Commentary on the Issue of Leishmania Infection: Focus on Some Pathogenetic, Clinical, and Epidemiological Aspects
Simple Summary
Abstract
1. Introduction and Epidemiological Considerations
2. Pathogenesis and Immune Traits
3. Clinical Aspects
4. Prevention
5. Diagnosis
6. Treatment
7. Research Avenues
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marou, V.; Vardavas, C.I.; Aslanoglou, K.; Nikitara, K.; Plyta, Z.; Leonardi-Bee, J.; Atkins, K.; Condell, O.; Lamb, F.; Suk, J.E. The impact of conflict on infectious disease: A systematic literature review. Confl. Health 2024, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Zieneldien, T.; Ma, S.; Cohen, B.A. Cutaneous leishmaniasis in the context of global travel, migration, refugee populations, and humanitarian crises. Clin. Pract. 2025, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.; Harfouch, R.; El Zein, S.; Alshehabi, Z.; Shaaban, R.; Kanj, S.S. Visceral and cutaneous leishmaniases in a City in Syria and the effects of the Syrian conflict. Am. J. Trop. Med. Hyg. 2019, 101, 108–112. [Google Scholar] [CrossRef]
- Favi, E.; Santolamazza, G.; Botticelli, F.; Alfieri, C.; Delbue, S.; Cacciola, R.; Guarneri, A.; Ferraresso, M. Epidemiology, clinical characteristics, diagnostic work up, and treatment options of Leishmania infection in kidney transplant recipients: A systematic review. Trop. Med. Infect. Dis. 2022, 7, 258. [Google Scholar] [CrossRef]
- Jimenez-Marco, T.; Riera, C.; Girona-Llobera, E.; Guillen, C.; Iniesta, L.; Alcover, M.; Berenguer, D.; Pujol, A.; Tomas-Perez, M.; Cancino-Faure, B.; et al. Strategies for reducing the risk of transfusion-transmitted leishmaniasis in an area endemic for Leishmania infantum: A patient- and donor-targeted approach. Blood Transfus. 2018, 16, 130–136. [Google Scholar]
- Grinnage-Pulley, T.; Scott, B.; Petersen, C.A. A Mother’s gift: Congenital transmission of Trypanosoma and Leishmania species. PLoS Pathog. 2016, 12, e1005302. [Google Scholar] [CrossRef]
- WHO. Control of the Leishmaniasis; WHO Technical Report Series 949; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Tsakmalidis, I.; Lefkaditis, M.; Zaralis, K.; Arsenos, G. Alternative hosts of Leishmania infantum: A neglected parasite in Europe. Trop. Anim. Health Prod. 2024, 56, 128. [Google Scholar] [CrossRef] [PubMed]
- Maia, C.; Conceicao, C.; Pereira, A.; Rocha, R.; Ortuno, M.; Munoz, C.; Jumakanova, Z.; Perez-Cutillas, P.; Ozbel, Y.; Toz, S.; et al. The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS Negl. Trop. Dis. 2023, 17, e0011497. [Google Scholar] [CrossRef]
- Bruschi, F.; Gradoni, L. The Leishmaniases: Old Neglected Tropical Diseases; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Kniha, E.; Walochnik, J.; Poeppl, W.; Mooseder, G.; Obwaller, A.G. Leishmania spp. seropositivity in. Austrian soldiers returning from the Kosovo. Wien. Klin. Wochenschr. 2020, 132, 47–49. [Google Scholar] [CrossRef]
- Word Health Organization (WHO). Neglected Tropical Diseases. Available online: https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1 (accessed on 11 October 2024).
- Knight, C.A.; Harris, D.R.; Alshammari, S.O.; Gugssa, A.; Young, T.; Lee, C.M. Leishmaniasis: Recent epidemiological studies in the Middle East. Front. Microbiol. 2023, 13, 1052478. [Google Scholar] [CrossRef]
- Schutz Borges, M.; Niero, B.; da Rosa, D.S.; Citadini-Zanette, V.; Alves Elias, G.; de Aguiar Amaral, P. Factors associated with the expansion of leishmaniasis in urban areas: A systematic and bibliometric review (1959–2021). J. Public Health Res. 2022, 11, 22799036221115775. [Google Scholar] [CrossRef] [PubMed]
- Maia, C. Sand fly-borne diseases in Europe: Epidemiological overview and potential triggers for their emergence and re-emergence. J. Comp. Pathol. 2024, 209, 6–12. [Google Scholar] [CrossRef]
- De Carvalho, R.V.H.; Lima-Junior, D.; da Silva, M.V.G.; Dilucca, M.; Rodrigues, T.S.; Horta, C.V.; Silva, A.L.N.; da Silva, P.F.; Frantz, F.G.; Lorenzon, L.B.; et al. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat. Commun. 2019, 10, 5273. [Google Scholar] [CrossRef]
- Walker, D.M.; Oghumu, S.; Gupta, G.; McGwire, B.S.; Drew, M.E.; Satoskar, A.R. Mechanisms of cellular invasion by intracellular parasites. Cell. Mol. Life Sci. 2014, 71, 1245–1263. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.; Alvar, J. Canine leishmaniasis: Epidemiological risk and the experimental model. Trends Parasitol. 2002, 18, 399–405. [Google Scholar] [CrossRef]
- Ivanescu, L.; Andronic, B.L.; Grigore-Hristodorescu, S.; Martinescu, G.V.; Mındru, R.; Miron, L. The immune response in canine and human leishmaniasis and how this influences the diagnosis- a review and assessment of recent research. Front. Cell. Infect. Microbiol. 2023, 13, 1326521. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martinez, A.F.; Newnam, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Dalton, J.E.; Kaye, P.M.; Chatterjee, M. Post kala-azar dermal leishmaniasis: An unresolved mystery. Trends Parasitol. 2014, 30, 65–74. [Google Scholar] [CrossRef]
- Daraban Bocaneti, F.; Ivanescu, L.M.; Miron, L.; Tanase, O.I.; Dascalu, M.A. An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics. Trop. Med. Infect. Dis. 2022, 7, 334. [Google Scholar] [CrossRef]
- Majoor, A.; Michel, G.; Marty, P.; Boyer, L.; Pomares, C. Leishmaniases: Strategies in treatment development. Parasite 2025, 32, 18. [Google Scholar] [CrossRef] [PubMed]
- Costa-da-Silva, A.C.; Nascimento, D.d.O.; Ferreira, J.R.M.; Guimarães-Pinto, K.; Freire-de-Lima, L.; Morrot, A.; Decote-Ricardo, D.; Filardy, A.A.; Freire-de-Lima, C.G. Immune responses in Leishmaniasis: An overview. Trop. Med. Infect. Dis. 2022, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, J.M.; Fakiola, M.; Castellucci, L.C. Human Genetics of Leishmania infections. Hum. Genet. 2020, 139, 813–819. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, J.; Kumar Singh, V.; Agrawal, N.; Kumar, R. Current and emerging therapies for the treatment of leishmaniasis. Expert Opin. Orphan Drugs 2024, 12, 19–32. [Google Scholar] [CrossRef]
- Ayala, A.; Llanes, A.; Lleonart, R.; Restrepo, C.M. Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens 2024, 13, 812. [Google Scholar] [CrossRef]
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci. 2022, 9, 387. [Google Scholar] [CrossRef]
- Castelli, G.; Oliveri, E.; Valenza, V.; Giardina, S.; Facciponte, F.; La Russa, F.; Vitale, F.; Bruno, F. Cultivation of protozoa parasites In Vitro: Growth potential in conventional culture media versus RPMI-PY medium. Vet. Sci. 2023, 10, 252. [Google Scholar] [CrossRef]
- Ferreira de Araújo Paz, L.; da Silva, A.; da Silva, H.R.F.; Cavalcanti, M.P.; de Lima, V.M.F.; da Cunha Beltrão, M.R.O.; Silva, M.B.A.; de Melo Neto, O.P.; Medeiros, Z.M.; Santos, W.J.T.d. Diagnostic potential for the detection of canine visceral leishmaniasis of an ELISA assay based on the Q5 recombinant protein: A large-scale and comparative evaluation using canine sera with a positive diagnosis from the Dual-Path-Platform (DPP) Test. Vet. Sci. 2023, 10, 608. [Google Scholar] [CrossRef]
- Almugadam, S.H.; Trentini, A.; Maritati, M.; Contini, C.; Manfrinato, M.C.; Cervellati, C.; Bellini, T.; Hanau, S. A calcium- and GTP-dependent transglutaminase in Leishmania infantum. Vet. Sci. 2023, 10, 234. [Google Scholar] [CrossRef]
- Napoli, E.; De Benedetto, G.; Fazio, C.; La Russa, F.; Gaglio, G.; Brianti, E. Clinical case of feline leishmaniosis: Therapeutic approach and long-term follow-up. Vet. Sci. 2022, 9, 400. [Google Scholar] [CrossRef]
- Priolo, V.; Martínez-Orellana, P.; Pennisi, M.G.; Raya-Bermúdez, A.I.; Jurado-Tarifa, E.; Masucci, M.; Donato, G.; Bruno, F.; Castelli, G.; Solano-Gallego, L. Leishmania infantum specific humoral and cellular immune responses in cats and dogs: A comparative cross-sectional study. Vet. Sci. 2022, 9, 482. [Google Scholar] [CrossRef] [PubMed]
- Donato, G.; Caspanello, T.; De Majo, M.; Masucci, M.; Iannelli, D.; Santoro, S.; Capri, A.; Iannelli, N.M.; Pennisi, M.G. Pilot study on QTc interval in dogs treated with domperidone. Vet. Sci. 2024, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Eser, M.; Çavus, I. In Vitro and In Silico evaluations of the antileishmanial activities of new benzimidazole-triazole derivatives. Vet. Sci. 2023, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Pitta, M.G.; Romano, A.; Cabantous, S.; Henri, S.; Hammad, A.; Kouriba, B.; Argiro, L.; el Kheir, M.; Bucheton, B.; Mary, C.; et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J. Clin. Investig. 2009, 119, 2379–2387. [Google Scholar] [CrossRef]
- Batista, M.F.; Nájera, C.A.; Meneghelli, I.; Bahia, D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front. Cell Dev. Biol. 2020, 8, 396. [Google Scholar] [CrossRef]
- Guhe, V.; Singh, S. Uncovering the significance of JNK/AKT axis in the autophagic regulation of Leishmania major infection. Mol. Microbiol. 2024, 123, 1–15. [Google Scholar] [CrossRef]
- Saiki, S.; Sasazawa, Y.; Imamichi, Y.; Kawajiri, S.; Fujimaki, T.; Tanida, I.; Kobayashi, H.; Sato, F.; Sato, S.; Ishikawa, K.I.; et al. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 2011, 7, 176–187. [Google Scholar] [CrossRef]
- Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M. Toll-Like Receptors: General Molecular and Structural Biology. J. Immunol. Res. 2021, 2021, 9914854. [Google Scholar] [CrossRef]
- Bhor, R.; Rafati, S.; Pai, K. Cytokine saga in visceral leishmaniasis. Cytokine 2021, 147, 155322. [Google Scholar] [CrossRef]
- Chauhan, P.; Nair, A.; Patidar, A.; Dandapat, J.; Sarkar, A.; Saha, B. A primer on cytokines. Cytokine 2021, 145, 155458. [Google Scholar] [CrossRef]
- Gonçalves-de-Albuquerque, S.d.C.; Pessoa-e-Silva, R.; Trajano-Silva, L.A.M.; de Goes, T.C.; de Morais, R.C.S.; da C Oliveira, C.N.; de Lorena, V.M.B.; de Paiva-Cavalcanti, M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front. Immunol. 2017, 8, 1437. [Google Scholar] [CrossRef] [PubMed]
- Toepp, A.J.; Petersen, C.A. The balancing act: Immunology of leishmaniosis. Res. J. Vet. Sci. 2020, 130, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Esch, K.J.; Schaut, R.G.; Lamb, I.M.; Clay, G.; Morais Lima, A.L.; do Nascimento, P.R.; Whitley, E.M.; Jeronimo, S.M.; Sutterwala, F.S.; Haynes, J.S.; et al. Activation of autophagy and nucleotide-binding domain Leucine-rich repeat-containing-like receptor family, Pyrin domain-containing 3 Inflammasome during Leishmania infantum-associated glomerulonephritis. Am. J. Pathol. 2015, 185, 2105–2117. [Google Scholar] [CrossRef] [PubMed]
- Correa-Castro, G.; Silva-Freitas, M.L.; de Paula, L.; Soares Pereira, L.; Teixeira Dutra, M.R.; Gomes Albuquerque, H.; Cota, G.; de Azevedo Martins, C.; D-Cruz, A.M.; Gomes-Silva, A.; et al. A link between circulating immune complexes and acute kidney injury in human visceral leishmaniasis. Sci. Rep. 2024, 14, 9870. [Google Scholar] [CrossRef]
- Goto, H.; Prianti, M.G. Immunoactivation and immunopathogeny during active visceral leishmaniasis. Rev. Inst. Med. Trop. 2009, 51, 241–246. [Google Scholar] [CrossRef]
- Clementi, A.; Battaglia, G.; Floris, M.; Castellino, P.; Ronco, C.; Cruz, D.N. Renal involvement in leishmaniasis: A review of the literature. NDT Plus 2011, 4, 147–152. [Google Scholar] [CrossRef]
- Bezzerra Da Silva, G.J.; Guardao Barros, E.J.; De Francesco Daher, E. Kidney involvement in leishmaniasis—A review. Braz. J. Infect. Dis. 2014, 18, 434–440. [Google Scholar] [CrossRef]
- Schaut, R.G.; Lamb, I.M.; Toepp, A.J.; Scott, B.; Mendes-Aguiar, C.O.; Coutinho, J.F.; Jeronimo, S.M.; Wilson, M.E.; Harty, J.T.; Waldschmidt, T.J.; et al. Regulatory IgDhi B cells suppress T cell function via IL-10 and PD-L1 during progressive visceral Leishmaniasis. J. Immunol. 2016, 196, 4100–4109. [Google Scholar] [CrossRef]
- Colpitts, S.L.; Dalton, N.M.; Scott, P. IL-7 Receptor expression provides the potential for Long-Term survival of both CD62Lhigh Central Memory T Cells and Th1 Effector Cells during Leishmania major infection. J. Immunol. 2009, 182, 5702–5711. [Google Scholar] [CrossRef]
- Mandell, M.A.; Beverley, S.M. Concomitant immunity induced by persistent Leishmania major does not preclude secondary Re-Infection: Implications for genetic exchange, diversity and vaccination. PLoS Negl. Trop. Dis. 2016, 10, e0004811. [Google Scholar] [CrossRef]
- Lodi, L.; Voarino, M.; Stocco, S.; Ricci, S.; Azzari, C.; Galli, L.; Chiappini, E. Immune response to viscerotropic Leishmania: A comprehensive review. Front. Immunol. 2024, 15, 1402539. [Google Scholar] [CrossRef] [PubMed]
- Arnold, N.S.; Noren Hooten, N.; Zhang, Y.; Lehrmann, E.; Wood, W., III; Camejo Nunez, W.; Thorpe, R.J., Jr.; Evans, M.K.; Dluzen, D.F. The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. PLoS ONE 2020, 15, e0239654. [Google Scholar] [CrossRef] [PubMed]
- Alotiby, A. Immunology of Stress: A Review Article. J. Clin. Med. 2024, 13, 6394. [Google Scholar] [CrossRef]
- Maritati, M.; Trentini, A.; Michel, G.; Bellini, T.; Almugadam, S.; Hanau, S.; Govoni, M.; Marty, P.; Contini, C. Subclinical Leishmania infection in patients with rheumatic diseases under biological drugs. Infection 2018, 46, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Conceicao-Silva, F.; Leite-Silva, J.; Morgado, F.N. The binomial parasite-host immunity in the healing process and in reactivation of Human. Tegumentary Leishmaniasis. Front. Microbiol. 2018, 9, 1308. [Google Scholar] [CrossRef]
- Sengupta, R.; Roy, M.; Dey, N.S.; Kaye, P.M.; Chatterjee, M. Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis: Partners in crime? Trends Parasitol. 2023, 39, 822–836. [Google Scholar] [CrossRef]
- Das, N.K.; Datta, P.K.; Mukhopadhyay, D.; Chatterjee, M. Post Kala-Azar Dermal Leishmaniasis: An update. In Recent Advances in Dermatology, 1st ed.; Ghosh, S., Sarma, N., De, D., Eds.; Jaypee Brothers Ltd.: New Delhi, India, 2013; Volume 3, Chapter 11. [Google Scholar]
- Chatterjee, M.; Sengupta, R.; Mukhopadhyay, D.; Mukherjee, S.; Dighal, A.; Moulik, S.; Sengupta, S. Immune responses in post Kala-azar dermal leishmaniasis. Indian J. Dermatol. 2020, 65, 452–460. [Google Scholar] [CrossRef]
- Jain, M.; Sangma, D.A.; Parida, L.; Negi, R.; Negi, A.; Matlashewski, G.; Lypaczewski, P. Atypical cutaneous leishmaniasis: A new challenge to VL elimination in South-East Asia. Front. Cell. Infect. Microbiol. 2024, 14, 1454002. [Google Scholar] [CrossRef]
- Salih, M.A.M.; Fakiola, M.; Abdelraheem, M.H.; Younis, B.M.; Musa, A.M.; El Hassan, A.M.; Blackwell, J.M.; Ibrahim, M.E.; Mohamed, H.S. Insights into the possible role of IFNG and IFNGR1 in Kala-azar and Post Kala-azar Dermal Leishmaniasis in Sudanese patients. BioMed Cent. Infect. Dis. 2014, 14, 662. [Google Scholar] [CrossRef]
- WOAH (World Organisation for Animal Health) Paris, France. Leishmaniosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 13th ed.; 2024; Chapter 3.1.11; Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.11_LEISHMANIOSIS.pdf (accessed on 28 May 2025).
- Ending the neglect to attain the Sustainable Development Goals. In A Road Map for Neglected Tropical Diseases 2021–2030; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240010352 (accessed on 28 May 2025).
- Osman, M.; Mistry, A.; Keding, A.; Gabe, R.; Cook, E.; Forrester, S.; Wiggins, R.; Di Marco, S.; Colloca, S.; Siani, L.; et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Negl. Trop. Dis. 2017, 11, e0005527. [Google Scholar] [CrossRef]
- Younis, B.M.; Osman, M.; Khalil, E.A.G.; Santoro, F.; Furini, S.; Wiggins, R.; Keding, A.; Carraro, M.; Musa, A.E.A.; Abdarahaman, M.A.A.; et al. Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Mol. Ther. 2021, 29, 2366–2377. [Google Scholar] [CrossRef] [PubMed]
- Shital, S.; Madan, E.; Selvapandiyan, A.; Ganguly, N.K. An update on recombinant vaccines against leishmaniasis. Indian J. Med. Res. 2024, 160, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, D.F.; Nakasone, E.K.N.; Goncalves, A.A.M.; Lair, D.F.; Oliveira, D.S.d.; Pereira, D.F.S.; Silva, G.G.; Conrado, I.d.S.S.; Resende, L.A.; Zaldívar, M.F.; et al. Global distribution of Canine Visceral Leishmaniasis and the role of the dog in the epidemiology of the disease. Pathogens 2024, 13, 455. [Google Scholar] [CrossRef]
- Mirò, G.; Petersen, C.; Cardoso, L.; Bourdeau, P.; Baneth, G.; Solano-Gallego, L.; Pennisi, M.G.; Ferrer, L.; Oliva, G. Novel areas for prevention and control of canine leishmaniosis. Trends Parasitol. 2017, 33, 718–730. [Google Scholar] [CrossRef]
- Priolo, V.; Ippolito, D.; Rivas-Estanga, K.; De Waure, C.; Martinez-Orellana, P. Canine leishmaniosis global prevalence over the last three decades: A meta-analysis and systematic review. Comp. Immunol. Microbiol. Infect. Dis. 2024, 112, 102211. [Google Scholar] [CrossRef]
- van den Berg, H.; Bashar, K.; Chowdhury, R.; Bhatt, R.M.; Gupta, H.P.; Kumar, A.; Sabesan, S.; Shriram, A.N.; Konuganti, H.K.R.; Sinha, A.T.S.; et al. Perceived needs of disease vector control programs: A review and synthesis of (sub)national assessments from South Asia and the Middle East. PLoS Negl. Trop. Dis. 2024, 18, e0011451. [Google Scholar] [CrossRef]
- Maritati, M.; Trentini, A.; Michel, G.; Hanau, S.; Guarino, M.; De Giorgio, R.; Pomares, C.; Marty, P.; Contini, C. Performance of five serological tests in the diagnosis of visceral and cryptic leishmaniasis: A comparative study. J. Infect. Dev. Ctries. 2023, 17, 693–699. [Google Scholar] [CrossRef]
- Santos, W.J.T.; Tavares, D.H.C.; Castro Neto, A.L.; Nascimento, M.B.; Dhalia, R.; Albuquerque, A.L.; Costa, C.H.N.; Magalhaes, F.B.; Rezende, A.M.; de Melo Neto, O.P. Gene design, optimization of protein expression and preliminary evaluation of a new chimeric protein for the serological diagnosis of both human and canine visceral leishmaniasis. PLoS Negl. Trop. Dis. 2020, 14, e0008488. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.j.; Teva, A.; Ferreira, A.L.; dos Santos, C.B.; de-Souza Pinto, I.; de-Azevedo, C.T.; Falqueto, A. Evaluation of a novel chromatographic immunoassay based on Dual-Path Platform technology (DPP® CVL rapid test) for the serodiagnosis of canine visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 54–59. [Google Scholar] [CrossRef]
- Oliveira, G.G.S.; Magalhães, F.B.; Teixeira, M.C.A.; Pereira, A.M.; Pinheiro, C.G.M.; Nascimento, M.B.; Bedor, C.N.G.; Albuquerque, A.L.; dos Santos, W.J.T.; Gomes, J.M.; et al. Characterization of novel Leishmania infantum recombinant proteins encoded by genes from five families with distinct capacities for serodiagnosis of canine and human visceral leishmaniasis. Am. J. Trop. Med. Hyg. 2011, 85, 1025–1034. [Google Scholar] [CrossRef]
- Magalhães, F.B.; Castro Neto, A.L.; Nascimento, M.B.; Santos, W.J.T.; Medeiros, Z.M.; Lima Neto, A.S.; Costa, D.L.; Costa, C.H.N.; dos Santos, W.J.T.; Pontes de Carvalho, L.C.; et al. Evaluation of a new set of recombinant antigens for the serological diagnosis of human and canine visceral leishmaniasis. PLoS ONE 2017, 12, e0184867. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Daifalla, N.S.; Jen, S.; Badaro, R.; Reed, S.G.; Skeiky, Y.A. Cloning, characterization and serological evaluation of K9 and K26: Two related hydrophilic antigens of Leishmania chagasi. Mol. Biochem. Parasitol. 1999, 102, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Darbani, B.; Toorchi, M.; Farajnia, S.; Mohammadi, S.A.; Stewart, C.N. K26 Antigen from L. infantum Mon1: Sequence based function-localization analysis. Turk. J. Med. Sci. 2007, 37, 251–253. [Google Scholar]
- Baxarias, M.; Donato, G.; Mateu, C.; Salichs, M.; Homedes, J.; Miró, G.; Pennisi, M.G.; Solano-Gallego, L. A blinded, randomized and controlled multicenter clinical trial to assess the efficacy and safety of Leisguard® as an immunotherapeutic treatment for healthy Leishmania Infantum-seropositive dogs. Parasit. Vectors 2023, 16, 344. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Matos, M.; Aguado, M.E.; Izquierdo, M.; Monzote, L.; Gonzalez-Bacerio, J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp. Parasitol. 2024, 260, 108747. [Google Scholar] [CrossRef]
- Valle, I.V.; Machado, M.E.; Araújo, C.d.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; Pereira da Silva, L.C.R.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: An alternative approach for leishmaniasis treatment. Nanotechnology 2019, 30, 455102. [Google Scholar] [CrossRef]
- Shaha, C. Plant derived products as anti-leishmanials which target mitochondria: A review. Expert Rev. Mol. Med. 2025, 27, e15. [Google Scholar] [CrossRef]
- Grazzia, N.; Boaventura, S.; Garcia, V.L.; Gadelha, F.R.; Miguel, D.C. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitol. Res. 2021, 120, 705–713. [Google Scholar] [CrossRef]
- Bekhit, A.A.; El-Agroudy, E.; Helmy, A.; Ibrahim, T.M.; Shavandi, A.; Bekhit, A.E.D.A. Leishmania treatment and prevention: Natural and synthesized drugs. Eur. J. Med. Chem. 2018, 160, 229–244. [Google Scholar] [CrossRef]
- do Carmo Maquiaveli, C.; Rochetti, A.L.; Fukumasu, H.; Vieira, P.C.; da Silva, E.R. Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis withresistance induced by LPS plus IFN-γ. Biochem. Pharmacol. 2017, 127, 28–33. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; Cerami, A. Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 1985, 227, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.S.; Castro-Pinto, D.B.; Machado, G.C.; Maciel, M.A.M.; Echevarria, A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine 2015, 22, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Dardonville, C.; Rinaldi, E.; Barrett, M.P.; Brun, R.; Gilbert, I.H.; Hanau, S. Selective inhibition of Trypanosoma brucei 6-phosphogluconate dehydrogenase by high energy intermediate and transition state analogues. J. Med. Chem. 2004, 47, 3427–3437. [Google Scholar] [CrossRef]
- de Oliveira Rios, E.; Lima Albino, S.; de Moura, R.O.; dos Santon Nascimento, I.J. Targeting cysteine protease B to discover antileishmanial drugs: Directions and advances. Eur. J. Med. Chem. 2025, 289, 117500. [Google Scholar] [CrossRef]
- Nowicki, M.W.; Tulloch, L.B.; Worrall, L.; McNae, I.W.; Hannaert, V.; Michels, P.A.M.; Fothergill-Gilmore, L.A.; Walkinshaw, M.D.; Turner, N.J. Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorg. Med. Chem. 2008, 16, 5050–5061. [Google Scholar] [CrossRef] [PubMed]
- Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasit. Dis. 2010, 34, 1–13. [Google Scholar] [CrossRef]
- Brobey, R.K.; Soong, L. Leishmania species: Evidence for transglutaminase activity and its role in parasite proliferation. Exp. Parasitol. 2006, 114, 94–102. [Google Scholar] [CrossRef]
- Brittingham, A.; Mosser, D.M. Exploitation of the complement system by Leishmania promastigotes. Parasitol. Today 1996, 12, 444–447. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edelson, P.J. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 1987, 327, 329–331. [Google Scholar] [CrossRef]
- Isnard, A.; Shio, M.T.; Olivier, M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front. Cell. Infect. Microbiol. 2012, 2, 72. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Canine leishmaniasis in the Americas: Etiology, distribution, and clinical and zoonotic Importance. Parasit. Vectors 2024, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Arce, A.; Estirado, A.; Ordobas, M.; Sevilla, S.; García, N.; Moratilla, L.; de la Fuente, S.; Martínez, A.M.; Pérez, A.M.; Aránguez, E.; et al. Re-emergence of leishmaniasis in Spain: Community outbreak in Madrid. Spain, 2009 to 2012. Euro. Surveill. 2013, 18, 20546. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20546 (accessed on 28 May 2025). [CrossRef] [PubMed]
- Azami-Conesa, I.; Mendez, P.M.; Perez-Moreno, P.; Carrion, J.; Alunda, J.M.; Barrientos, M.M.; Gomez-Munoz, M.T. Wildlife as a Sentinel for pathogen introduction in nonendemic areas: First detection of Leishmania tropica in wildlife in Spain. Transbound. Emerg. Dis. 2024, 2024, 8259712. [Google Scholar] [CrossRef]
- Riebenbauer, K.; Czerny, S.; Egg, M.; Urban, N.; Kinaciyan, T.; Hampel, A.; Fidelsberger, L.; Karlhofer, F.; Porkert, S.; Walochnik, J.; et al. The changing epidemiology of human leishmaniasis in the non-endemic country of Austria between 2000 to 2021, including a congenital case. PLoS Negl. Trop. Dis. 2024, 18, e0011875. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanau, S.; Maritati, M.; Contini, C.; Trentini, A.; Manfrinato, M.C.; Almugadam, S.H. Commentary on the Issue of Leishmania Infection: Focus on Some Pathogenetic, Clinical, and Epidemiological Aspects. Vet. Sci. 2025, 12, 536. https://doi.org/10.3390/vetsci12060536
Hanau S, Maritati M, Contini C, Trentini A, Manfrinato MC, Almugadam SH. Commentary on the Issue of Leishmania Infection: Focus on Some Pathogenetic, Clinical, and Epidemiological Aspects. Veterinary Sciences. 2025; 12(6):536. https://doi.org/10.3390/vetsci12060536
Chicago/Turabian StyleHanau, Stefania, Martina Maritati, Carlo Contini, Alessandro Trentini, Maria Cristina Manfrinato, and Shawgi Hago Almugadam. 2025. "Commentary on the Issue of Leishmania Infection: Focus on Some Pathogenetic, Clinical, and Epidemiological Aspects" Veterinary Sciences 12, no. 6: 536. https://doi.org/10.3390/vetsci12060536
APA StyleHanau, S., Maritati, M., Contini, C., Trentini, A., Manfrinato, M. C., & Almugadam, S. H. (2025). Commentary on the Issue of Leishmania Infection: Focus on Some Pathogenetic, Clinical, and Epidemiological Aspects. Veterinary Sciences, 12(6), 536. https://doi.org/10.3390/vetsci12060536