 0.20 | 0.21 | 0.31 | 0.16 | 0.310 |
AST (U/L) | 72.92 | 86.94 | 74.17 | 6.47 | 0.624 |
ALT (U/L) | 25.58 | 29.17 | 29.08 | 1.34 | 0.496 |
ALP (U/L) | 50.47 | 50.71 | 52.94 | 3.43 | 0.953 |
γ-GT (U/L) | 28.09 | 31.84 | 26.47 | 1.94 | 0.509 |
TP (g/L) | 62.67 | 63.09 | 60.77 | 2.24 | 0.910 |
ALB (g/L) | 29.02 | 30.55 | 28.21 | 1.11 | 0.699 |
GLO (g/L) | 33.65 | 32.54 | 32.56 | 1.43 | 0.941 |
TBIL (mmol/L) | 2.62 | 2.74 | 2.34 | 0.53 | 0.057 |
CHE (U/L) | 74.71 | 87.18 | 75.87 | 6.83 | 0.704 |
CREA-S (µmol/L) | 56.15 | 62.61 | 58.53 | 2.42 | 0.561 |
UA (µmol/L) | 37.36 | 41.44 | 36.39 | 1.92 | 0.514 |
UREA (mmol/L) | 3.10 | 3.99 | 3.48 | 0.99 | 0.133 |
TC (mmol/L) | 4.90 | 5.34 | 5.08 | 0.21 | 0.699 |
INS (μIU/mL) | 3.55 | 5.02 | 3.94 | 0.47 | 0.434 |
Plasma Zn (µmol/L) | 11.83 | 13.71 | 12.72 | 0.41 | 0.408 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON | Zn-AA | Zn-Met | |||
TAOC (mM/L) | 3.82 | 3.90 | 3.72 | 0.38 | 0.574 |
GSH-PX (U/mL) | 584.67 c | 789.39 a | 759.99 b | 134.10 | 0.003 |
SOD (U/mL) | 96.09 | 120.39 | 113.91 | 30.96 | 0.185 |
CAT (U/mL) | 110.72 b | 151.55 a | 70.69 c | 46.67 | 0.001 |
MDA (μmol/mL) | 85.98 | 73.54 | 69.46 | 20.54 | 0.173 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON | Zn-AA | Zn-Met | |||
IgA (g/L) | 8.10 c | 10.60 b | 12.78 a | 4.94 | 0.001 |
IgG (g/L) | 48.60 | 52.90 | 53.10 | 5.04 | 0.924 |
IgM (g/L) | 5.00 c | 6.32 a | 5.65 b | 1.05 | 0.013 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON | Zn-AA | Zn-Met | |||
TNF-α (ng/mL) | 0.61 | 0.55 | 0.59 | 0.04 | 0.563 |
IL-1β (ng/mL) | 1.01 | 1.15 | 1.10 | 0.07 | 0.736 |
IL-6 (ng/mL) | 0.89 | 0.82 | 0.93 | 0.07 | 0.798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, J.; Jiang, M.; Huo, Y.; Zhan, K. Effects of Zinc (Zn) from Different Sources on Production Performance, Health Status, Antioxidant Properties and Immune Regulation of Dairy Cows in Early Lactation. Vet. Sci. 2025, 12, 545. https://doi.org/10.3390/vetsci12060545
Li X, Wang J, Jiang M, Huo Y, Zhan K. Effects of Zinc (Zn) from Different Sources on Production Performance, Health Status, Antioxidant Properties and Immune Regulation of Dairy Cows in Early Lactation. Veterinary Sciences. 2025; 12(6):545. https://doi.org/10.3390/vetsci12060545
Chicago/Turabian StyleLi, Xue, Jianfei Wang, Maocheng Jiang, Yongjiu Huo, and Kang Zhan. 2025. "Effects of Zinc (Zn) from Different Sources on Production Performance, Health Status, Antioxidant Properties and Immune Regulation of Dairy Cows in Early Lactation" Veterinary Sciences 12, no. 6: 545. https://doi.org/10.3390/vetsci12060545
APA StyleLi, X., Wang, J., Jiang, M., Huo, Y., & Zhan, K. (2025). Effects of Zinc (Zn) from Different Sources on Production Performance, Health Status, Antioxidant Properties and Immune Regulation of Dairy Cows in Early Lactation. Veterinary Sciences, 12(6), 545. https://doi.org/10.3390/vetsci12060545