ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Screening of ESBL-E. coli Isolates
2.3. MLST Typing of ESBL-E. coli Isolates
2.4. Antimicrobial Susceptibility Testing for ESBL-E. coli Isolates
2.5. Screening of β-Lactam ARGs and MGEs from ESBL-E. coli Isolates and Outer Membrane Proteins from ESBLs16
2.6. Data of AMR, ARGs, and MGEs Analyzed and Association Analysis Between AMR and ARGs or MGEs
2.7. Conjugation Assays and PCR-Based Replicon Typing (PBRT)
3. Results
3.1. ESBL Strains Identified and MLST Analysis
3.2. The Phenotype of Resistance to β-Lactam Antibiotics
3.3. Prevalence of MGEs and ARGs in 19 ESBL-E. coli Isolates and OMPs in ESBLs16
3.4. Associations Between AMR and ARGs or MGEs in 19 ESBL-E. coli Isolates
3.5. Conjugative Transfer Assays and Replicon Typing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey, C.; Mansfield, K. Emerging and reemerging infectious diseases of nonhuman primates in the laboratory setting. Vet. Pathol. 2010, 47, 462–481. [Google Scholar] [CrossRef]
- ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef] [PubMed]
- Kaviani Rad, A.; Balasundram, S.K.; Azizi, S.; Afsharyzad, Y.; Zarei, M.; Etesami, H.; Shamshiri, R.R. An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. Int. J. Environ. Res. Public Health 2022, 19, 4666. [Google Scholar] [CrossRef]
- Nwafia, I.N.; Ohanu, M.E.; Ebede, S.O.; Ozumba, U.C. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Kettani Halabi, M.; Lahlou, F.A.; Diawara, I.; El Adouzi, Y.; Marnaoui, R.; Benmessaoud, R.; Smyej, I. Antibiotic Resistance Pattern of Extended Spectrum Beta Lactamase Producing Escherichia coli Isolated from Patients with Urinary Tract Infection in Morocco. Front. Cell. Infect. Microbiol. 2021, 11, 720701. [Google Scholar] [CrossRef]
- Tiwari, A.; Krolicka, A.; Tran, T.T.; Räisänen, K.; Ásmundsdóttir, Á.M.; Wikmark, O.G.; Lood, R.; Pitkänen, T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. Environ. Res. 2024, 246, 118052. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.M.C.; Consol, P.; Chen, Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics 2024, 13, 59. [Google Scholar] [CrossRef]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef]
- Avershina, E.; Sharma, P.; Taxt, A.M.; Singh, H.; Frye, S.A.; Paul, K.; Kapil, A.; Naseer, U.; Kaur, P.; Ahmad, R. AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae. Comput. Struct. Biotechnol. J. 2021, 19, 1896–1906. [Google Scholar] [CrossRef]
- Livermore, D.M.; Woodford, N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006, 14, 413–420. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- He, Y.Z.; Yan, J.R.; He, B.; Ren, H.; Kuang, X.; Long, T.F.; Chen, C.P.; Liao, X.P.; Liu, Y.H.; Sun, J. A Transposon-Associated CRISPR/Cas9 System Specifically Eliminates both Chromosomal and Plasmid-Borne mcr-1 in Escherichia coli. Antimicrob. Agents Chemother. 2021, 65, e0105421. [Google Scholar] [CrossRef]
- Hounmanou, Y.M.G.; Bortolaia, V.; Dang, S.T.T.; Truong, D.; Olsen, J.E.; Dalsgaard, A. ESBL and AmpC β-Lactamase Encoding Genes in E. coli From Pig and Pig Farm Workers in Vietnam and Their Association with Mobile Genetic Elements. Front. Microbiol. 2021, 12, 629139. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, H.; Qing, Y.; Li, J.; Li, D. Ecological response of an umbrella species to changing climate and land use: Habitat conservation for Asiatic black bear in the Sichuan-Chongqing Region, Southwestern China. Ecol. Evol. 2023, 13, e10222. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zheng, W.; Guo, X.; Wang, Y.; Zhou, Y.; Zhao, S.; Song, X.; Xu, A. Large Carnivores Persisting in a Human-Dominated Landscape: Suitable Habitat and Connectivity for Asiatic Black Bears in China. Ecol. Evol. 2025, 15, e72181. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Rojo-Bezares, B.; Jouini, A.; Zarazaga, M.; Rodrigues, J.; Torres, C. Detection of Escherichia coli harbouring extended-spectrum beta-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother. 2006, 58, 1311–1312. [Google Scholar] [CrossRef]
- Agustin, A.L.D.; Effendi, M.H.; Tyasningsih, W.; Plumeriastuti, H.; Khairullah, A.R.; Ekawasti, F.; Moses, I.B.; Kinasih, K.N.; Kusala, M.K.J.; Mustika, Y.R.; et al. Phylogenetic analysis blaTEM gene of Escherichia coli isolated from cave bats in West Nusa Tenggara Province, Indonesia. Open Vet. J. 2024, 14, 3460–3473. [Google Scholar] [CrossRef]
- Liu, T.; Lee, S.; Kim, M.; Fan, P.; Boughton, R.K.; Boucher, C.; Jeong, K.C. A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. J. Hazard. Mater. 2024, 473, 134694. [Google Scholar] [CrossRef]
- Smith, C.M.; Anacker, M.; Bevis, D.L.; Dutton, N.A.M.; Powell, D.; McLaughlin, R.W. Isolation of a CTX-M-55 (ESBL)-Producing Escherichia coli Strain of the Global ST6448 Clone from a Captive Orangutan in the USA. Curr. Microbiol. 2024, 81, 177. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yan, X.; Li, Y.; Zhang, D.; Li, L.; Geng, Y.; Su, F.; Yue, C.; Hou, R.; Liu, S. Identification of extended-spectrum beta-lactamase (CTX-M)-producing Klebsiella pneumoniae belonging to ST37, ST290, and ST2640 in captive giant pandas. BMC Vet. Res. 2022, 18, 186. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- VinodhKumar, O.R.; Karikalan, M.; Ilayaraja, S.; Sha, A.A.; Singh, B.R.; Sinha, D.K.; Chandra Mohan, S.; Pruthvishree, B.S.; Pawde, A.M.; Sharma, A.K. Multi-drug resistant (MDR), extended spectrum beta-lactamase (ESBL) producing and carbapenem resistant Escherichia coli in rescued Sloth bears (Melursus ursinus), India. Vet. Res. Commun. 2021, 45, 163–170. [Google Scholar] [CrossRef]
- Herrero-García, G.; Barroso, P.; Dashti, A.; González-Barrio, D.; Naves, J.; Fernández-Gil, A.; Ugarte-Ruiz, M.; Pérez-Sancho, M.; Royo, L.J.; Carmena, D.; et al. Non-invasive surveillance of shared pathogens in the Eurasian brown bear (Ursus arctos) human interface. One Health 2024, 18, 100746. [Google Scholar] [CrossRef]
- Liu, H.; Shi, K.; Wang, Y.; Zhong, W.; Pan, S.; Zhou, L.; Cheng, Y.; Yuan, Y.; Zhou, Z.; Liu, H.; et al. Characterization of antibiotic resistance genes and mobile genetic elements in Escherichia coli isolated from captive black bears. Sci. Rep. 2024, 14, 2745. [Google Scholar] [CrossRef]
- PubMLST. Available online: https://pubmlst.org/organisms/escherichia-spp (accessed on 10 October 2025).
- Furlan, J.P.R.; Lopes, R.; Gonzalez, I.H.L.; Ramos, P.L.; Stehling, E.G. Comparative analysis of multidrug resistance plasmids and genetic background of CTX-M-producing Escherichia coli recovered from captive wild animals. Appl. Microbiol. Biotechnol. 2020, 104, 6707–6717. [Google Scholar] [CrossRef]
- Garcias, B.; Aguirre, L.; Seminati, C.; Reyes, N.; Allepuz, A.; Obón, E.; Molina-Lopez, R.A.; Darwich, L. Extended-Spectrum β-Lactam Resistant Klebsiella pneumoniae and Escherichia coli in Wild European Hedgehogs (Erinaceus europeus) Living in Populated Areas. Animals 2021, 11, 2837. [Google Scholar] [CrossRef] [PubMed]
- Garcês, A.; Pires, I. European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics 2023, 12, 1725. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Gautier, V.; Arlet, G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J. Antimicrob. Chemother. 2006, 57, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Gan, T.; Lin, Z.; Liu, Y.; Chen, J.; Wang, C.; Deng, L.; Li, C.; Chang, L.J.; Zhang, W.; et al. The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. Ecotoxicol. Environ. Saf. 2024, 278, 116395. [Google Scholar] [CrossRef]
- Dai, W.; Sun, S.; Yang, P.; Huang, S.; Zhang, X.; Zhang, L. Characterization of carbapenemases, extended spectrum β-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infect. Genet. Evol. 2013, 14, 1–7. [Google Scholar] [CrossRef]
- Karabay, O.; Altindis, M.; Koroglu, M.; Karatuna, O.; Aydemir, Ö.A.; Erdem, A.F. The carbapenem-resistant Enterobacteriaceae threat is growing: NDM-1 epidemic at a training hospital in Turkey. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Ganjo, A.R.; Balaky, S.T.J.; Mawlood, A.H.; Smail, S.B.; Shabila, N.P. Characterization of genes related to the efflux pump and porin in multidrug-resistant Escherichia coli strains isolated from patients with COVID-19 after secondary infection. BMC Microbiol. 2024, 24, 122. [Google Scholar] [CrossRef]
- Algammal, A.M.; Hashem, H.R.; Alfifi, K.J.; Hetta, H.F.; Sheraba, N.S.; Ramadan, H.; El-Tarabili, R.M. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci. Rep. 2021, 11, 9476. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, S.; Wei, B.; Liu, H.; Zhou, Z.; Huang, X.; Luo, Y.; Zhou, L.; Zhang, S.; Ma, X.; et al. High prevalence of multi-drug resistances and diversity of mobile genetic elements in Escherichia coli isolates from captive giant pandas. Ecotoxicol. Environ. Saf. 2020, 198, 110681. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Das, T.; Nath, C.; Ahmed, T.; Ghosh, K.; Dhar, P.K.; Herrero-Fresno, A.; Barua, H.; Biswas, P.K.; Islam, M.Z.; et al. Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens. J. Microbiol. 2025, 63, e2412009. [Google Scholar] [CrossRef]
- Ruppé, E.; Lixandru, B.; Cojocaru, R.; Büke, C.; Paramythiotou, E.; Angebault, C.; Visseaux, C.; Djuikoue, I.; Erdem, E.; Burduniuc, O.; et al. Relative fecal abundance of extended-spectrum-β-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob. Agents Chemother. 2013, 57, 4512–4517. [Google Scholar] [CrossRef]
- Duffy, N.; Karlsson, M.; Reses, H.E.; Campbell, D.; Daniels, J.; Stanton, R.A.; Janelle, S.J.; Schutz, K.; Bamberg, W.; Rebolledo, P.A.; et al. Epidemiology of extended-spectrum β-lactamase-producing Enterobacterales in five US sites participating in the Emerging Infections Program, 2017. Infect. Control Hosp. Epidemiol. 2022, 43, 1586–1594. [Google Scholar] [CrossRef]
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef] [PubMed]
- Riwu, K.H.P.; Effendi, M.H.; Rantam, F.A.; Khairullah, A.R.; Kurniawan, S.C.; Kurniawan, A.; Moses, I.B.; Hasib, A.; Widodo, A.; Yanestria, S.M. Molecular detection of blaTEM gene for encoding extended spectrum beta-lactamase (ESBL) on Escherichia coli isolated from deer feces in Indonesia. J. Adv. Vet. Res. 2024, 14, 722–726. [Google Scholar]
- Guyomard-Rabenirina, S.; Reynaud, Y.; Pot, M.; Albina, E.; Couvin, D.; Ducat, C.; Gruel, G.; Ferdinand, S.; Legreneur, P.; Le Hello, S.; et al. Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single bla (CTX-M-1)/IncI1/ST3 Plasmid Among Humans and Wild Animals. Front. Microbiol. 2020, 11, 1524. [Google Scholar] [CrossRef]
- de Carvalho, M.P.N.; Fernandes, M.R.; Sellera, F.P.; Lopes, R.; Monte, D.F.; Hippólito, A.G.; Milanelo, L.; Raso, T.F.; Lincopan, N. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound. Emerg. Dis. 2020, 67, 1804–1815. [Google Scholar] [CrossRef]
- Formenti, N.; Calò, S.; Parisio, G.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Tonni, M.; Guadagno, F.; Giovannini, S.; et al. ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors. Animals 2021, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Prandi, I.; Bellato, A.; Nebbia, P.; Stella, M.C.; Ala, U.; von Degerfeld, M.M.; Quaranta, G.; Robino, P. Antibiotic resistant Escherichia coli in wild birds hospitalised in a wildlife rescue centre. Comp. Immunol. Microbiol. Infect. Dis. 2023, 93, 101945. [Google Scholar] [CrossRef]
- Wang, Y.; He, T.; Han, J.; Wang, J.; Foley, S.L.; Yang, G.; Wan, S.; Shen, J.; Wu, C. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Vet. Microbiol. 2012, 159, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Sabença, C.; Romero-Rivera, M.; Barbero-Herranz, R.; Sargo, R.; Sousa, L.; Silva, F.; Lopes, F.; Abrantes, A.C.; Vieira-Pinto, M.; Torres, C.; et al. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet. Sci. 2024, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, M.; Gudina, E.K.; Froeschl, G.; Matar, R.; Ali, S.; Gabriele, L.; Hohensee, A.; Seeholzer, T.; Kroidl, A.; Wieser, A. Resistome and Phylogenomics of Escherichia coli Strains Obtained from Diverse Sources in Jimma, Ethiopia. Antibiotics 2025, 14, 706. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Zhou, Z.; Miao, Y.; Li, R.; Yang, B.; Cao, C.; Xiao, S.; Wang, X.; Liu, H.; et al. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates That Cause Diarrhea in Sheep in Northwest China. Microbiol. Spectr. 2022, 10, e0159522. [Google Scholar] [CrossRef]
- Bazalar-Gonzales, J.; Silvestre-Espejo, T.; Rodríguez Cueva, C.; Carhuaricra Huamán, D.; Ignación León, Y.; Luna Espinoza, L.; Rosadio Alcántara, R.; Maturrano Hernández, L. Genomic insights into ESBL-producing Escherichia coli isolated from non-human primates in the Peruvian Amazon. Front. Vet. Sci. 2023, 10, 1340428. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, Y.; Cui, X.; Shi, T.; Ji, Q.; Wang, X.; Bao, G.; Liu, Y. Genomic epidemiology of antimicrobial resistance determinants in Chinese swine farm Escherichia coli isolates. Front. Microbiol. 2025, 16, 1575426. [Google Scholar] [CrossRef]
- Kim, J.I.; Moon, B.Y.; Ali, M.S.; Kang, H.S.; Choi, J.H.; Kim, J.M.; Park, S.C.; Lim, S.K. High prevalence of bla(CTX-M-55)-carrying Escherichia coli in both ceftiofur-use and non-use pig farms. Appl. Environ. Microbiol. 2025, 91, e0252524. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Q.; Chai, Y.; Huang, X.; Zhou, X.; Han, M.; Wu, T.; Zhang, X.; Zhong, F. Epidemiological and molecular characteristics of extraintestinal pathogenic Escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019. BMC Vet. Res. 2025, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Stępień-Pyśniak, D.; Hauschild, T.; Łopucki, R.; Kosikowska, U.; Wilczyński, J.; Brzeski, M.; Matusevičius, P.; Christensen, H. Differences in tests of phenotypic colistin resistance in clinical Escherichia coli isolates from poultry and their genetic diversity. Vet. Microbiol. 2025, 307, 110581. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lan, T.; Zhai, H.; Zhou, M.; Chen, D.; Lu, Y.; Han, L.; Wei, J.; Zhou, S.; Xu, H.; et al. Whole-genome analysis of Escherichia coli isolated from wild Amur tiger (Panthera tigris altaica) and North China leopard (Panthera pardus japonensis). PeerJ 2024, 12, e17381. [Google Scholar] [CrossRef]
- Mukerji, S.; Stegger, M.; Truswell, A.V.; Laird, T.; Jordan, D.; Abraham, R.J.; Harb, A.; Barton, M.; O’Dea, M.; Abraham, S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J. Antimicrob. Chemother. 2019, 74, 2566–2574. [Google Scholar] [CrossRef]
- Jousserand, N.; Auvray, F.; Chagneau, C.; Cavalié, L.; Maurey, C.; Drut, A.; Lavoué, R.; Oswald, E. Zoonotic potential of uropathogenic Escherichia coli lineages from companion animals. Vet. Res. 2025, 56, 69. [Google Scholar] [CrossRef] [PubMed]
- Danzeisen, J.L.; Wannemuehler, Y.; Nolan, L.K.; Johnson, T.J. Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection. Avian Dis. 2013, 57, 104–108. [Google Scholar] [CrossRef]
- Hasan, B.; Sandegren, L.; Melhus, A.; Drobni, M.; Hernandez, J.; Waldenström, J.; Alam, M.; Olsen, B. Antimicrobial drug-resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg. Infect. Dis. 2012, 18, 2055–2058. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Tresch, S.; Zurfluh, K.; Cernela, N.; Biggel, M.; Stephan, R. Finding of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in wild game meat originating from several European countries: Predominance of Moellerella wisconsensis producing CTX-M-1, November 2021. Euro Surveill. 2022, 27, 2200343. [Google Scholar] [CrossRef]
- Zurfluh, K.; Albini, S.; Mattmann, P.; Kindle, P.; Nüesch-Inderbinen, M.; Stephan, R.; Vogler, B.R. Antimicrobial resistant and extended-spectrum β-lactamase producing Escherichia coli in common wild bird species in Switzerland. MicrobiologyOpen 2019, 8, e845. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, I.; Franz, E.; van Hoek, A.; Florijn, A.; Veenman, C.; Sloet-van Oldruitenborgh-Oosterbaan, M.M.; Dierikx, C.; van Duijkeren, E. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J. Antimicrob. Chemother. 2017, 72, 1915–1921. [Google Scholar] [CrossRef]
- Hayashi, W.; Ohsaki, Y.; Taniguchi, Y.; Koide, S.; Kawamura, K.; Suzuki, M.; Kimura, K.; Wachino, J.I.; Nagano, Y.; Arakawa, Y.; et al. High prevalence of bla(CTX-M-14) among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int. J. Food Microbiol. 2018, 284, 98–104. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Chen, M.; Yang, G.; Zhang, J.; Wu, Q.; Wang, J.; Ding, Y.; Ye, Q.; Lei, T.; et al. Characterization of Escherichia coli O157:non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. Int. J. Food Microbiol. 2022, 378, 109805. [Google Scholar] [CrossRef]
- Luo, S.; Liao, C.; Peng, J.; Tao, S.; Zhang, T.; Dai, Y.; Ding, Y.; Ma, Y. Resistance and virulence gene analysis and molecular typing of Escherichia coli from duck farms in Zhanjiang, China. Front. Cell. Infect. Microbiol. 2023, 13, 1202013. [Google Scholar] [CrossRef]
- Mukerji, S.; Gunasekera, S.; Dunlop, J.N.; Stegger, M.; Jordan, D.; Laird, T.; Abraham, R.J.; Barton, M.; O’Dea, M.; Abraham, S. Implications of Foraging and Interspecies Interactions of Birds for Carriage of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Appl. Environ. Microbiol. 2020, 86, e01610-20. [Google Scholar] [CrossRef]
- Ludden, C.; Decano, A.G.; Jamrozy, D.; Pickard, D.; Morris, D.; Parkhill, J.; Peacock, S.J.; Cormican, M.; Downing, T. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb. Genom. 2020, 6, e000352. [Google Scholar] [CrossRef]
- Schmitz, M.L.; Blumer, J.L.; Cetnarowski, W.; Rubino, C.M. Determination of appropriate weight-based cutoffs for empiric cefazolin dosing using data from a phase 1 pharmacokinetics and safety study of cefazolin administered for surgical prophylaxis in pediatric patients aged 10 to 12 years. Antimicrob. Agents Chemother. 2015, 59, 4173–4180. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, M.; Liu, J.; Zhou, Y.; Miao, Z. Prevalence and Antibiotic Resistance Profiles of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Broilers in Shandong Province, China. J. Food Prot. 2016, 79, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, Q.; Mao, X.; Li, L.; Dou, J.; He, Q.; Shao, H.; Luo, Q. Prevalence of Extended-Spectrum β-Lactamase-Resistant Genes in Escherichia coli Isolates from Central China during 2016–2019. Animals 2022, 12, 3191. [Google Scholar] [CrossRef]
- Tian, G.B.; Wang, H.N.; Zou, L.K.; Tang, J.N.; Zhao, Y.W.; Ye, M.Y.; Tang, J.Y.; Zhang, Y.; Zhang, A.Y.; Yang, X.; et al. Detection of CTX-M-15, CTX-M-22, and SHV-2 extended-spectrum beta-lactamases (ESBLs) in Escherichia coli fecal-sample isolates from pig farms in China. Foodborne Pathog. Dis. 2009, 6, 297–304. [Google Scholar] [CrossRef]
- Kahn, L.H.; Bergeron, G.; Bourassa, M.W.; De Vegt, B.; Gill, J.; Gomes, F.; Malouin, F.; Opengart, K.; Ritter, G.D.; Singer, R.S.; et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 31–39. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-lactam–β-lactamase inhibitor combinations. Clin. Microbiol. Rev. 2020, 34, 10–1128. [Google Scholar] [CrossRef]
- Schechter, L.M.; Creely, D.P.; Garner, C.D.; Shortridge, D.; Nguyen, H.; Chen, L.; Hanson, B.M.; Sodergren, E.; Weinstock, G.M.; Dunne, W.M., Jr.; et al. Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. mBio 2018, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Oteo, J.; Delgado-Iribarren, A.; Vega, D.; Bautista, V.; Rodríguez, M.C.; Velasco, M.; Saavedra, J.M.; Pérez-Vázquez, M.; García-Cobos, S.; Martínez-Martínez, L.; et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int. J. Antimicrob. Agents 2008, 32, 534–537. [Google Scholar] [CrossRef]
- Roschanski, N.; Fischer, J.; Falgenhauer, L.; Pietsch, M.; Guenther, S.; Kreienbrock, L.; Chakraborty, T.; Pfeifer, Y.; Guerra, B.; Roesler, U.H. Retrospective Analysis of Bacterial Cultures Sampled in German Chicken-Fattening Farms During the Years 2011-2012 Revealed Additional VIM-1 Carbapenemase-Producing Escherichia coli and a Serologically Rough Salmonella enterica Serovar Infantis. Front. Microbiol. 2018, 9, 538. [Google Scholar] [CrossRef]
- Bajpai, T.; Pandey, M.; Varma, M.; Bhatambare, G.S. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J. Med. 2017, 7, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.; Araújo, C.; Gonçalves, A.; Vinué, L.; Somalo, S.; Ruiz, E.; Uliyakina, I.; Rodrigues, J.; Igrejas, G.; Poeta, P.; et al. Detection of CTX-M-14 and TEM-52 extended-spectrum beta-lactamases in fecal Escherichia coli isolates of captive ostrich in Portugal. Foodborne Pathog. Dis. 2010, 7, 991–994. [Google Scholar] [CrossRef]
- Adesola, R.O.; Bakre, A.A.; Adekanmbi, A.O.; Ogunro, B.N.; Adeolu Ogundijo, O.; Hamzat, A.; Hossain, D.; Aribana, M.A.; Balogun, L.A. Molecular and Epidemiological Characterization of ESBL-producing Escherichia coli from Captive Wild Birds in Zoological Gardens in Nigeria. Environ. Health Insights 2025, 19, 11786302251329300. [Google Scholar] [CrossRef] [PubMed]
- Furmanek-Blaszk, B.; Sektas, M.; Rybak, B. High Prevalence of Plasmid-Mediated Quinolone Resistance among ESBL/AmpC-Producing Enterobacterales from Free-Living Birds in Poland. Int. J. Mol. Sci. 2023, 24, 12804. [Google Scholar] [CrossRef]
- Ben Yahia, H.; Ben Sallem, R.; Tayh, G.; Klibi, N.; Ben Amor, I.; Gharsa, H.; Boudabbous, A.; Ben Slama, K. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia. BMC Microbiol. 2018, 18, 26. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, J.; Gu, J.; Liu, Z.; Hu, J.; Li, X.; Chen, X.; Sun, Z.; Li, J. Prevalence and antimicrobial susceptibility of CTX-M-type-producing Escherichia coli from a wildlife zoo in China. Vet. Med. Sci. 2022, 8, 1294–1299. [Google Scholar] [CrossRef]
- Torres, R.T.; Cunha, M.V.; Araujo, D.; Ferreira, H.; Fonseca, C.; Palmeira, J.D. A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. Environ. Pollut. 2022, 306, 119367. [Google Scholar] [CrossRef]
- Tamang, M.D.; Nam, H.M.; Gurung, M.; Jang, G.C.; Kim, S.R.; Jung, S.C.; Park, Y.H.; Lim, S.K. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 2013, 79, 3898–3905. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Naseer, U.; Sundsfjord, A. The CTX-M conundrum: Dissemination of plasmids and Escherichia coli clones. Microb. Drug Resist. 2011, 17, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yue, M.; Zhang, J.; Ruan, Z. Coexistence of two bla(CTX-M-14) genes in a bla(NDM-5)-carrying multidrug-resistant Escherichia coli strain recovered from a bloodstream infection in China. J. Glob. Antimicrob. Resist. 2021, 26, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, D.; Li, X.; Xiao, C.; Mao, Y.; He, J.; Feng, J.; Wang, L. Characterizations of bla(CTX-M-14) and bla(CTX-M-64) in a clinical isolate of Escherichia coli from China. Front. Microbiol. 2023, 14, 1158659. [Google Scholar] [CrossRef]
- Dikaiou, A.; Tzimotoudis, N.; Sergelidis, D.; Papadogiannakis, E.; Giakkoupi, P. Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory. Antibiotics 2025, 14, 329. [Google Scholar] [CrossRef]
- Larsen, A.L.; Pedersen, T.; Sundsfjord, A.; Ross, T.A.; Guleng, A.D.; Haug, J.B.; Pöntinen, A.K.; Samuelsen, Ø. Hospital toilets and drainage systems as a reservoir for a long-term polyclonal outbreak of clinical infections with multidrug-resistant Klebsiella oxytoca species complex. Infect. Prev. Pract. 2025, 7, 100430. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Pungpian, C.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Chuanchuen, R. Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microb. Drug Resist. 2021, 27, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Huang, J.; Shah, J.M.; Ali, I.; Rahman, S.U.; Wang, L. Characterization and resistant determinants linked to mobile elements of ESBL-producing and mcr-1-positive Escherichia coli recovered from the chicken origin. Microb. Pathog. 2021, 150, 104722. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.; Ahmed, S.N.; Khandaker, S.; Monifa, N.H.; Abusharha, A.; Vargas, D.L.R.; Díez, I.T.; Castilla, A.G.K.; Talukder, A.A.; Parvez, A.K.; et al. Multidrug resistance pattern and molecular epidemiology of pathogens among children with diarrhea in Bangladesh, 2019–2021. Sci. Rep. 2023, 13, 13975. [Google Scholar] [CrossRef]
- Amato, H.K.; Wong, N.M.; Pelc, C.; Taylor, K.; Price, L.B.; Altabet, M.; Jordan, T.E.; Graham, J.P. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. Sci. Total Environ. 2020, 735, 139401. [Google Scholar] [CrossRef]






| Strains | ST | Clonal Complex |
|---|---|---|
| ESBLs01 | nST1 | / |
| ESBLs02 | ST208 | CC10 |
| ESBLs03 | ST10 | CC10 |
| ESBLs04 | ST10 | CC10 |
| ESBLs05 | ST695 | None |
| ESBLs06 | ST10 | CC10 |
| ESBLs07 | ST10 | CC10 |
| ESBLs08 | ST10 | CC10 |
| ESBLs09 | ST4160 | None |
| ESBLs10 | ST10 | CC10 |
| ESBLs11 | ST10 | CC10 |
| ESBLs12 | nST2 | / |
| ESBLs13 | ST2690 | None |
| ESBLs14 | ST540 | None |
| ESBLs15 | * | * |
| ESBLs16 | ST3856 | None |
| ESBLs17 | ST2792 | None |
| ESBLs18 | ST2690 | None |
| ESBLs19 | nST3 | / |
| Strains | Phenotypes | Variants of β-Lactam Resistance Genes | MGEs |
|---|---|---|---|
| ESBLs01 | KZ, CRO, ATM | blaCTX-M-55 | IS26, trbC, ISECP1 |
| ESBLs02 | KZ | IS26 | |
| ESBLs03 | AMP, KZ, CXM, CRO, CTX, ATM, TZP | blaCTX-M-15 | IS26, ISECP1 |
| ESBLs04 | AMP, KZ, CXM, CRO, CTX, ATM | blaCTX-M-15 | IS26 |
| ESBLs05 | KZ, TZP | ||
| ESBLs06 | KZ, CXM, CRO, CTX, ATM | blaCTX-M-15 | IS26, trbC, ISECP1 |
| ESBLs07 | AMP, KZ, CXM, CRO, CTX, FEP, ATM | blaCTX-M-15 | IS26, ISECP1 |
| ESBLs08 | AMP, KZ, CXM, CRO, CTX, FEP, ATM | blaCTX-M-15 | IS26, ISECP1 |
| ESBLs09 | AMP, KZ, CRO, CTX, ATM | blaCTX-M-15 | IS26, ISECP1 |
| ESBLs10 | AMP, KZ, CXM, CRO, CTX, ATM | blaCTX-M-15 | IS26, ISECP1 |
| ESBLs11 | AMP, KZ, CXM, CRO, CTX | blaCTX-M-15 | IS26 |
| ESBLs12 | AMP, KZ, CXM, CRO, CTX, ATM | blaCTX-M-15 | IS26 |
| ESBLs13 | AMP, KZ, CXM, CRO, CTX | blaCTX-M-27 | IS26 |
| ESBLs14 | AMP, KZ, CXM, CRO, CTX | blaCTX-M-15, blaCTX-M-14 | IS26, tnpA, ISECP1 |
| ESBLs15 | AMP, KZ, CRO, CTX, TZP | blaCTX-M-3, blaSHV-1 | IS26, trbC |
| ESBLs16 | KZ, IMP | IS26, tnpA, tnsA | |
| ESBLs17 | AMP, KZ, CXM, FOX, CRO, CTX, FEP, ATM, TZP | blaCTX-M-3, blaSHV-1 | IS26, trbC, tnpA, tnsA |
| ESBLs18 | KZ, CXM, CRO, CTX, FEP, ATM, TZP | blaCTX-M-3, blaCTX-M-14, blaDHA-14 | IS26, trbC, tnpA |
| ESBLs19 | AMP, KZ, CXM | blaTEM-1 | IS26, trbC, tnpA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Che, M.; Zhou, Y.; Pan, S.; Yang, X.; Liu, S.; Laghari, I.; Wu, M.; Han, R.; Li, X.; et al. ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination. Vet. Sci. 2025, 12, 1085. https://doi.org/10.3390/vetsci12111085
Lei X, Che M, Zhou Y, Pan S, Yang X, Liu S, Laghari I, Wu M, Han R, Li X, et al. ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination. Veterinary Sciences. 2025; 12(11):1085. https://doi.org/10.3390/vetsci12111085
Chicago/Turabian StyleLei, Xin, Mengjie Che, Yuxin Zhou, Shulei Pan, Xue Yang, Siyu Liu, Iram Laghari, Mingyue Wu, Ruilin Han, Xiaoqi Li, and et al. 2025. "ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination" Veterinary Sciences 12, no. 11: 1085. https://doi.org/10.3390/vetsci12111085
APA StyleLei, X., Che, M., Zhou, Y., Pan, S., Yang, X., Liu, S., Laghari, I., Wu, M., Han, R., Li, X., Zhou, L., Peng, G., Liu, H., Zhou, Z., Zhang, K., & Zhong, Z. (2025). ESBL-Producing E. coli in Captive Black Bears: Molecular Characteristics and Risk of Dissemination. Veterinary Sciences, 12(11), 1085. https://doi.org/10.3390/vetsci12111085

