In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. S. aureus Isolates and Genes Assessed
2.2. Adhesion and Invasion Assays
2.3. Statistical Analysis
3. Results
3.1. Distribution of Genes in S. aureus Isolates
3.2. Correlation Between Adhesion and Invasion Capacity with Clinical Mastitis Severitiy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panchal, J.; Patel, P.; Patel, S.; Goswami, D. Understanding Mastitis: Microbiome, control strategies, and prevalence—A comprehensive review. Microb. Pathog. 2024, 187, 106533. [Google Scholar] [CrossRef]
- Goldmann, O.; Medina, E. Staphylococcus aureus strategies to evade the host acquired immune response. Int. J. Med. Microbiol. 2018, 308, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.M.; McCormack, N.; Rindi, S.; Speziale, P.; Foster, T.J. Fibronectin-binding protein B variation in Staphylococcus aureus. BMC Microbiol. 2010, 10, 160. [Google Scholar] [CrossRef]
- Kot, B.; Szweda, P.; Frankowska-Maciejewska, A.; Piechota, M.; Wolska, K. Virulence gene profiles in Staphylococcus aureus isolated from cows with subclinical mastitis in eastern Poland. J. Dairy Res. 2016, 83, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Speziale, P.; Pietrocola, G. The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in host infections. Front. Microbiol. 2020, 11, 2054. [Google Scholar] [CrossRef]
- Claes, J.; Ditkowski, B.; Liesenborghs, L.; Veloso, T.; Entenza, J.; Moreillon, P.; Vanassche, T.; Verhamme, P.; Hoylaerts, M.; Heying, R. Assessment of the dual role of clumping factor a in S. aureus adhesion to endothelium in absence and presence of plasma. Thromb. Haemost. 2018, 118, 1230–1241. [Google Scholar] [CrossRef]
- Foster, T.J. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive cocci. Trends Microbiol. 2019, 27, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, R.; Koshiba, A.; Nasuno, E.; Kato, N. Eliminating extracellular autoinducing peptide signals inhibits the Staphylococcus aureus quorum sensing agr system. Biochem. Biophys. Res. Commun. 2024, 711, 149912. [Google Scholar] [CrossRef]
- Rossi, B.F.; Bonsaglia, E.C.R.; Pantoja, J.C.F.; Santos, M.V.; Gonçalves, J.L.; Júnior, A.F.; Rall, V.L.M. As/sociation between the accessory gene regulator (agr) group and the severity of bovine mastitis caused by Staphylococcus aureus. J. Dairy Sci. 2021, 104, 3564–3568. [Google Scholar] [CrossRef]
- Yang, J.; Bowring, J.Z.; Krusche, J.; Lehmann, E.; Bejder, B.S.; Silva, S.F.; Bojer, M.S.; Grunert, T.; Peschel, A.; Ingmer, H. Cross-species communication via agr controls phage susceptibility in Staphylococcus aureus. Cell Rep. 2023, 42, 113154. [Google Scholar] [CrossRef]
- Sacco, S.C.; Velázquez, N.S.; Renna, M.S.; Beccaria, C.; Baravalle, C.; Pereyra, E.A.; Monecke, S.; Calvinho, L.F.; Dallard, B.E. Capacity of two Staphylococcus aureus strains with different adaptation genotypes to persist and induce damage in bovine mammary epithelial cells and to activate macrophages. Microb. Pathog. 2020, 142, 104017. [Google Scholar] [CrossRef]
- Tomazi, T.; Ferreira, G.C.; Orsi, A.M.; Gonçalves, J.L.; Ospina, P.A.; Nydam, D.V.; Moroni, P.; dos Santos, M.V. Association of herd-level risk factors and incidence rate of clinical mastitis in 20 Brazilian dairy herds. Prev. Vet. Med. 2018, 161, 9–18. [Google Scholar] [CrossRef] [PubMed]
- CRL-AR (Community Reference Laboratory for Antimicrobial Resistance). In Multiplex PCR for the Detection of the mecA Gene and the Identification of Staphylococcus aureus; National Food Institute, Technical University of Denmark: Copenhagen, Denmark, 2009.
- Castilho, I.G.; Dantas, S.T.A.; Langoni, H.; Araújo, J.P., Jr.; Fernandes, A., Jr.; Alvarenga, F.C.L.; Maia, L.; Cagnini, D.Q.; Rall, V.L.M. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis. J. Dairy Sci. 2017, 100, 6414–6421. [Google Scholar] [CrossRef] [PubMed]
- Vujinović, S.; Graber, H.U.; Vićić, I.; Vejnović, B.; Stevanović, O.; Krnjaić, D.; Milivojević, D.; Katić, V. Genotypes and virulence factors in Staphylococcus aureus isolated from dairy cows with subclinical mastitis in Serbia. Comp. Immunol. Microbiol. Infect. Dis. 2023, 101, 102056. [Google Scholar] [CrossRef] [PubMed]
- Brouillette, E.; Grondin, G.; Shkreta, L.; Lacasse, P.; Talbot, B.G. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb. Pathog. 2023, 35, 159–168. [Google Scholar] [CrossRef]
- Pereyra, E.A.; Picech, F.; Renna, M.S.; Baravalle, C.; Andreotti, C.S.; Russi, R.; Calvinho, L.F.; Diez, C.; Dallard, B.E. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Vet. Microbiol. 2016, 183, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Dong, F.; Qian, S.; Wang, L.; Liu, Y.; Yao, K.; Song, W.; Zhen, J.; Zhou, W.; Xu, H.; et al. Accessory gene regulator (agr) dysfunction was unusual in Staphylococcus aureus isolated from Chinese children. BMC Microbiol. 2019, 19, 95. [Google Scholar] [CrossRef]
- Capra, E.; Cremonesi, P.; Pietrelli, A.; Puccio, S.; Luini, M.; Stella, A.; Castiglioni, B. Genomic and transcriptomic comparison between Staphylococcus aureus strains associated with high and low within herd prevalence of intra-mammary infection. BMC Microbiol. 2017, 17, 21. [Google Scholar] [CrossRef]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; Mendes, T.A.O.; Fitzgerald, J.R.; Ribon, A.O.B. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Bartlett, A.H.; Hulten, K.G. Staphylococcus aureus pathogenesis: Secretion systems, adhesins, and invasins. Pediatr. Infect. Dis. J. 2010, 29, 860–861. [Google Scholar] [CrossRef]
- Siegmund, A.; Afzal, M.A.; Tetzlaff, F.; Keinhörster, D.; Gratani, F.; Paprotka, K.; Westermann, M.; Nietzsche, S.; Wolz, C.; Fraunholz, M.; et al. Intracellular persistence of Staphylococcus aureus in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence 2021, 12, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.A.; Brown, P.D. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a caenorhabditis elegans model. Int. J. Infect. Dis. 2017, 54, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Buzzola, F.R.; Alvarez, L.P.; Tuchscherr, L.P.N.; Barbagelata, M.S.; Lattar, S.M.; Calvinho, L.; Sordelli, D.O. Differential abilities of capsulated and noncapsulated Staphylococcus aureus isolates from diverse agr groups to invade mammary epithelial cells. Infect. Immun. 2007, 75, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Bardiau, M.; Detilleux, J.; Farnir, F.; Mainil, J.G.; Ote, I. Associations between properties linked with persistence in a collection of Staphylococcus aureus isolates from bovine mastitis. Vet. Microbiol. 2014, 169, 74–79. [Google Scholar] [CrossRef]
- Shopsin, B.; Mathema, B.; Alcabes, P.; Said-Salim, B.; Lina, G.; Mat-suka, A.; Martinez, J.; Kreiswirth, B.N. Prevalence of agr specificity groups among Staphylococcus aureus strains coloniz-ing children and their guardians. J. Clin. Microbiol. 2003, 41, 456–459. [Google Scholar] [CrossRef]
- Tristan, A.; Ying, L.; Bes, M.; Etienne, J.; Vandenesch, F.; Lina, G. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J. Clin. Microbiol. 2003, 41, 4465–4467. [Google Scholar] [CrossRef]
Gene | Clinical Mastitis | Subclinical Mastitis | p-Value | |
---|---|---|---|---|
Mild, % (n = 14) | Moderate, % (n = 14) | % (n = 14) | ||
agrI | 14.2 (2/14) | 14.2 (2/14) | 7.1 (1/14) | 0.4525 |
agrII | 50 (7/14) | 42.8 (6/14) | - | <0.0014 |
agrIII | 28.5 (4/14) | 50 (7/14) | 7.1 (1/14) | 0.5071 |
agr- | - | - | 85.7 (12/14) | <0.0001 |
fnbA | 85.7 (12/14) | 85.7 (12/14) | 14.2(2/14) | <0.0001 |
fnbB | 7.1 (1/14) | 7.1 (1/14) | - | 0.4390 |
fib | 92.8 (13/14) | 100 (14/14) | 7.1 (1/14) | <0.0001 |
clfA | 92.8 (13/14) | 100 (14/14) | 14.2 (2/14) | <0.0001 |
clfB | 21.4 (3/14) | 21.4 (3/14) | - | 0.0718 |
cna | 7.1 (1/14) | 35.7 (5/14) | - | 0.0718 |
eno | 92.8 (13/14) | 100 (14/14) | 100 (14/14) | 0.6666 |
epbS | 78.5 (11/14) | 78.5 (11/14) | 14.2 (2/14) | <0.0001 |
Genes | Results | n | Adhesion | Invasion | Adhesion/Invasion Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | p-Value | Median | Min | Max | p-Value | Median | Min | Max | p-Value | |||
agrI | Pos | 5 | 6.00 | 4.34 | 6.71 | 0.2584 | 4.04 | 3.45 | 5.85 | 0.7871 | 1.12 | 0.83 | 1.95 | 0.4194 |
Neg | 37 | 4.79 | 2.30 | 6.96 | 4.26 | 2.60 | 6.36 | 1.09 | 0.58 | 2.40 | ||||
agrII | Pos | 13 | 6.00 | 3.51 | 6.96 | 0.2948 | 3.78 | 2.85 | 6.00 | 0.1422 | 1.26 | 0.94 | 2.40 | 0.0083 |
Neg | 29 | 4.77 | 2.30 | 6.71 | 4.93 | 2.60 | 6.36 | 1.03 | 0.58 | 1.95 | ||||
agrIII | Pos | 12 | 5.40 | 3.34 | 6.53 | 0.6986 | 4.56 | 2.60 | 5.91 | 0.9669 | 1.12 | 0.87 | 1.85 | 0.4648 |
Neg | 30 | 4.78 | 2.30 | 6.96 | 4.23 | 2.85 | 6.36 | 1.06 | 0.58 | 2.40 | ||||
agrnegative | Pos | 12 | 3.95 | 2.30 | 5.81 | 0.004 | 4.67 | 3.23 | 6.36 | 0.1234 | 0.83 | 0.58 | 1.03 | <0.0001 |
Neg | 30 | 6.00 | 3.34 | 6.96 | 3.93 | 2.60 | 6.00 | 1.23 | 0.83 | 2.40 | ||||
fnbA | Pos | 26 | 5.40 | 3.34 | 6.96 | 0.1341 | 3.93 | 2.60 | 6.00 | 0.2304 | 1.21 | 0.83 | 2.40 | 0.005 |
Neg | 16 | 4.75 | 2.30 | 6.61 | 4.67 | 3.23 | 6.36 | 0.84 | 0.58 | 1.74 | ||||
fnbB | Pos | 2 | 6.63 | 6.56 | 6.71 | 0.048 | 4.65 | 3.45 | 5.85 | 1 | 1.53 | 1.12 | 1.95 | 0.2329 |
Neg | 40 | 4.78 | 2.30 | 6.96 | 4.23 | 2.60 | 6.36 | 1.09 | 0.58 | 2.40 | ||||
fib | Pos | 28 | 6.13 | 3.34 | 6.96 | 0.0054 | 3.93 | 2.60 | 6.00 | 0.2367 | 1.23 | 0.83 | 2.40 | 0.0001 |
Neg | 14 | 4.37 | 2.30 | 6.00 | 4.67 | 3.23 | 6.36 | 0.83 | 0.58 | 1.74 | ||||
clfA | Pos | 29 | 6.00 | 3.34 | 6.96 | 0.0175 | 3.81 | 2.60 | 6.00 | 0.0992 | 1.22 | 0.83 | 2.40 | 0.0001 |
Neg | 13 | 4.32 | 2.30 | 6.61 | 4.93 | 3.23 | 6.36 | 0.83 | 0.58 | 1.28 | ||||
clfB | Pos | 6 | 6.21 | 3.68 | 6.59 | 0.4984 | 4.01 | 2.85 | 5.40 | 0.3555 | 1.34 | 1.01 | 1.72 | 0.0888 |
Neg | 36 | 4.78 | 2.30 | 6.96 | 4.23 | 2.60 | 6.36 | 1.08 | 0.58 | 2.40 | ||||
cna | Pos | 7 | 5.97 | 3.74 | 6.60 | 0.3944 | 3.65 | 2.60 | 5.78 | 0.3502 | 1.23 | 1.08 | 1.85 | 0.0991 |
Neg | 35 | 4.77 | 2.30 | 6.96 | 4.26 | 2.85 | 6.36 | 1.07 | 0.58 | 2.40 | ||||
eno | Pos | 41 | 4.79 | 2.30 | 6.96 | 0.6523 | 4.26 | 2.60 | 6.36 | 0.2081 | 1.09 | 0.58 | 2.40 | 0.1683 |
Neg | 1 | 6.00 | 6.00 | 6.00 | 3.45 | 3.45 | 3.45 | 1.74 | 1.74 | 1.74 | ||||
ebpS | Pos | 24 | 4.81 | 3.34 | 6.60 | 0.7427 | 3.93 | 2.60 | 6.00 | 0.1622 | 1.22 | 0.83 | 1.85 | 0.0185 |
Neg | 18 | 4.84 | 2.30 | 6.96 | 4.67 | 2.90 | 6.36 | 0.88 | 0.58 | 2.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonsaglia, E.C.R.; Rossi, B.F.; Possebon, F.S.; Silva, N.C.C.; Gonçalves, J.L.; Castilho, I.G.; Fernandes Junior, A.; Santos, M.V.d.; Rall, V.L.M. In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes. Vet. Sci. 2025, 12, 270. https://doi.org/10.3390/vetsci12030270
Bonsaglia ECR, Rossi BF, Possebon FS, Silva NCC, Gonçalves JL, Castilho IG, Fernandes Junior A, Santos MVd, Rall VLM. In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes. Veterinary Sciences. 2025; 12(3):270. https://doi.org/10.3390/vetsci12030270
Chicago/Turabian StyleBonsaglia, Erika Carolina Romão, Bruna Fernanda Rossi, Fabio Sossai Possebon, Nathalia Cristina Cirone Silva, Juliano Leonel Gonçalves, Ivana Giovannetti Castilho, Ary Fernandes Junior, Marcos Veiga dos Santos, and Vera Lúcia Mores Rall. 2025. "In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes" Veterinary Sciences 12, no. 3: 270. https://doi.org/10.3390/vetsci12030270
APA StyleBonsaglia, E. C. R., Rossi, B. F., Possebon, F. S., Silva, N. C. C., Gonçalves, J. L., Castilho, I. G., Fernandes Junior, A., Santos, M. V. d., & Rall, V. L. M. (2025). In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes. Veterinary Sciences, 12(3), 270. https://doi.org/10.3390/vetsci12030270