Heat Stress Effects on Animal Health and Performance in Monogastric Livestock: Physiological Responses, Molecular Mechanisms, and Management Interventions
Simple Summary
Abstract
1. Introduction
2. Physiological and Metabolic Responses to Heat Stress
2.1. Thermoregulatory and Behavioural Adaptations
2.2. Endocrine and Immune Responses
2.3. Metabolic Reprogramming
3. Impact of Heat Stress on Animal Health
3.1. Immune Function and Disease Susceptibility
3.2. Stress Biomarkers and Health Indicators
3.3. Behavioural and Welfare Considerations
4. Effects of Heat Stress on Animal Performance
4.1. Growth and Productivity
4.2. Carcass Composition and Production Metrics
4.3. Reproductive Performance
4.4. Economic Implications
5. Management and Nutritional Interventions for Enhancing Health and Performance
5.1. Nutritional Strategies
5.2. Environmental and Housing Modifications
5.3. Genetic and Breeding Approaches
5.4. Integrated Management Approaches
6. Practical Implications and Economic Considerations
6.1. Implementation Challenges and Opportunities
6.2. Economic Impacts and Cost-Benefit Analysis
6.3. Welfare Outcomes and Integrated Management Approaches
6.4. Future Directions in Practical Applications
7. Conclusions and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandit, J.; Sharma, A. A comprehensive review of climate change’s imprint on ecosystems. J. Water Clim. Change 2023, 14, 4273–4284. [Google Scholar] [CrossRef]
- Rahimi, J.; Mutua, J.; Notenbaert, A.; Marshall, K.; Butterbach-Bahl, K. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food 2021, 2, 88–96. [Google Scholar] [CrossRef]
- Brugaletta, G.; Teyssier, J.; Rochell, S.; Dridi, S.; Sirri, F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 2022, 13, 934381. [Google Scholar] [CrossRef]
- Jayalakshmi, K.; Sasikala, M. Heat stress in swine—A review. Int. J. Farm Sci. 2017, 7, 7–10. [Google Scholar]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Change Biol. 2021, 27, 5762–5772. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Seong, P.; Arora, D.; Shin, D.; Park, W.; Park, J.-E. Transcriptomic Response under Heat Stress in Chickens Revealed the Regulation of Genes and Alteration of Metabolism to Maintain Homeostasis. Animals 2021, 11, 2241. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwari, R.; Shahi, B.; Saha, S. Effect of Thermal Stress on Dairy Animal. Concepts Dairy Vet. Sci. 2018, 1, 1–4. [Google Scholar] [CrossRef]
- Ribeiro, B.P.V.B.; Yanagi, T.; De Oliveira, D.D.; De Lima, R.R.; Zangerônimo, M.G. Thermoneutral zone for laying hens based on environmental conditions, enthalpy and thermal comfort indexes. J. Therm. Biol. 2020, 93, 102678. [Google Scholar]
- Robbins, L.; Green-Miller, A.; Johnson, J.; Gonzales, C.; Gaskill, B. Thermocline Design for Thermal Preference Testing in Piglets. In Proceedings of the 10th International Livestock Environment Symposium (ILES X), Omaha, NE, USA, 25–27 September 2018; p. 1. [Google Scholar]
- Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.; Chauhan, S.; Ha, M.; Fegan, N.; Dunshea, F.; Warner, R. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2019, 162, 108025. [Google Scholar] [CrossRef]
- Chauhan, S.; Rashamol, V.; Bagath, M.; Sejian, V.; Dunshea, F. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Ghram, A.; Dabbebi, H.; Mrad, B.; Abdrabbah, M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef]
- Diaz, D.; Lopez-Orrantia, A.M.; Camacho, A.N.; Rosiles, R.; Rodriguez-Gaxiola, M.; Romo-Rubio, J.; Portillo-Loera, J.; Gaxiola, S.; Montero-Pardo, A. A scoping review and systematic map of primary studies assessing heat stress on reproductive, physiological, and productive parameters of farm animals. Vet. México OA 2022, 9, e1121. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J. Sci. Food Agric. 2018, 98, 4471–4478. [Google Scholar] [CrossRef]
- He, Y.; Maltecca, C.; Tiezzi, F. Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals 2021, 11, 1833. [Google Scholar] [CrossRef]
- Habibu, B.; Yaqub, L.; Dzenda, T.; Kawu, M. Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock—A Review. Ann. Anim. Sci. 2019, 19, 291–304. [Google Scholar] [CrossRef]
- Gourdine, J.; Rauw, W.; Gilbert, H.; Poullet, N. The Genetics of Thermoregulation in Pigs: A Review. Front. Vet. Sci. 2021, 8, 770480. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2010, 39, 447–453. [Google Scholar]
- Renaudeau, D. Adaptation to hot climate and its implications on feeding strategies in growing pigs. Animal 2011, 5, 767–776. [Google Scholar]
- Berihulay, H.; Abied, A.; He, X.-H.; Jiang, L.; Ma, Y. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef]
- Bohler, M.; Chowdhury, V.; Cline, M.; Gilbert, E. Heat Stress Responses in Birds: A Review of the Neural Components. Biology 2021, 10, 1095. [Google Scholar] [CrossRef]
- Chen, S.; Yong, Y.; Ju, X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J. Therm. Biol. 2021, 99, 103019. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, K.-W. An update on heat stress in laying hens. World’s Poult. Sci. J. 2023, 79, 689–712. [Google Scholar] [CrossRef]
- Lin, H.; Jiao, H.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–86. [Google Scholar] [CrossRef]
- Honda, B.; Calefi, A.; Costola-De-Souza, C.; Quinteiro-Filho, W.; Da Silva Fonseca, J.G.; De Paula, V.F.; Palermo-Neto, J. Effects of heat stress on peripheral T and B lymphocyte profiles and IgG and IgM serum levels in broiler chickens vaccinated for Newcastle disease virus. Poult. Sci. 2015, 94, 2375–2381. [Google Scholar] [CrossRef]
- Carrolla, J.; Burdicka, N.; Colemanb, S.; Spiersc, D. Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge. Domest. Anim. Endocrinol. 2012, 43, 146–153. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, A.; Joy, A.; Dunshea, F.; Chauhan, S. The Impact of Heat Stress on Immune Status of Dairy Cattle and Strategies to Ameliorate the Negative Effects. Animals 2022, 13, 107. [Google Scholar] [CrossRef]
- Afsal, A.; Sejian, V.; Bagath, M.; Krishnan, G.; Devaraj, C.; Bhatta, R. Heat stress and livestock adaptation: Neuro-endocrine regulation. Int. J. Vet. Anim. Med. 2018, 1, 108–119. [Google Scholar]
- Aggarwal, A.; Upadhyay, R. Heat Stress and Hormones. In Heat Stress and Animal Productivity; Springer: Berlin/Heidelberg, Germany, 2013; pp. 27–51. [Google Scholar]
- Deori, S.; Abedin, S.; Chakravarty, H.; Katiyar, R.; Choudhury, B.U.; Syiem, E.; Doley, S. Exploring Thermoregulatory Responses and Hormonal Changes in Heat Stressed Assam Hill Goats. Indian J. Anim. Res. 2024, 57, 1122–1126. [Google Scholar] [CrossRef]
- Seo, Y.-J.; Lim, C.; Lim, B.; Kim, J. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim. Biotechnol. 2024, 35, 2331179. [Google Scholar] [CrossRef]
- Kang, D.R.; Shim, K.S. Proteomic Analysis of the Protective Effect of Early Heat Exposure against Chronic Heat Stress in Broilers. Animals 2020, 10, 2365. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br. J. Nutr. 2018, 119, 771–781. [Google Scholar] [CrossRef]
- Hubbard, A.; Zhang, X.; Jastrebski, S.; Singh, A.; Schmidt, C. Understanding the liver under heat stress with statistical learning: An integrated metabolomics and transcriptomics computational approach. BMC Genom. 2019, 20, 502. [Google Scholar] [CrossRef]
- Alam, A.N.; Lee, E.-Y.; Hossain, M.J.; Samad, A.; Kim, S.-H.; Hwang, Y.; Joo, S.-T. Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario. J. Anim. Sci. Technol. 2024, 66, 645–662. [Google Scholar] [CrossRef]
- He, T.; Liu, Y.; Cao, Y.; Zhang, H. Influence of heat stress on pig health, performance, and gut microbiota. Front. Vet. Sci. 2022, 9, 840057. [Google Scholar]
- Zhao, Y.; He, Y.; Chen, S.; Yang, Y.; Zhang, Z. Effects of chronic heat exposure on intestinal microbiota and barrier function in broilers. Poult. Sci. 2019, 98, 4478–4485. [Google Scholar]
- Patra, A.; Kar, I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. J. Anim. Sci. Technol. 2021, 63, 211–247. [Google Scholar] [CrossRef]
- Pandey, S.; Dubey, A.; Verma, Y.; Swamy, M.; Gattani, A.; Jain, S. Impact of Subacute Heat Stress on Hepatorenal Histophysiology in Wistar Rats and Protective Role of Combined Antioxidants. J. Adv. Biol. Biotechnol. 2025, 28, 738–747. [Google Scholar] [CrossRef]
- Huang, S.-c.; Yang, H.; Rehman, M.; Tong, Z. Acute heat stress in broiler chickens and its impact on serum biochemical and electrolyte parameters. Indian J. Anim. Res. 2017, 52, 683–686. [Google Scholar] [CrossRef]
- Saleh, M.; Rateb, M.; Abd-Allah, E.; Mohamed, G. Effect of hot dry environment on the oxidative stress indices in male barki lambs. Assiut Vet. Med. J. 2022, 68, 88–95. [Google Scholar] [CrossRef]
- Belousov, A.; Shkuratova, I.; Krasnoperov, A.; Oparina, O.; Malkov, S. Influence of heat stress on cows during the dry and postpartum period. Bull. of NSAU (Novosib. State Agrar. Univ.) 2022, 64, 93–101. [Google Scholar] [CrossRef]
- Alberghina, D.; Amato, A.; Brancato, G.; Cavallo, C.; Liotta, L.; Lopreiato, V. Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows. Animals 2024, 14, 2034. [Google Scholar] [CrossRef]
- Yang, L.; Tan, G.Y.; Fu, Y.; Feng, J.-H.; Zhang, M. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2010, 151, 204–208. [Google Scholar] [CrossRef]
- Johnson, J. Heat stress: Impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. Anim. Prod. Sci. 2018, 58, 1404–1413. [Google Scholar] [CrossRef]
- Zeferino, C.; Komiyama, C.; Pelícia, V.; Fascina, V.; Aoyagi, M.; Coutinho, L.L.; Sartori, J.; Moura, A.S.A.M.T. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Fisinin, V.; Kavtarashvili, A. Heat stress in poultry. ii. methods and techniques for prevention and alleviation (review). Agric. Biol. 2015, 4, 431–443. [Google Scholar] [CrossRef]
- Abdelnour, S.; El-Hack, M.A.; Khafaga, A.; Arif, M.; Taha, A.; Noreldin, A. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019, 79, 120–134. [Google Scholar] [CrossRef]
- Matsui, A.; Rubio, M.; Alves, L.; Galo, M.; Vasconcelos, R.; Berchieri Junior, A. One-day-old broiler chicks death after heat stress during transport: Case report. Rev. Educ. Contin. Med. Veterinária Zootec. CRMV-SP 2018, 16, 56–57. [Google Scholar]
- Johnson, J.; Baumgard, L. PHYSIOLOGY SYMPOSIUM: Postnatal consequences of in utero heat stress in pigs. J. Anim. Sci. 2018, 97, 962–971. [Google Scholar] [CrossRef]
- Ma, B.; He, X.; Lu, Z.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poult. Sci. 2018, 97, 4150–4158. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.; Warner, R.; DiGiacomo, K.; Osei-Amponsah, R.; Chauhan, S. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Zhang, Z.; Dong, H.; Zhang, H.; Xin, H. Responses of thyroid hormones of market-size broilers to thermoneutral constant and warm cyclic temperatures. Poult. Sci. 2006, 85, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Collin, A.; Yahav, S.; Basilio, V.; Gourdine, J.; Collier, R. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.; Renaudeau, D.; Ramirez, B.; Ross, J.; Baumgard, L. Heat stress adaptations in pigs. Anim. Front. 2018, 9, 54–61. [Google Scholar] [CrossRef]
- Kumar, M.; Ratwan, P.; Dahiya, S.; Nehra, A. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J. Therm. Biol. 2021, 97, 102867. [Google Scholar] [CrossRef]
- Kim, H.-D.; Kim, Y.; Jang, M.; Bae, S.; Yun, S.; Lee, M.-R.; Seo, Y.-R.; Cho, J.-K.; Kim, S.; Lee, W.-J. Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows. Animals 2022, 12, 2967. [Google Scholar] [CrossRef]
- Sailo, L.; Das, R. Heat Stress in Livestock: Impacts and Ameliorative Strategies—A Review. Int. J. Bio-Resour. Stress Manag. 2016, 7, 174–183. [Google Scholar] [CrossRef]
- Wang, W.; Kang, R.; Liu, M.; Wang, Z.; Zhao, L.; Zhang, J.; Huang, S.; Ma, Q. Effects of Different Selenium Sources on the Laying Performance, Egg Quality, Antioxidant, and Immune Responses of Laying Hens under Normal and Cyclic High Temperatures. Animals 2022, 12, 1006. [Google Scholar] [CrossRef]
- Reddy, P.; Manoj, P.; Goud, K.; Supriya, R.; Kumar, M.; Sravathi, V.; Katam, D. Nutritional strategies for amelioration of heat stress in dairy cows: A Review. Int. J. Vet. Sci. Anim. Husb. 2023, 8, 33–39. [Google Scholar] [CrossRef]
- Teyssier, J.; Brugaletta, G.; Sirri, F.; Dridi, S.; Rochell, S. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front. Physiol. 2022, 13, 943612. [Google Scholar] [CrossRef]
- Sesay, A. Effect of heat stress on dairy cow production, reproduction, health, and potential mitigation strategies. J. Appl. Adv. Res. 2023, 8, 13–25. [Google Scholar] [CrossRef]
- De Silva, T.; Sarada, S.; Pagthinathan, M.; Perera, W. Effect of Heat Stress on Cattle: A Review. Adv. Technol. 2024, 3, 7339. [Google Scholar]
- Mylostyvyi, R.; Sejian, V.; Souza-Júnior, J.; Wrzecińska, M.; Za, T.; Chernenko, O.; Pryshedko, V.; Suslova, N.; Chabanenko, D.; Hoffmann, G. Digitalisation opportunities for livestock welfare monitoring with a focus on heat stress. Multidiscip. Rev. 2024, 7, 2024300. [Google Scholar] [CrossRef]
- Rovelli, G.; Ceccobelli, S.; Perini, F.; Demir, E.; Mastrangelo, S.; Conte, G.; Abeni, F.; Marletta, D.; Ciampolini, R.; Cassandro, M.; et al. The genetics of phenotypic plasticity in livestock in the era of climate change: A review. Ital. J. Anim. Sci. 2020, 19, 997–1014. [Google Scholar] [CrossRef]
- Bradford, H.; Fragomeni, B.; Tsuruta, S.; Bertrand, J.; Gray, K.; Huang, Y.; Lourenço, D.; Misztal, I. Genetic evaluations for heat tolerance in meat animal species. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Biology & Species—Cattle, Auckland, New Zealand, 11–16 February 2018; p. 158. [Google Scholar]
- Juiputta, J.; Chankitisakul, V.; Boonkum, W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet. Sci. 2023, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.; Gupta, V.; Choi, Y.-H. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. Anim. Nutr. 2023, 13, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Meteyake, H.; Bilalissi, A.; Kouame, Y.; N’nanle, O.; Tona, K. Thermal Manipulation During Incubation: Effects on Embryo Development, Production Performance, Meat Quality, and Thermal Tolerance of Broiler Chickens. J. World’s Poult. Res. 2023, 13, 29–40. [Google Scholar] [CrossRef]
- Jennings, J. 46 The impact of heat stress on feedlot operations; nutritional and breeding options to reduce its impact. J. Anim. Sci. 2019, 97, 37–38. [Google Scholar] [CrossRef]
- Schauberger, G.; Hennig-Pauka, I.; Zollitsch, W.; Hörtenhuber, S.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones. Biosyst. Eng. 2020, 200, 157–175. [Google Scholar] [CrossRef]
- Morgado, J.N.; Lamonaca, E.; Santeramo, F.; Caroprese, M.; Albenzio, M.; Ciliberti, M. Effects of management strategies on animal welfare and productivity under heat stress: A synthesis. Front. Vet. Sci. 2023, 10, 1145610. [Google Scholar] [CrossRef]
- Sammad, A.; Wang, Y.J.; Umer, S.; Hu, L.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Prasad, J.; Sourie, J.; Cherukuri, V.; Fita, L.; Merera, E. Global Warming: Genesis, Facts and Impacts on Livestock Farming and Mitigation Strategies. Int. J. Agric. Innov. Res. 2015, 3, 1595–1604. [Google Scholar]
- Gunn, K.; Holly, M.; Veith, T.; Buda, A.; Prasad, R.; Rotz, C.; Soder, K.; Stoner, A. Projected heat stress challenges and abatement opportunities for U.S. milk production. PLoS ONE 2019, 14, e0214665. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Jaja, I. Strategies, challenges, and outcomes of heat stress resilience in sub-Saharan African community-based cattle feedlots: A systematic review. Front. Vet. Sci. 2024, 11, 1455917. [Google Scholar] [CrossRef]
- Most, M.; Yates, D. Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals 2021, 11, 3539. [Google Scholar] [CrossRef]
- Turcios, M.; Rotz, C.; McGlone, J.; Rivera, C.; Mitloehner, F. Effects of heat stress mitigation strategies on feedlot cattle performance, environmental, and economic outcomes in a hot climate. Animal 2024, 18, 101257. [Google Scholar] [CrossRef]
Stage | Key Process | Outcomes | References |
---|---|---|---|
Immediate Response |
| Rapid heat dissipation
| [17,18] |
Endocrine Activation |
|
| [23] |
Metabolic Reprogramming |
|
| [11,32] |
Immune Suppression & Oxidative Stress |
|
| [12,28,34] |
Category | Effect | Consequence | References |
---|---|---|---|
Immune Function and Disease Susceptibility | Suppression of adaptive and innate immunity due to elevated cortisol/corticosterone levels | Weakened immune defences, higher disease vulnerability | [6,28] |
Immune Function and Disease Susceptibility | Imbalance between pro-inflammatory (IL-1β, IL-6, TNF-α) and anti-inflammatory cytokines (IL-10) | Chronic low-grade inflammation and metabolic cost | [26,27] |
Immune Function and Disease Susceptibility | Increased susceptibility to gastrointestinal and respiratory infections | Higher infection rates and impaired gut barrier integrity | [16,39] |
Stress Biomarkers and Health Indicators | Elevated cortisol levels reflecting metabolic and immune stress | Reduced growth, impaired feed efficiency, and higher disease risk | [26,28] |
Stress Biomarkers and Health Indicators | Oxidative stress due to excessive ROS production leads to lipid peroxidation and cellular damage | Increased MDA levels and oxidative damage | [10,49] |
Stress Biomarkers and Health Indicators | Reduced red blood cell counts, haemoglobin levels, and haematocrit values | Impaired oxygen transport and metabolic function | [49] |
Stress Biomarkers and Health Indicators | Electrolyte imbalance (hyponatremia, hyperkalemia) leading to muscle weakness and cardiac issues | Impaired neural function and muscle weakness | [49] |
Behavioural and Welfare Considerations | Reduced feed intake to minimise metabolic heat production | Poor growth and reduced muscle development | [22,50] |
Behavioural and Welfare Considerations | Increased resting time, panting, and open-mouth breathing for thermoregulation | Increased respiratory alkalosis and acid-base imbalance | [21] |
Behavioural and Welfare Considerations | Altered feeding patterns leading to nutritional deficiencies and impaired growth | Poor carcass quality and reduced muscle mass | [47,51] |
Behavioural and Welfare Considerations | Increased aggression and social isolation, particularly in poultry | Lower animal welfare and higher stress levels | [48] |
Aspect | Impact | Consequence | References |
---|---|---|---|
Growth and Productivity | Reduced feed intake due to heat-induced metabolic stress, leading to lower energy availability and slower weight gain. | Lower body weight gain, increased feed costs, and longer production cycles. | [6,32] |
Growth and Productivity | Increased oxidative stress reduces nutrient absorption efficiency and muscle development, limiting growth rates. | Reduced growth performance, increased feed conversion ratio (FCR), and increased production costs. | [11,32] |
Carcass Composition and Production Metrics | Increased fat deposition and reduced lean muscle mass due to increased lipolysis and reduced muscle protein synthesis. | Reduced tenderness, increased drip loss, and poor meat texture, decrease consumer acceptance and market competitiveness. | [47,53] |
Carcass Composition and Production Metrics | Altered muscle fibre composition reduces meat texture, increases drip loss, and reduces water-holding capacity. | Lower water-holding capacity and increased fat content increase processing costs and reduce product quality. | [6,53] |
Reproductive Performance | Reduced fertility due to impaired secretion of gonadotropin-releasing hormone (GnRH), leading to lower ovulation rates. | Lower conception rates and reduced litter size, increasing replacement costs and reducing production efficiency. | [32,51] |
Reproductive Performance | Increased embryonic mortality and poor sperm quality due to heat-induced oxidative stress and testicular dysfunction. | Reduced sperm concentration, motility, and increased sperm abnormalities, leading to lower fertility rates. | [32,51] |
Economic Implications | Higher production costs due to increased cooling system requirements and higher veterinary costs. | Higher input costs, increased mortality rates, and longer production cycles reduce profitability. | [51,53] |
Economic Implications | Reduced market value due to increased fat deposition, lower muscle yield, and poorer meat texture, reducing consumer demand. | Increased processing losses, reduced consumer demand, and price instability reduce overall profitability. | [47,53] |
Category | Intervention | Primary Benefit | References |
---|---|---|---|
Nutritional | Antioxidant supplementation (vitamin E, selenium, polyphenols) | Reduces oxidative stress, protects cell membranes, and preserves muscle quality | [60] |
Nutritional | Osmolyte inclusion (betaine, taurine) | Stabilizes cellular structures and maintains osmotic balance, enhancing resilience under heat stress | [61] |
Nutritional | Optimized nutrient formulation (adjusting protein-to-energy ratio) | Ensures sufficient nutrition despite reduced feed intake | [11] |
Environmental Management | Improved ventilation and cooling systems | Lowers ambient temperatures and reduces the thermal load on animals | [63] |
Environmental Management | Optimized housing design (reflective roofing, insulation) | Enhances animal comfort by minimizing heat accumulation | [64] |
Genetic | Selection for heat tolerance | Breeds animals inherently more resilient to high temperatures while maintaining productive traits | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Heat Stress Effects on Animal Health and Performance in Monogastric Livestock: Physiological Responses, Molecular Mechanisms, and Management Interventions. Vet. Sci. 2025, 12, 429. https://doi.org/10.3390/vetsci12050429
Prates JAM. Heat Stress Effects on Animal Health and Performance in Monogastric Livestock: Physiological Responses, Molecular Mechanisms, and Management Interventions. Veterinary Sciences. 2025; 12(5):429. https://doi.org/10.3390/vetsci12050429
Chicago/Turabian StylePrates, José A. M. 2025. "Heat Stress Effects on Animal Health and Performance in Monogastric Livestock: Physiological Responses, Molecular Mechanisms, and Management Interventions" Veterinary Sciences 12, no. 5: 429. https://doi.org/10.3390/vetsci12050429
APA StylePrates, J. A. M. (2025). Heat Stress Effects on Animal Health and Performance in Monogastric Livestock: Physiological Responses, Molecular Mechanisms, and Management Interventions. Veterinary Sciences, 12(5), 429. https://doi.org/10.3390/vetsci12050429