Detection of Bagaza Virus in Europe: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.A.A.; Barros, S.C.; Fagulha, T.; Ramos, F.; Henriques, A.M.; Duarte, A.; Magalhães, A.; Luís, T.; Duarte, M.D. First detection of Bagaza virus in Common magpies (Pica pica), Portugal 2023. Sci. Rep. 2024, 14, 19452. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pinero, J.; Davidson, I.; Elizalde, M.; Perk, S.; Khinich, Y.; Jiménez-Clavero, M.A. Bagaza virus and Israel turkey meningoencephalomyelitis virus are a single virus species. J. Gen. Virol. 2014, 95, 883–887. [Google Scholar] [CrossRef]
- Falcão, M.; Barros, M.; Duarte, M.D.; Santos, F.A.d.; Fagulha, T.; Henriques, M.; Ramos, F.; Duarte, A.; Luís, T.; Parreira, R.; et al. Genome characterization and spaciotemporal dispersal analysis of Bagaza virus detected in Portugal, 2021. Pathogens 2023, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses (ICTV)—Family: Flaviviridae. Genus: Orthoflavivirus. Available online: https://ictv.global/report/chapter/flaviviridae/flaviviridae/orthoflavivirus (accessed on 11 December 2024).
- Digoutte, J.P. Bagaza (BAG) strain Dak Ar B 209. Am. J. Trop. Med. Hyg. 1978, 27, 376–377. [Google Scholar] [CrossRef]
- Diallo, M.; Nabeth, P.; Ba, K.; Sall, A.A.; Ba, Y.; Mondo, M.; Girault, L.; Abdalahi, M.O.; Mathiot, C. Mosquito vectors of the 1998–1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med. Vet. Entomol. 2005, 19, 119–126. [Google Scholar] [CrossRef]
- Guggemos, H.D.; Fendt, M.; Hieke, C.; Heyde, V.; Mfune, J.K.E.; Borgemeister, C.; Junglen, S. Simultaneous circulation of two West Nile virus lineage 2 clades and Bagaza virus in the Zambezi region, Namibia. PLoS Negl. Trop. Dis. 2021, 15, e0009311. [Google Scholar] [CrossRef]
- Camp, J.V.; Karuvantevida, N.; Chouhna, H.; Safi, E.; Shah, J.N.; Nowotny, N. Mosquito biodiversity and mosquito-borne viruses in the United Arab Emirates. Parasites Vectors 2019, 12, 153. [Google Scholar] [CrossRef]
- Weissenböck, H.; Bakonyi, T.; Rossi, G.; Mani, P.; Nowotny, N. Usutu virus, Italy, 1996. Emerg. Infect. Dis. 2013, 19, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.; Fernández-Pinero, J.; Buitrago, D.; Sánchez, A.; Elizalde, M.; San Miguel, E.; Villalba, R.; Llorente, F.; Jiménez-Clavero, M.A. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg. Infect. Dis. 2011, 17, 1498–14501. [Google Scholar] [CrossRef] [PubMed]
- Gamino, V.; Gutiérrez-Guzmán, A.V.; Fernández-de-Mera, I.G.; Ortíz, J.A.; Durán-Martín, M.; de la Fuente, J.; Gortázar, C.; Höfle, U. Natural Bagaza virus infection in game birds in southern Spain. Vet. Res. 2012, 43, 65. [Google Scholar] [CrossRef] [PubMed]
- Steyn, J.; Botha, E.M.; Lourens, C.; Coetzer, J.A.W.; Venter, M. Bagaza Virus in Himalayan Monal Pheasants, South Africa, 2016–2017. Emerg. Infect. Dis. 2019, 25, 2299–2302. [Google Scholar] [CrossRef]
- Queirós, J.; Barros, S.C.; Sánchez-Cano, A.; Henriques, A.M.; Fagulha, T.; Dos Santos, F.A.; Duarte, M.D.; Fontoura-Gonçalves, C.; Gonçalves, D.; Rodrigues, M.; et al. Bagaza virus in wild birds, Portugal, 2021. Emerg. Infect. Dis. 2022, 28, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Bueno-Marí, R.; Risueño Iranzo, J.; Kurucz, K.; Tóth, G.E.; Zana, B.; Zeghbib, S.; Görföl, T.; Jakab, F.; Kemenesi, G. Accelerating targeted mosquito control efforts through mobile West Nile virus detection. Parasites Vectors 2024, 17, 140. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosà, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe. PLoS ONE 2015, 10, e0121158. [Google Scholar] [CrossRef]
- Paz, S. Climate change impacts on vector-borne diseases in Europe: Risks, predictions and actions. Lancet Reg. Health Eur. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Chong, H.Y.; Leow, C.Y.; Abdul Majeed, A.B.; Leow, C.H. Flavivirus infection-A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019, 274, 197770. [Google Scholar] [CrossRef]
- Cadar, D.; Simonin, Y. Human Usutu virus infections in Europe: A new risk on horizon? Viruses 2022, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Bondre, V.P.; Sapkal, G.N.; Yergolkar, P.N.; Fulmali, P.V.; Sankararaman, V.; Ayachit, V.M.; Mishra, A.C.; Gore, M.M. Genetic characterization of Bagaza virus (BAGV) isolated in India and evidence of anti-BAGV antibodies in sera collected from encephalitis patients. J. Gen. Virol. 2009, 90, 2644–2649. [Google Scholar] [CrossRef] [PubMed]
- Kaaijk, P.; Luytjes, W. Are we prepared for emerging flaviviruses in Europe? Challenges for vaccination. Hum. Vaccines Immunother. 2018, 14, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647, Erratum in BMJ 2016, 354, i4086. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, D.; Rocha, A.; Tena-Tomás, C.; Vigo, M.; Agüero, M.; Jiménez-Clavero, M.A. Real-time fluorogenic reverse transcription polymerase chain reaction assay for the specific detection of Bagaza virus. J. Vet. Diagn. Investig. 2012, 24, 959–963. [Google Scholar] [CrossRef] [PubMed]
- García-Bocanegra, I.; Zorrilla, I.; Rodríguez, E.; Rayas, E.; Camacho, L.; Redondo, I.; Gómez-Guillamón, F. Monitoring of the Bagaza virus epidemic in wild bird species in Spain, 2010. Transbound. Emerg. Dis. 2023, 60, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Llorente, F.; Pérez-Ramírez, E.; Fernández-Pinero, J.; Soriguer, R.; Figuerola, J.; Jiménez-Clavero, M.A. Flaviviruses in game birds, southern Spain, 2011–2012. Emerg. Infect. Dis. 2013, 19, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Bournez, L.; Umhang, G.; Faure, E.; Boucher, J.-M.; Boué, F.; Jourdain, E.; Sarasa, M.; Llorente, F.; Jiménez-Clavero, M.A.; Moutailler, S.; et al. Exposure of wild ungulates to the Usutu and Tick-Borne encephalitis viruses in France in 2009–2014: Evidence of undetected flavivirus circulation a decade ago. Viruses 2020, 12, 10. [Google Scholar] [CrossRef]
- Bravo-Barriga, D.; Aguilera-Sepúlveda, P.; Guerrero-Carvajal, F.; Llorente, F.; Reina, D.; Pérez-Martín, J.E.; Jiménez-Clavero, M.Á.; Frontera, E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017–2019. Vet. Microbiol. 2021, 255, 109020. [Google Scholar] [CrossRef]
- Höfle, U.; Cardona Cabrera, T.; Sánchez-Cano, A.; Fernández de Mera, I.G.; Risalde, M.A.; Moraga-Fernández, A.; Ortiz, J.Á. Bagaza virus and Plasmodium spp. coinfection in red-legged partridges (Alectoris rufa), in Southern Spain 2019. Transbound. Emerg. Dis. 2022, 69, e3393–e3399. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Sepúlveda, P.; Gómez-Martín, B.; Agüero, M.; Jiménez-Clavero, M.Á.; Fernández-Pinero, J. Emergence of two different genotypes of Bagaza Virus (BAGV) affecting red-legged partridges in Spain, in 2019 and 2021. Pathogens 2024, 13, 724. [Google Scholar] [CrossRef]
- Gonzálvez, M.; Cano-Terriza, D.; Höfle, Ú.; Gómez-Guillamón, F.; Cano-Gómez, C.; Zorrilla, I.; Agüero, M.; Martínez, R.; García-Bocanegra, I. Re-emergence of Bagaza virus in wild birds from southern Spain. Vet. Microbiol. 2024, 298, 110279. [Google Scholar] [CrossRef] [PubMed]
- Crespo, R.; França, M.S.; Fenton, H.; Shivaprasad, H.L. Galliformes and Columbiformes. In Pathology of Wildlife and Zoo Animals; Terio, K.A., McAloose, D., Leger, J.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 31; pp. 747–773. [Google Scholar] [CrossRef]
- Cano-Gómez, C.; Llorente, F.; Pérez-Ramírez, E.; Soriguer, R.C.; Sarasa, M.; Jiménez-Clavero, M.Á. Experimental infection of grey partridges with Bagaza virus: Pathogenicity evaluation and potential role as a competent host. Vet. Res. 2018, 49, 44. [Google Scholar] [CrossRef] [PubMed]
- Llorente, F.; Pérez-Ramírez, E.; Fernández-Pinero, J.; Elizalde, M.; Figuerola, J.; Soriguer, R.C.; Jiménez-Clavero, M.Á. Bagaza virus is pathogenic and transmitted by direct contact in experimentally infected partridges, but is not infectious in house sparrows and adult mice. Vet. Res. 2015, 46, 93. [Google Scholar] [CrossRef]
- Gamino, V.; Gutiérrez-Guzmán, A.V.; Martínez, M.; Höfle, U. Pathological findings in red-legged partridges (Alectoris rufa) and common pheasants (Phasianus colchicus) naturally infected with Bagaza virus (BAGV) in Spain. J. Comp. Pathol. 2012, 146, 1–71. [Google Scholar] [CrossRef]
- Weissenböck, H.; Hubálek, Z.; Bakonyi, T.; Nowotny, N. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 2010, 140, 271–280. [Google Scholar] [CrossRef]
- Elizalde, M.; Cano-Gómez, C.; Llorente, F.; Pérez-Ramírez, E.; Casades-Martí, L.; Aguilera-Sepúlveda, P.; Ruiz-Fons, F.; Jiménez-Clavero, M.Á.; Fernández-Pinero, J. A duplex quantitative real-time reverse transcription-PCR for simultaneous detection and differentiation of flaviviruses of the Japanese encephalitis and Ntaya serocomplexes in birds. Front. Vet. Sci. 2020, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Llorente, F.; García-Irazábal, A.; Pérez-Ramírez, E.; Cano-Gómez, C.; Sarasa, M.; Vázquez, A.; Jiménez-Clavero, M.Á. Influence of flavivirus co-circulation in serological diagnostics and surveillance: A model of study using West Nile, Usutu and Bagaza viruses. Transbound. Emerg. Dis. 2019, 66, 2100–2106. [Google Scholar] [CrossRef]
- Calisher, C.H.; Karabatsos, N.; Dalrymple, J.M.; Shope, R.E.; Porterfield, J.S.; Westaway, E.G.; Brandt, W.E. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 1989, 70, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Chang, G.J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch. Virol. 2007, 152, 687–696. [Google Scholar] [CrossRef]
- López, G.; Jiménez-Clavero, M.A.; Tejedor, C.G.; Soriguer, R.; Figuerola, J. Prevalence of West Nile virus neutralizing antibodies in Spain is related to the behavior of migratory birds. Vector Borne Zoonotic Dis. 2008, 8, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, T.; Hammouda, A.; Beck, C.; Boulinier, T.; Lecollinet, S.; Selmi, S. Flaviviruses in migratory passerines during spring stopover in a desert oasis. Zoonoses Public Health 2019, 66, 495–503. [Google Scholar] [CrossRef]
Location | Sampling Date | Sample Type | Diagnostic Assay | Number of Positive/Total (%) | Sequencing (GenBank ID) | Species Identified with BAGV | Reference |
---|---|---|---|---|---|---|---|
Cadiz, Andalusia—Spain | September 2010 | Tissues (heart, intestine, lung, liver, kidney, brain, and feathers) | RT-PCR (NS5 gene segment; segment 214 bp) Virus isolation (AF, CM, ECE, VS) | 13/13 (100) | HQ644143 HQ644144 | Alectoris rufa; Phasianus colchicus | [11] |
Cadiz, Andalusia—Spain | September 2010 2010–2011 | Tissues (heart, intestine, lung, liver, kidney, brain, and feathers) | qRT-PCR (NS5 gene) | 11/11 (100) 0/81 (0) | Alectoris rufa | [24] 1 | |
Southwestern Spain | August 2010 | Oropharyngeal and cloacal swabs Tissues (brain, oral mucosa, pectoral muscle, trachea, lung, heart, liver, spleen, pancreas, duodenum, caecal tonsils, kidney, bursa of Fabricius, thymus and skin with feather follicles) | qRT-PCR Immunohistochemistry | 13/13 (100) | AY632545.2 | Alectoris rufa; Columba palumbus; Phasianus colchicus | [12] |
Cadiz, Andalusia—Spain | August–October 2010 | Blood Tissue samples Oropharyngeal and cloacal swabs | RT-PCR | 11/14 (78.6) | Alectoris rufa; Phasianus colchicus | [25] | |
Cadiz, Andalusia—Spain | October 2011–February 2012 | Serum Brain | VNT RT-PCR | 25/172 (14.5) 0/172 (0) | Alectoris rufa; Phasianus colchicus | [26] | |
France | September 2009–February 2010 | Blood | VNT | 0/73 (0) | Capreolus capreolus; Sus scrofa | [27] | |
Extremadura—Spain | October 2017–December 2019 | Tissues (blood, brain, heart, intestine, liver, lung, muscle, kidney, spleen, stomach, pancreas and the pulp of immature feathers) | VNT | 0/157 (0) | --- | [28] | |
Serpa, Alentejo—Portugal | September 2021 | Tissues (feather pulp, brain, heart, kidney, spleen, and intestine) Growing feathers (live birds) | qRT-PCR (NS2b, NS5, and 3′ NT region) | 9/12 (75) 4/30 (13.3) | Alectoris rufa; Emberiza calandra | [14] | |
Cadiz, Andalusia—Spain | October 2019 | Growing feathers, heart, brain, liver, spleen and kidney; Tissues (heart, brain, spleen, liver, kidney, lung, skeletal muscle, skin, cecal tonsils, adrenal glands, gonads and pancreas | qRT-PCR (NS5 gene segment; partial segment 222 bp) Immunohistochemistry | 4/4 (100) | OK424741 OK424742 | Alectoris rufa | [29] |
Cadiz, Andalusia—Spain | October 2019–August 2021 | Brain | qRT-PCR (NS5 gene segment) Virus isolation (Vero and BSR cells) | 4/4 (100) | PP236854 PP236853 PP236852 PP236851 | Alectoris rufa | [30] |
Mértola, Alentejo—Portugal | September 2023 | Tissues (kidney, spleen, heart and feather follicles) | qRT-PCR (NS5 gene; 342 bp region within the NS1 gene) | 4/7 (57.1) | PP130723 | Pica pica | [2] |
Cadiz and Seville, Andalusia—Spain | July 2021–February 2022 January–December 2021 | Tissues (brain, growing feathers) Oropharyngeal and cloacal swabs | RT-PCR (NS5 gene) | 32/89 (35.9) 4/215 (1.9) | PP887449 PP887448 PP887447 PP887446 PP887445 LC730845 | Alectoris rufa; Phasianus colchicus Picus viridis; Platalea leucorodia; Ciconia ciconia; Aegypius monachus | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, F.; Mesquita, J.R.; Cardoso, L.; Matos, A.C.; Matos, M.; Coelho, A.C. Detection of Bagaza Virus in Europe: A Scoping Review. Vet. Sci. 2025, 12, 113. https://doi.org/10.3390/vetsci12020113
Loureiro F, Mesquita JR, Cardoso L, Matos AC, Matos M, Coelho AC. Detection of Bagaza Virus in Europe: A Scoping Review. Veterinary Sciences. 2025; 12(2):113. https://doi.org/10.3390/vetsci12020113
Chicago/Turabian StyleLoureiro, Filipa, João R. Mesquita, Luís Cardoso, Ana C. Matos, Manuela Matos, and Ana Cláudia Coelho. 2025. "Detection of Bagaza Virus in Europe: A Scoping Review" Veterinary Sciences 12, no. 2: 113. https://doi.org/10.3390/vetsci12020113
APA StyleLoureiro, F., Mesquita, J. R., Cardoso, L., Matos, A. C., Matos, M., & Coelho, A. C. (2025). Detection of Bagaza Virus in Europe: A Scoping Review. Veterinary Sciences, 12(2), 113. https://doi.org/10.3390/vetsci12020113