Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Whole Genome Sequencing
3. Results and Discussion
3.1. Bacterial Isolates
3.2. Resistance, Virulence, and Molecular Typing
3.3. Plasmids and Mobile Genetic Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irving, A.T.; Ahn, M.; Goh, G.; Anderson, D.E.; Wang, L.-F. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021, 589, 363–370. [Google Scholar] [PubMed]
- Kasso, M.; Balakrishnan, M. Ecological and Economic Importance of Bats (Order Chiroptera). Int. Sch. Res. Not. 2013, 2013, 187415. [Google Scholar]
- Federici, L.; Masulli, M.; De Laurenzi, V.; Allocati, N. An overview of bats microbiota and its implication in transmissible diseases. Front. Microbiol. 2022, 13, 1012189. [Google Scholar]
- Baker, M.L.; Schountz, T.; Wang, L.-F. Antiviral Immune Responses of Bats: A Review. Zoonoses Public Health 2013, 60, 104–116. [Google Scholar]
- Brook, C.E.; Dobson, A.P. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015, 23, 172–180. [Google Scholar]
- Castelo-Branco, D.; Nobre, J.A.; Souza, P.R.H.; Diógenes, E.M.; Guedes, G.M.M.; Mesquita, F.P.; Souza, P.F.N.; Rocha, M.F.G.; Sidrim, J.J.C.; Cordeiro, R.A. Role of Brazilian bats in the epidemiological cycle of potentially zoonotic pathogens. Microb. Pathog. 2023, 177, 106032. [Google Scholar] [PubMed]
- Bai, Y.; Urushadze, L.; Osikowicz, L.; McKee, C.; Kuzmin, I.; Kandaurov, A.; Babuadze, G.; Natradze, I.; Imnadze, P.; Kosoy, M. Molecular survey of bacterial zoonotic agents in bats from the country of Georgia (Caucasus). PLoS ONE 2017, 12, e0171175. [Google Scholar]
- Garcês, A.; Correia, S.; Silva, V.; Pereira, J.E.; Amorim, F.; Igrejas, G.; Poeta, P. Detection of Antimicrobial Resistance in Faecal Escherichia coli from European Free-Tailed Bats (Tadarida teniotis) in Portugal. Acta Chiropterologica 2020, 21, 403. [Google Scholar]
- Qiu, Y.; Nakao, R.; Hang’ombe, B.M.; Sato, K.; Kajihara, M.; Kanchela, S.; Changula, K.; Eto, Y.; Ndebe, J.; Sasaki, M. Human borreliosis caused by a new world relapsing fever borrelia–like organism in the old world. Clin. Infect. Dis. 2019, 69, 107–112. [Google Scholar]
- Bai, Y.; Osinubi, M.O.V.; Osikowicz, L.; McKee, C.; Vora, N.M.; Rizzo, M.R.; Recuenco, S.; Davis, L.; Niezgoda, M.; Ehimiyein, A.M. Human exposure to novel Bartonella species from contact with fruit bats. Emerg. Infect. Dis. 2018, 24, 2317. [Google Scholar]
- Veikkolainen, V.; Vesterinen, E.J.; Lilley, T.M.; Pulliainen, A.T. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg. Infect. Dis. 2014, 20, 960. [Google Scholar] [PubMed]
- Obame-Nkoghe, J.; Leroy, E.-M.; Paupy, C. Diversity and role of cave-dwelling hematophagous insects in pathogen transmission in the Afrotropical region. Emerg. Microbes Infect. 2017, 6, 1–6. [Google Scholar]
- Nahar, N.; Asaduzzaman, M.; Mandal, U.K.; Rimi, N.A.; Gurley, E.S.; Rahman, M.; Garcia, F.; Zimicki, S.; Sultana, R.; Luby, S.P. Hunting bats for human consumption in Bangladesh. Ecohealth 2020, 17, 139–151. [Google Scholar] [PubMed]
- Constantine, D.G. Transmission of pathogenic microorganisms by vampire bats. In Natural History of Vampire Bats; CRC Press: Boca Raton, FL, USA, 2018; pp. 167–189. [Google Scholar]
- Soto-López, J.D.; Diego-del Olmo, M.; Fernández-Soto, P.; Muro, A. Bats as an Important Source of Antimicrobial-Resistant Bacteria: A Systematic Review. Antibiotics 2025, 14, 10. [Google Scholar]
- Smith, I.; Wang, L.-F. Bats and their virome: An important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013, 3, 84–91. [Google Scholar] [PubMed]
- Plowright, R.K.; Field, H.E.; Smith, C.; Divljan, A.; Palmer, C.; Tabor, G.; Daszak, P.; Foley, J.E. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B Biol. Sci. 2008, 275, 861–869. [Google Scholar]
- Nowakiewicz, A.; Zięba, P.; Gnat, S.; Trościańczyk, A.; Osińska, M.; Łagowski, D.; Kosior-Korzecka, U.; Puzio, I. Bats as a reservoir of resistant Escherichia coli: A methodical view. Can we fully estimate the scale of resistance in the reservoirs of free-living animals? Res. Vet. Sci. 2020, 128, 49–58. [Google Scholar] [PubMed]
- Huang, L.; Dai, W.; Sun, X.; Pu, Y.; Feng, J.; Jin, L.; Sun, K. Diet-driven diversity of antibiotic resistance genes in wild bats: Implications for public health. Microbiol. Res. 2025, 293, 128086. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Fernández-Fernández, R.; Juárez-Fernández, G.; Martínez-Álvarez, S.; Eguizábal, P.; Zarazaga, M.; Lozano, C.; Torres, C. Wild animals are reservoirs and sentinels of Staphylococcus aureus and MRSA clones: A problem with “One Health” concern. Antibiotics 2021, 10, 1556. [Google Scholar] [CrossRef]
- Kim, D.-W.; Cha, C.-J. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar]
- World Health Organization; Food and Agriculture Organization of the United Nations; World Organisation for Animal Health. High-Level Technical Meeting to Address Health Risks at the Human-Animal Ecosystems Interfaces: Mexico City, Mexico, 15–17 November 2011. 2012. Available online: https://iris.who.int/handle/10665/78100 (accessed on 30 January 2025).
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [PubMed]
- Adesoji, T.O.; George, U.E.; Sulayman, T.A.; Uwanibe, J.N.; Olawoye, I.B.; Igbokwe, J.O.; Olanipekun, T.G.; Adeleke, R.A.; Akindoyin, A.I.; Famakinwa, T.J.; et al. Molecular characterization of non-aureus staphylococci and Mammaliicoccus from Hipposideros bats in Southwest Nigeria. Sci. Rep. 2024, 14, 6899. [Google Scholar]
- Jiang, X.; Ma, W. Metagenome-assembled genome of Staphylococcus nepalensis from urban bats in China. Microbiol. Resour. Announc. 2024, 14, e01222-24. [Google Scholar] [PubMed]
- Attaullah, S.; Ali, S.; Phelps, K.L.; Olival, K.J. Molecular Epidemiology of Staphylococcus aureus in Oral and Rectal Swabs from Bats in Pakistan. Preprints 2023, 2023091298. [Google Scholar] [CrossRef]
- Marques, M.A.; Dos Santos, I.C.; de Camargo, M.H.S.; Manoel, G.; Batista, A.C.C.A.; Bonato, F.G.C.; de A. Martins, L.; Sakumoto, K.; Hoscheid, J.; Dalmagro, M.; et al. Antibiotic Resistance and MecA Gene in Isolates of Staphylococcus spp. in Bats. Preprints 2023, 2023121521. [Google Scholar] [CrossRef]
- Carrillo Gaeta, N.; Cavalcante Brito, J.E.; Nunes Batista, J.M.; Gagete Veríssimo de Mello, B.; Dias, R.A.; Heinemann, M.B. Bats Are Carriers of Antimicrobial-Resistant Staphylococcaceae in Their Skin. Antibiotics 2023, 12, 331. [Google Scholar] [CrossRef]
- Devnath, P.; Karah, N.; Graham, J.P.; Rose, E.S.; Asaduzzaman, M. Evidence of antimicrobial resistance in bats and its planetary health impact for surveillance of zoonotic spillover events: A scoping review. Int. J. Environ. Res. Public Health 2022, 20, 243. [Google Scholar] [CrossRef]
- Schneeberger, K.; Czirjak, G.A.; Voigt, C.C. Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS ONE 2013, 8, e54023. [Google Scholar]
- Ferreira, A.C.R.; Colocho, R.A.B.; Pereira, C.R.; Veira, T.M.; Gregorin, R.; Lage, A.P.; Dorneles, E.M.S. Zoonotic bacterial pathogens in bats samples around the world: A scoping review. Prev. Vet. Med. 2024, 225, 106135. [Google Scholar]
- González-Quiñonez, N.; Fermin, G.; Muñoz-Romo, M. Diversity of bacteria in the sexually selected epaulettes of the little yellow-shouldered bat Sturnira lilium (Chiroptera: Phyllostomidae). Interciencia 2014, 39, 882–889. [Google Scholar]
- De Jong, C.E.; Jonsson, N.; Field, H.; Smith, C.; Crichton, E.G.; Phillips, N.; Johnston, S.D. Collection, seminal characteristics and chilled storage of spermatozoa from three species of free-range flying fox (Pteropus spp.). Theriogenology 2005, 64, 1072–1089. [Google Scholar]
- Jarzembowski, T. Commensal aerobic bacterial flora of the gastrointestinal tract of Pipistrellus nathusii (Chiroptera: Vespertilionidae): Lack of Escherichia coli in fecal samples. Acta Chiropterologica 2002, 4, 99–106. [Google Scholar]
- Gaona, O.; Cerqueda-García, D.; Falcón, L.I.; Vázquez-Domínguez, G.; Valdespino-Castillo, P.M.; Neri-Barrios, C.-X. Microbiota composition of the dorsal patch of reproductive male Leptonycteris yerbabuenae. PLoS ONE 2019, 14, e0226239. [Google Scholar]
- Di Bella, C.; Piraino, C.; Caracappa, S.; Fornasari, L.; Violani, C.; Zava, B. Enteric microflora in Italian chiroptera. J. Mt. Ecol. 2003, 7, 221–224. [Google Scholar]
- Wolkers-Rooijackers, J.; Rebmann, K.; Bosch, T.; Hazeleger, W.C. Fecal bacterial communities in insectivorous bats from the Netherlands and their role as a possible vector for foodborne diseases. Acta Chiropterologica 2018, 20, 475–483. [Google Scholar]
- Gerbáčová, K.; Maliničová, L.; Kisková, J.; Maslišová, V.; Uhrin, M.; Pristaš, P. The faecal microbiome of building-dwelling insectivorous bats (Myotis myotis and Rhinolophus hipposideros) also contains antibiotic-resistant bacterial representatives. Curr. Microbiol. 2020, 77, 2333–2344. [Google Scholar] [PubMed]
- Dimkić, I.; Stanković, S.; Kabić, J.; Stupar, M.; Nenadić, M.; Ljaljević-Grbić, M.; Žikić, V.; Vujisić, L.; Tešević, V.; Vesović, N. Bat guano-dwelling microbes and antimicrobial properties of the pygidial gland secretion of a troglophilic ground beetle against them. Appl. Microbiol. Biotechnol. 2020, 104, 4109–4126. [Google Scholar]
- Vandžurová, A.; Piliš, V.; Bačkor, P.; Júdová, J.; Javorský, P.; Faix, Š.P.P.; Pristaš, P. Microflora of the bat guano. Folia Vet 2012, 56, 68–69. [Google Scholar]
- Fountain, K.; Roberts, L.; Young, V.; Barbon, A.; Frosini, S.-M.; Lloyd, D.H.; Loeffler, A. Diversity of staphylococcal species cultured from captive livingstone’s fruit bats (pteropus livingstonii) and their environment. J. Zoo Wildl. Med. 2019, 50, 266–269. [Google Scholar]
- García, L.A.; Torres, C.; López, A.R.; Rodríguez, C.O.; Espinosa, J.O.; Valencia, C.S. spp. from wild mammals in Aragón (Spain): Antibiotic resistance status. J. Vet. Res. 2020, 64, 373–379. [Google Scholar]
- Dimkić, I.; Fira, D.; Janakiev, T.; Kabić, J.; Stupar, M.; Nenadić, M.; Unković, N.; Grbić, M.L. The microbiome of bat guano: For what is this knowledge important? Appl. Microbiol. Biotechnol. 2021, 105, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Selvin, J.; Lanong, S.; Syiem, D.; De Mandal, S.; Kayang, H.; Kumar, N.S.; Kiran, G.S. Culture-dependent and metagenomic analysis of lesser horseshoe bats’ gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. Microb. Pathog. 2019, 137, 103675. [Google Scholar] [CrossRef]
- Voig, C.C.; Caspers, B.; Speck, S. Bats, Bacteria, and Bat Smell: Sex-Specific Diversity of Microbes in a Sexually Selected Scent Organ. J. Mammal. 2005, 86, 745–749. [Google Scholar] [CrossRef]
- Rustamqizi, N.; Mukhtarova, S.; Elbayiyev, S. Early-onset Neonatal Septicemia Caused by Staphylococcus lentus: A Rare Case Report with Literature Review. Cauc. Med. J. 2023, 1, 42–44. [Google Scholar] [CrossRef]
- Gorman, K.M.; Barr, E.L.; Ries, L.; Nocera, T.; Ford, W.M. Bat activity patterns relative to temporal and weather effects in a temperate coastal environment. Glob. Ecol. Conserv. 2021, 30, e01769. [Google Scholar] [CrossRef]
- Smirnov, D.G.; Bezrukov, V.A.; Kurmaeva, N.M. Use of habitat and foraging time by females of Eptesicus nilssonii (Chiroptera, Vespertilionidae). Russ. J. Theriol. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Lüthje, P.; Schwarz, S. Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int. J. Antimicrob. Agents 2007, 29, 528–535. [Google Scholar] [CrossRef]
- Wendlandt, S.; Feßler, A.T.; Monecke, S.; Ehricht, R.; Schwarz, S.; Kadlec, K. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int. J. Med. Microbiol. 2013, 303, 338–349. [Google Scholar] [CrossRef]
- Hauschild, T.; Schwarz, S. Macrolide resistance in Staphylococcus spp. from free-living small mammals. Vet. Microbiol. 2010, 144, 530–531. [Google Scholar] [CrossRef]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of New mecA and mph(C) Variants Conferring Antibiotic Resistance in Staphylococcus spp. Isolated from the Skin of Horses before and after Clinic Admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Gómez, P.; Alonso, C.A.; Camacho, M.C.; Ramiro, Y.; de la Puente, J.; Fernández-Fernández, R.; Quevedo, M.Á.; Blanco, J.M.; Báguena, G.; et al. Frequency and Characterization of Antimicrobial Resistance and Virulence Genes of Coagulase-Negative Staphylococci from Wild Birds in Spain. Detection of tst-Carrying S. sciuri Isolates. Microorganisms 2020, 8, 1317. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Ferreira, E.; Manageiro, V.; Reis, L.; Tejedor-Junco, M.T.; Sampaio, A.; Capelo, J.L.; Caniça, M.; Igrejas, G.; Poeta, P. Distribution and Clonal Diversity of Staphylococcus aureus and Other Staphylococci in Surface Waters: Detection of ST425-t742 and ST130-t843 mecC-Positive MRSA Strains. Antibiotics 2021, 10, 1416. [Google Scholar] [CrossRef]
- Silva, V.; Caniça, M.; Ferreira, E.; Vieira-Pinto, M.; Saraiva, C.; Pereira, J.E.; Capelo, J.L.; Igrejas, G.; Poeta, P. Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Poultry Slaughtered for Human Consumption. Antibiotics 2022, 11, 365. [Google Scholar] [CrossRef]
- Lüthje, P.; Schwarz, S. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide–lincosamide resistance phenotypes and genotypes. J. Antimicrob. Chemother. 2006, 57, 966–969. [Google Scholar] [PubMed]
- Ramesh, V.; Sivakumar, R.; Annamanedi, M.; Chandrapriya, S.; Isloor, S.; Rajendhran, J.; Hegde, N.R. Genome sequencing and comparative genomic analysis of bovine mastitis-associated non-aureus staphylococci and mammaliicocci (NASM) strains from India. Sci. Rep. 2024, 14, 29019. [Google Scholar] [CrossRef]
- Vandžurová, A.; Bačkor, P.; Javorský, P.; Pristaš, P. Staphylococcus nepalensis in the guano of bats (Mammalia). Vet. Microbiol. 2013, 164, 116–121. [Google Scholar] [PubMed]
- Zehra, A.; Singh, R.; Kaur, S.; Gill, J.P.S. Molecular characterization of antibiotic-resistant Staphylococcus aureus from livestock (bovine and swine). Vet. World 2017, 10, 598–604. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Nalepa, B.; Sierpińska, M.; Łaniewska-Trokenheim, Ł. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin—Phenotypic and genotypic antibiotic resistance. Food Microbiol. 2015, 46, 222–226. [Google Scholar] [CrossRef]
- Lienen, T.; Schnitt, A.; Hammerl, J.A.; Maurischat, S.; Tenhagen, B.-A. Mammaliicoccus spp. from German dairy farms exhibit a wide range of antimicrobial resistance genes and non-wildtype phenotypes to several antibiotic classes. Biology 2022, 11, 152. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, V.; Silva, A.; Silva, N.; Ribeiro, J.; Tejedor-Junco, M.T.; Capita, R.; Chenouf, N.S.; Alonso-Calleja, C.; Rodrigues, T.M.; et al. Staphylococci among Wild European Rabbits from the Azores: A Potential Zoonotic Issue? J. Food Prot. 2020, 83, 1110–1114. [Google Scholar]
- Silva, V.; Lopes, A.F.; Soeiro, V.; Caniça, M.; Manageiro, V.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; Igrejas, G.; Poeta, P. Nocturnal Birds of Prey as Carriers of Staphylococcus aureus and Other Staphylococci: Diversity, Antimicrobial Resistance and Clonal Lineages. Antibiotics 2022, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009, 4, 565–582. [Google Scholar]
- Schauer, B.; Szostak, M.P.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Spergser, J.; Krametter-Frötscher, R.; Loncaric, I. Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids. Vet. Microbiol. 2021, 254, 109005. [Google Scholar]
- Wassenaar, T.; Ussery, D.; Nielsen, L.; Ingmer, H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur. J. Microbiol. Immunol. 2015, 5, 44–61. [Google Scholar]
- Nong, Y.; Steinig, E.; Pollock, G.L.; Taiaroa, G.; Carter, G.P.; Monk, I.R.; Pang, S.; Daley, D.A.; Coombs, G.W.; Forde, B.M.; et al. Emergence and clonal expansion of a qacA-harbouring sequence type 45 lineage of methicillin-resistant Staphylococcus aureus. Commun. Biol. 2024, 7, 349. [Google Scholar]
- LaBreck, P.T.; Rice, G.K.; Paskey, A.C.; Elassal, E.M.; Cer, R.Z.; Law, N.N.; Schlett, C.D.; Bennett, J.W.; Millar, E.V.; Ellis, M.W. Conjugative transfer of a novel staphylococcal plasmid encoding the biocide resistance gene, qacA. Front. Microbiol. 2018, 9, 2664. [Google Scholar]
- Chen, Y.; Ji, S.; Sun, L.; Wang, H.; Zhu, F.; Chen, M.; Zhuang, H.; Wang, Z.; Jiang, S.; Yu, Y.; et al. The novel fosfomycin resistance gene fosY is present on a genomic island in CC1 methicillin-resistant Staphylococcus aureus. Emerg. Microbes Infect. 2022, 11, 1166–1173. [Google Scholar]
- Dweba, C.C.; Zishiri, O.T.; El Zowalaty, M.E. Methicillin-resistant Staphylococcus aureus: Livestock-associated, antimicrobial, and heavy metal resistance. Infect. Drug Resist. 2018, 11, 2497. [Google Scholar]
- Both, A.; Huang, J.; Qi, M.; Lausmann, C.; Weißelberg, S.; Büttner, H.; Lezius, S.; Failla, A.V.; Christner, M.; Stegger, M.; et al. Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PLoS Pathog. 2021, 17, e1009304. [Google Scholar]
- Abdullahi, I.N.; Lozano, C.; Latorre-Fernández, J.; Zarazaga, M.; Stegger, M.; Torres, C. Genomic analysis of multi-drug resistant coagulase-negative staphylococci from healthy humans and animals revealed unusual mechanisms of resistance and CRISPR-Cas system. Int. Microbiol. 2024. [Google Scholar] [CrossRef]
- Hellmark, B.; Söderquist, B.; Unemo, M.; Nilsdotter-Augustinsson, Å. Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int. J. Med. Microbiol. 2013, 303, 32–39. [Google Scholar] [PubMed]
- Chong, J.; Quach, C.; Blanchard, A.C.; Poliquin, P.G.; Golding, G.R.; Laferrière, C.; Lévesque, S. Molecular epidemiology of a vancomycin-intermediate heteroresistant Staphylococcus epidermidis outbreak in a neonatal intensive care unit. Antimicrob. Agents Chemother. 2016, 60, 5673–5681. [Google Scholar] [PubMed]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Genomic analysis of antibiotic-resistant Staphylococcus epidermidis isolates from clinical sources in the Kwazulu-Natal Province, South Africa. Front. Microbiol. 2021, 12, 656306. [Google Scholar]
- Silva, V.; Ribeiro, J.; Teixeira, P.; Pinto, P.; Vieira-Pinto, M.; Poeta, P.; Caniça, M.; Igrejas, G. Genetic Complexity of CC5 Staphylococcus aureus Isolates Associated with Sternal Bursitis in Chickens: Antimicrobial Resistance, Virulence, Plasmids, and Biofilm Formation. Pathogens 2024, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- de Moura, G.S.; de Carvalho, E.; Ramos Sanchez, E.M.; Sellera, F.P.; Marques, M.F.S.; Heinemann, M.B.; De Vliegher, S.; Souza, F.N.; Mota, R.A. Emergence of livestock-associated Mammaliicoccus sciuri ST71 co-harbouring mecA and mecC genes in Brazil. Vet. Microbiol. 2023, 283, 109792. [Google Scholar]
- Ndhlovu, G.O.N.; Javkar, K.G.; Matuvhunye, T.; Ngondoh, F.; Jamrozy, D.; Bentley, S.; Shittu, A.O.; Dube, F.S. Investigating genomic diversity of Staphylococcus aureus associated with pediatric atopic dermatitis in South Africa. Front. Microbiol. 2024, 15, 1422902. [Google Scholar]
- Apostolakos, I.; Skarlatoudi, T.; Vatavali, K.; Giannouli, A.; Bosnea, L.; Mataragas, M. Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep’s Milk. Int. J. Mol. Sci. 2023, 24, 13883. [Google Scholar] [CrossRef]
Isolate | Species | Antimicrobial Resistance | Virulence Factors | Molecular Typing | Plasmids and MGEs | Other Resistance Genes | |
---|---|---|---|---|---|---|---|
Phenotype | Genotype | ST | |||||
VS3353 | S. epidermidis | ERY, CD, SXT, FD | mph(C), msr(A), norC, mgrA, fosB, dfrC | icaC, hld | 297 | repUS76, SSep3 | arsB, qacA |
VS3354 | M. lentus | CD, FD | mph(C), salB | ||||
VS3355 | M. lentus | TET, FD | str, mph(C), tet(K), salB | rep7a (pS194), rep7a (Cassette) | cadD | ||
VS3356 | M. lentus | CD | mph(C), salB | ||||
VS3357 | M. lentus | CD, FD | mph(C), salB | ||||
VS3358 | M. lentus | FD | mph(C), salB | ||||
VS3359 | M. lentus | CD, FD | mph(C), salB | ||||
VS3360 | M. lentus | CD, FD | mph(C), salB | ||||
VS3361 | M. lentus | CD, FD | mph(C), salB | ||||
VS3362 | M. lentus | PEN, CD, FD | mph(C), salB, cat | ||||
VS3363 | M. lentus | CD, FD | mph(C), salB | ||||
VS3364 | M. lentus | CD, FD | mph(C), salB | ||||
VS3365 | M. lentus | CD, FD | mph(C), salB, cat | ||||
VS3366 | M. lentus | CD | mph(C), salB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Caniça, M.; de la Rivière, R.; Barros, P.; Cabral, J.A.; Poeta, P.; Igrejas, G. Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance. Vet. Sci. 2025, 12, 322. https://doi.org/10.3390/vetsci12040322
Silva V, Caniça M, de la Rivière R, Barros P, Cabral JA, Poeta P, Igrejas G. Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance. Veterinary Sciences. 2025; 12(4):322. https://doi.org/10.3390/vetsci12040322
Chicago/Turabian StyleSilva, Vanessa, Manuela Caniça, Rani de la Rivière, Paulo Barros, João Alexandre Cabral, Patrícia Poeta, and Gilberto Igrejas. 2025. "Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance" Veterinary Sciences 12, no. 4: 322. https://doi.org/10.3390/vetsci12040322
APA StyleSilva, V., Caniça, M., de la Rivière, R., Barros, P., Cabral, J. A., Poeta, P., & Igrejas, G. (2025). Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance. Veterinary Sciences, 12(4), 322. https://doi.org/10.3390/vetsci12040322