Drug Repurposing in Veterinary Oncology: Myth or Reality?
Simple Summary
Abstract
1. Introduction
2. Repurposed Drugs in Veterinary Oncology
2.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): Piroxicam
2.2. Anti-Parasitic Agents: Fenbendazole
2.3. Anti-Diabetic Agents: Metformin
2.4. Immunomodulatory Agents: Oclacitinib and Thalidomide
2.4.1. Oclacitinib
2.4.2. Thalidomide
2.5. Cardiovascular Drugs: Statins, Propranolol and Losartan
2.5.1. Statins
2.5.2. Propranolol
2.5.3. Losartan
2.6. Other Repurposed Agents (e.g., Auranofin, Desmopressin, Disulfiram)
2.6.1. Auranofin
2.6.2. Desmopressin
2.6.3. Disulfiram
| Repurposed Drug | Action/Mechanism | Clinical Trial Study Type | Clinical or Experimental Results | Statistics Outcomes | References |
|---|---|---|---|---|---|
| Piroxicam | Non-selective COX inhibitor; reduces COX-2–mediated prostaglandin synthesis; promotes apoptosis and anti-angiogenic effects. | Clinical studies in dogs with TCC. | 53% SD, 12% PR, 6% CR; often used in combination or metronomic chemotherapy. | MST ≈ 181–244 days depending on protocol. | [19,20,21,22] |
| Fenbendazole | Microtubule polymerization inhibitor; induces G2/M arrest, apoptosis, anti-angiogenic and metabolic interference (glucose/glutamine). | Preclinical and anecdotal reports; no controlled veterinary clinical trials. | Contradictory results: tumour inhibition in some models, tumour promotion in others; potential hepatotoxicity. | Not applicable. | [15,25,26] |
| Metformin | Inhibits mitochondrial complex I → AMPK activation → PI3K/AKT/mTOR suppression; anti-proliferative, anti-EMT, anti-stemness. | In vitro canine mammary carcinoma; xenografts; clinical pilot studies. | Decreased proliferation, increased apoptosis, and suppressed EMT; extended MST with cyclophosphamide; radiosensitization observed in osteosarcoma models. | MST prolongation in treated dogs; dose-limiting GI toxicity and hyperlactatemia in cats. | [11,36,38,41] |
| Oclacitinib | JAK1 > JAK2/3 inhibitor; suppresses IL-2, IL-4, IL-6, IL-13, IL-31; immunomodulatory and potential antineoplastic effects via T-cell suppression. | Retrospective and case reports in dogs with cutaneous epitheliotropic lymphoma and T-zone lymphoma. | PR and long-term stabilization in few cases; mild hematologic toxicity. | Median duration of response is 3–6 months. | [47,48,49,50,51] |
| Thalidomide | Anti-angiogenic, anti-inflammatory; inhibits VEGF and FGF2; possible CRBN-independent immunomodulation. | Prospective trial in dogs with splenic hemangiosarcoma; multimodal studies in mammary and pulmonary carcinoma. Retrospective study in canine MM | Prolonged MST vs. surgery alone; reduced VEGF in metastases; good tolerability. Durable responses in MM. | MST 184 vs. 133 days (p < 0.05); median PFS 298 days; OS 630 days. | [10,52,63,69,71] |
| Statins (e.g., Simvastatin) | HMG-CoA reductase inhibition → reduced isoprenoid synthesis → impaired protein prenylation (RAS, RHO, RAC); antiproliferative, anti-invasive. | In vitro studies in canine mammary carcinoma stem-like cells. | Reduced proliferation and CD44 expression, with enhanced sensitivity to doxorubicin. | Not applicable. | [74,75,77] |
| Propranolol | β-adrenergic receptor blockade; reduced cAMP/PKA and MAPK/ERK signalling; anti-angiogenic, chemosensitizing. | Pilot and retrospective studies in dogs with hemangiosarcoma. | Clinical benefit in 80%; partial regression in metastatic cases; well tolerated with anthracyclines. | MST ≈ 83 days; TTP ≈ 66 days. | [80,81,82] |
| Losartan | AT1R blockade → antifibrotic, anti-inflammatory, immunomodulatory; normalizes tumour stroma and perfusion. | Multicentre osteosarcoma and glioma studies in dogs. | PR in 25%; clinical benefit rate 50%; synergistic effect with toceranib, propranolol, and CSC vaccine. | Median OS 351 days in glioma trial. | [85,86,87] |
| Auranofin | Inhibits thioredoxin reductase, leading to increased ROS and oxidative stress and induction of apoptosis. | Phase I/II clinical trial in dogs with osteosarcoma. | MST 329 vs. 240 days (control); benefit particularly in males. | p = 0.036. | [81,88] |
| Desmopressin | Anti-metastatic; inhibits emboli formation and adhesion to secondary sites; modulates V2 receptors. | Randomized clinical trials in dogs with mammary carcinoma. | Prolonged DFI and OS in some studies; variable reproducibility. | DFI 608 vs. 85 days; OS > 600 vs. 333 days (p < 0.01). | [89,90,92] |
| Disulfiram | ALDH inhibitor; Cu-dependent ROS generation; p97/NPL4 aggregation → proteotoxic stress, apoptosis; radiosensitizer. | In vitro and xenograft studies on canine mammary carcinoma. | Reduced proliferation and migration; apoptosis induction via PI3K/Akt/mTOR inhibition; resistance associated with MUC1 overexpression. | IC50 ≈ 97 nM. | [93,94,100,101] |
3. Synergistic Approaches and Combination Therapies
4. Challenges and Future Directions
4.1. Challenges in Clinical Trials for Drug Repurposing
4.2. Regulatory and Ethical Considerations for Off-Label Drug Use
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giuliano, A.; Horta, R.S.; Vieira, R.A.M.; Hume, K.R.; Dobson, J. Repurposing Drugs in Small Animal Oncology. Animals 2022, 13, 139. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Grimshaw, A.A.; Axson, S.A.; Choe, S.H.; Miller, J.E. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 2022, 22, 970. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Deotarse, P.P.; Jain, A.S.; Baile, M.B.; Kolhe, N.S.; Kulkarni, A.A.; Shri, D.D. Drug Repositioning: A Review. Int. J. Pharma Res. Rev. 2015, 4, 51. [Google Scholar]
- Graul, A.I.; Sorbero, L.; Pina, P.; Tell, M.; Cruces, E.; Rosa, E.; Stringer, M.; Castaner, R.; Revel, L. The year’s new drugs & biologics—2009. Drug News Perspect. 2010, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- Kesselheim, A.S.; Tan, Y.T.; Avorn, J. The Roles Of Academia, Rare Diseases, And Repurposing In The Development Of The Most Transformative Drugs. Health Aff. 2015, 34, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. Trials Commun. 2018, 11, 156–164. [Google Scholar] [CrossRef]
- Zafar, R.; Safdar, I.; Munir, A.; Zahid, M.R.; Serfraz, S. Advantages, Challenges, and Impact of Drug Repurposing for Cancer Treatment; IntechOpen: Hamilton, NJ, USA, 2025. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.-L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- De Campos, C.B.; Lavalle, G.E.; Monteiro, L.N.; Arantes Pêgas, G.R.; Fialho, S.L.; Balabram, D.; Cassali, G.D. Adjuvant thalidomide and metronomic chemotherapy for the treatment of canine malignant mammary gland neoplasms. In Vivo 2018, 32, 1659–1666. [Google Scholar] [CrossRef]
- Bilyi, D.D.; Kovalenko, M.S. Efficacy of metformin treatment for bitches with the mammary gland carcinoma. Theor. Appl. Vet. Med. 2023, 11, 21–28. [Google Scholar] [CrossRef]
- Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology—Patient and health systems opportunities. Nat. Rev. Clin. Oncol. 2015, 12, 732–742. [Google Scholar] [CrossRef]
- Tripathi, S.; Gupta, E.; Galande, S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep. 2024, 7, e2078. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.; Kim, J.H.; Amaya, C.N.; Witcher, C.; Khammanivong, A.; Korpela, D.M.; Brown, D.R.; Taylor, J.; Bryan, B.A.; Dickerson, E.B. Propranolol Sensitizes Vascular Sarcoma Cells to Doxorubicin by Altering Lysosomal Drug Sequestration and Drug Efflux. Front. Oncol. 2021, 10, 614288. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, S.-Y.; Joo, H.-G. Fenbendazole Exhibits Differential Anticancer Effects In Vitro and In Vivo in Models of Mouse Lymphoma. Curr. Issues Mol. Biol. 2023, 45, 8925–8938. [Google Scholar] [CrossRef]
- Locklear, M. Novel Cancer Vaccine Offers New Hope for Dogs—And Those Who Love Them. Yale News, 5 March 2024. Available online: https://news.yale.edu/2024/03/05/novel-cancer-vaccine-offers-new-hope-dogs-and-those-who-love-them (accessed on 3 November 2025).
- Giuliano, A. Companion Animal Model in Translational Oncology; Feline Oral Squamous Cell Carcinoma and Canine Oral Melanoma. Biology 2021, 11, 54. [Google Scholar] [CrossRef]
- Souza, C.H.d.M.; Toledo-Piza, E.; Amorin, R.; Barboza, A.; Tobias, K.M. Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can. Vet. J. 2009, 50, 506–510. [Google Scholar]
- Knapp, D.W.; Richardson, R.C.; Chan, T.C.; Bottoms, G.D.; Widmer, W.R.; DeNicola, D.B.; Teclaw, R.; Bonney, P.L.; Kuczek, T. Piroxicam Therapy in 34 Dogs With Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 1994, 8, 273–278. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Bennet, P.F.; Craig, B.A.; Glickman, N.W.; Mutsaers, A.J.; Snyder, P.W.; Widmer, W.R.; DeGortari, A.E.; Bonney, P.L.; Knapp, D.W. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 2002, 62, 356–358. [Google Scholar] [PubMed]
- Bradbury, M.L.; Mullin, C.M.; Gillian, S.D.; Weisse, C.; Bergman, P.J.; Morges, M.A.; May, L.R.; Vail, D.M.; Clifford, C.A. Clinical outcomes of dogs with transitional cell carcinoma receiving medical therapy, with and without partial cystectomy. Can. Vet. J. 2021, 62, 133–140. [Google Scholar]
- Petrucci, G.N.; Magalhães, T.R.; Dias, M.; Queiroga, F.L. Metronomic chemotherapy: Bridging theory to clinical application in canine and feline oncology. Front. Vet. Sci. 2024, 11, 1397376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Makis, W.; Baghli, I.; Martinez, P. Fenbendazole as an Anticancer Agent? A Case Series of Self-Administration in Three Patients. Case Rep. Oncol. 2025, 18, 856–863. [Google Scholar] [CrossRef]
- Chiang, R.S.; Syed, A.B.; Wright, J.L.; Montgomery, B.; Srinivas, S. Case Report Fenbendazole Enhancing Anti-Tumor Effect: A Case Series. Clin. Oncol. Case Rep. 2021, 4, 2. [Google Scholar]
- Abughanimeh, O.; Evans, T.; Kallam, A. Fenbendazole as a Treatment for Diffuse Large B-Cell Lymphoma. Ann. Hematol. Oncol. 2020, 7, 1284. Available online: www.austinpublishinggroup.com (accessed on 3 November 2025).
- Phan, P.; Stapleton, S.L.; Riggins, G.J.; Koldobskiy, M.A.; Raabe, E.; Cohen, K.J. Phase 1 study of mebendazole therapy for refractory/progressive or recurrent pediatric brain tumors. Neurooncol. Pract. 2025, in press. [Google Scholar] [CrossRef]
- Gao, P.; Dang, C.V.; Watson, J. Unexpected antitumorigenic effect of fenbendazole when combined with supplementary vitamins. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 37–40. [Google Scholar] [PubMed]
- Heckman-Stoddard, B.M.; DeCensi, A.; Sahasrabuddhe, V.V.; Ford, L.G. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017, 60, 1639–1647. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Li, S. The prognostic value of metformin for cancer patients with concurrent diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2014, 16, 707–710. [Google Scholar] [CrossRef]
- Gandini, S.; Puntoni, M.; Heckman-Stoddard, B.M.; Dunn, B.K.; Ford, L.; DeCensi, A.; Szabo, E. Metformin and Cancer Risk and Mortality: A Systematic Review and Meta-analysis Taking into Account Biases and Confounders. Cancer Prev. Res. 2014, 7, 867–885. [Google Scholar] [CrossRef]
- Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Soberanes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.; Budigner, G.S.; et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014, 3, e02242. [Google Scholar] [CrossRef]
- Hirsch, H.A.; Iliopoulos, D.; Tsichlis, P.N.; Struhl, K. Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission. Cancer Res. 2009, 69, 7507–7511. [Google Scholar] [CrossRef]
- Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; et al. Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner. Cell Metab. 2010, 11, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.J.; Pritchard, K.I.; Ennis, M.; Clemons, M.; Graham, M.; Fantus, I.G. Insulin-Lowering Effects of Metformin in Women with Early Breast Cancer. Clin. Breast Cancer 2008, 8, 501–505. [Google Scholar] [CrossRef]
- Fan, Y.; Ren, X.; Wang, Y.; Xu, E.; Wang, S.; Ge, R.; Liu, Y. Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro. Oncol. Lett. 2021, 22, 852. [Google Scholar] [CrossRef]
- Leonel, C.; Borin, T.F.; de Carvalho Ferreira, L.; Moschetta, M.G.; Bajgelman, M.C.; Viloria-Petit, A.M.; de Campos Zuccari, D.A. Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J. Mammary Gland. Biol. Neoplasia 2017, 22, 27–41. [Google Scholar] [CrossRef]
- Deguchi, T.; Hosoya, K.; Kim, S.; Murase, Y.; Yamamoto, K.; Bo, T.; Yasui, H.; Inanami, O.; Okumura, M. Metformin preferentially enhances the radio-sensitivity of cancer stem-like cells with highly mitochondrial respiration ability in HMPOS. Mol. Ther. Oncolytics 2021, 22, 143–151. [Google Scholar] [CrossRef]
- Barbieri, F.; Thellung, S.; Ratto, A.; Carra, E.; Marini, V.; Fucile, C.; Bajetto, A.; Pattarozzi, A.; Würth, R.; Gatti, M.; et al. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: Translational implications for human tumors. BMC Cancer 2015, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Klose, K.; Packeiser, E.M.; Müller, P.; Granados-Soler, J.L.; Schille, J.T.; Goericke-Pesch, S.; Kietzmann, M.; Murua Escobar, H.; Nolte, I. Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS ONE 2021, 16, e0257403. [Google Scholar] [CrossRef]
- Pierro, J.; Saba, C.; McLean, K.; Williams, R.; Karpuzoglu, E.; Prater, R.; Hoover, K.; Gogal, R. Anti-proliferative effect of metformin on a feline injection site sarcoma cell line independent of Mtor inhibition. Res. Vet. Sci. 2017, 114, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Wypij, J.M. Pilot study of oral metformin in cancer-bearing cats. Vet. Comp. Oncol. 2017, 15, 345–354. [Google Scholar] [CrossRef]
- Cosgrove, S.B.; Wren, J.A.; Cleaver, D.M.; Martin, D.D.; Walsh, K.F.; Harfst, J.A.; Follis, S.L.; King, V.L.; Boucher, J.F.; Stegemann, M.R. Efficacy and safety of oclacitinib for the control of pruritus and associated skin lesions in dogs with canine allergic dermatitis. Vet. Dermatol. 2013, 24, 479. [Google Scholar] [CrossRef]
- Gonzales, A.J.; Bowman, J.W.; Fici, G.J.; Zhang, M.; Mann, D.W.; Mitton-Fry, M. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J. Vet. Pharmacol. Ther. 2014, 37, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Jasiecka-Mikołajczyk, A.; Jaroszewski, J.J.; Maślanka, T. Oclacitinib depletes canine CD4+ and CD8+ T cells in vitro. Res. Vet. Sci. 2018, 121, 124–129. [Google Scholar] [CrossRef]
- Jasiecka-Mikołajczyk, A.; Jaroszewski, J.J.; Maślanka, T. Oclacitinib, a Janus Kinase Inhibitor, Reduces the Frequency of IL-4- and IL-10-, but Not IFN-γ-, Producing Murine CD4+ and CD8+ T Cells and Counteracts the Induction of Type 1 Regulatory T Cells. Molecules 2021, 26, 5655. [Google Scholar] [CrossRef]
- Baba, Y.; Asakura, T.; Obayashi, S.; Yamada, M.; Otsuka, M.; Morikawa, S.; The, A.; Mitsui, I.; Osumi, T. Short-term administration of oclacitinib with concomitant medications in canine epitheliotropic lymphoma: A retrospective study of eight dogs. Vet. Dermatol. 2025, 36, 660–667. [Google Scholar] [CrossRef]
- Aslan, J.; Shipstone, M.A.; Sullivan, L.M. Treatment of canine cutaneous epitheliotropic T-cell lymphoma with oclacitinib: A case report. Vet. Dermatol. 2021, 32, 398. [Google Scholar] [CrossRef]
- Nishimori, S.; Okano, K.; Nibe, K.; Igase, M.; Mizuno, T. A case of lingual lymphoma in a dog treated with oclacitinib. J. Vet. Med. Sci. 2025, 87, 24–0432. [Google Scholar] [CrossRef]
- Kan, T.; Takekawa, K.; Kan, R.; Namba, S. Epitheliotropic T-cell lymphoma arising around the paw of a dog responded well to oclacitinib. Jpn. J. Vet. Dermatol. 2024, 30, 147–150. [Google Scholar] [CrossRef]
- Imai, T.; Taguchi, N.; Iyori, K.; Hsiao, Y.H. Clinical response to oclacitinib in canine cutaneous epitheliotropic T-cell lymphoma: A case reports. Thai J. Vet. Med. 2023, 53, 329–334. [Google Scholar] [CrossRef]
- Barrett, L.E.; Gardner, H.L.; Barber, L.G.; Sadowski, A.; London, C.A. Safety and toxicity of combined oclacitinib and carboplatin or doxorubicin in dogs with solid tumors: A pilot study. BMC Vet. Res. 2019, 15, 291. [Google Scholar] [CrossRef] [PubMed]
- Pierini, A.; Sartini, I.; Giorgi, M.; Łebkowska-Wieruszewska, B.; Lisowski, A.; Poapolathep, A.; Marchetti, V. Pharmacokinetics of thalidomide in dogs: Can feeding affect it? A preliminary study. J. Vet. Sci. 2020, 21, e60. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef]
- Kim, J.H.; Scialli, A.R. Thalidomide: The Tragedy of Birth Defects and the Effective Treatment of Disease. Toxicol. Sci. 2011, 122, 1–6. [Google Scholar] [CrossRef]
- Yamamoto, J.; Ito, T.; Yamaguchi, Y.; Handa, H. Discovery of CRBN as a target of thalidomide: A breakthrough for progress in the development of protein degraders. Chem. Soc. Rev. 2022, 51, 6234–6250. [Google Scholar] [CrossRef]
- Gemechu, Y.; Millrine, D.; Hashimoto, S.; Prakash, J.; Sanchenkova, K.; Metwally, H.; Gyanu, P.; Kang, S.; Kishimoto, T. Humanized cereblon mice revealed two distinct therapeutic pathways of immunomodulatory drugs. Proc. Natl. Acad. Sci. USA 2018, 115, 11802–11807. [Google Scholar] [CrossRef] [PubMed]
- Donovan, K.A.; An, J.; Nowak, R.P.; Yuan, J.C.; Fink, E.C.; Berry, B.C.; Ebert, B.L.; Fischer, E.S. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 2018, 7, e38430. [Google Scholar] [CrossRef]
- Belair, D.G.; Lu, G.; Waller, L.E.; Gustin, J.A.; Collins, N.D.; Kolaja, K.L. Thalidomide Inhibits Human iPSC Mesendoderm Differentiation by Modulating CRBN-dependent Degradation of SALL4. Sci. Rep. 2020, 10, 2864. [Google Scholar] [CrossRef] [PubMed]
- Fink, E.C.; McConkey, M.; Adams, D.N.; Haldar, S.D.; Kennedy, J.A.; Guirguis, A.A.; Udeshi, N.D.; Mani, D.R.; Chen, M.; Liddicoat, B.; et al. CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 2018, 132, 1535–1544. [Google Scholar] [CrossRef]
- Ito, T.; Handa, H. Molecular mechanisms of thalidomide and its derivatives. Proc. Jpn. Acad. Ser. B 2020, 96, 189–203. [Google Scholar] [CrossRef]
- Teo, S.K.; Evans, M.G.; Brockman, M.J.; Ehrhart, J.; Morgan, J.M.; Stirling, D.I.; Thomas, S.D. Safety profile of thalidomide after 53 weeks of oral administration in beagle dogs. Toxicol. Sci. 2001, 59, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, F.; Fujita, Y.; Fukazawa, E.; Kobayashi, T. Safety and pharmacokinetics of thalidomide in tumor-bearing dogs. J. Vet. Med. Sci. 2023, 85, 1261–1268. [Google Scholar] [CrossRef]
- Bray, J.P.; Munday, J.S. Thalidomide Reduces Vascular Endothelial Growth Factor Immunostaining in Canine Splenic Hemangiosarcoma. Vet. Sci. 2020, 7, 67. [Google Scholar] [CrossRef]
- Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Res. C Embryo Today 2015, 105, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.W.; Caldas-Garcia, G.B.; Gomes, J.D.A.; Fraga, L.R.; Schuler-Faccini, L.; Recamonde-Mendoza, M.; Paixão-Côrtes, V.R.; Vianna, F.S.L. Comparative Genomics Identifies Putative Interspecies Mechanisms Underlying Crbn-Sall4-Linked Thalidomide Embryopathy. Front. Genet. 2021, 12, 680217. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Zhang, C.-W.; Wang, Y.-N.; Ge, X.-L. Lenalidomide use in multiple myeloma (Review). Mol. Clin. Oncol. 2023, 20, 7. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Sonneveld, P.; Leung, N.; Merlini, G.; Ludwig, H.; Kastritis, E.; Goldschmidt, H.; Joshua, D.; Orlowski, R.Z.; Powles, R.; et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J. Clin. Oncol. 2016, 34, 1544–1557. [Google Scholar] [CrossRef]
- Bray, J.P.; Orbell, G.; Cave, N.; Munday, J.S. Does thalidomide prolong survival in dogs with splenic haemangiosarcoma? J. Small Anim. Pract. 2018, 59, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Polton, G.; Finotello, R.; Sabattini, S.; Rossi, F.; Laganga, P.; Vasconi, M.E.; Barbanera, A.; Stiborova, K.; Rohrer Bley, C.; Marconato, L. Survival analysis of dogs with advanced primary lung carcinoma treated by metronomic cyclophosphamide, piroxicam and thalidomide. Vet. Comp. Oncol. 2018, 16, 399–408. [Google Scholar] [CrossRef]
- Ciccarelli, S.; Perrone, C.; Franchini, D.; Di Bello, A.; Finotello, R.; Leo, C. Abstracts from the ESVONC Annual Congress, 22–24 May 2025. Vet. Comp. Oncol. 2025, 23, 3–27. [Google Scholar] [CrossRef]
- Clendening, J.W.; Penn, L.Z. Targeting tumor cell metabolism with statins. Oncogene 2012, 31, 4967–4978. [Google Scholar] [CrossRef]
- Slomiany, M.G.; Grass, G.D.; Robertson, A.D.; Yang, X.Y.; Maria, B.L.; Beeson, C.; Toole, B.P. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res. 2009, 69, 1293–1301. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Hu, B.; Shi, J.; Chen, Y.; Huang, K. New insights into the therapeutic potentials of statins in cancer. Front. Pharmacol. 2023, 14, 1188926. [Google Scholar] [CrossRef]
- Beckwitt, C.H.; Brufsky, A.; Oltvai, Z.N.; Wells, A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res. 2018, 20, 144. [Google Scholar] [CrossRef]
- Mandal, C.C.; Ghosh-Choudhury, N.; Yoneda, T.; Choudhury, G.G.; Ghosh-Choudhury, N. Simvastatin Prevents Skeletal Metastasis of Breast Cancer by an Antagonistic Interplay between p53 and CD44. J. Biol. Chem. 2011, 286, 11314–11327. [Google Scholar] [CrossRef]
- Torres, C.G.; Olivares, A.; Stoore, C. Simvastatin exhibits antiproliferative effects on spheres derived from canine mammary carcinoma cells. Oncol. Rep. 2015, 33, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Fjæstad, K.Y.; Rømer, A.M.A.; Goitea, V.; Johansen, A.Z.; Thorseth, M.L.; Carretta, M.; Engelholm, L.H.; Grøntved, L.; Junker, N.; Madsen, D.H. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene 2022, 41, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Hardianti, M.S.; Tyagita, N.; Safitri, A.H. Benefits of β-blockers in cancer treatment. Oncol. Clin. Pract. 2023, 19, 90–100. [Google Scholar] [CrossRef]
- Pantziarka, P.; Bouche, G.; Sukhatme, V.; Meheus, L.; Rooman, I.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience 2016, 10, 680. [Google Scholar] [CrossRef]
- Terauchi, M.; Fujii, Y.; Goto, S.; Iwasaki, R.; Yoshikawa, R.; Mori, T. Efficacy and adverse events of anthracycline and propranolol combination in five dogs with stage 3 hemangiosarcoma. Open Vet. J. 2023, 13, 801. [Google Scholar] [CrossRef]
- Zaniboni, F.; Sabattini, S.; Romito, G.; Mazzoldi, C.; Chalfon, C.; Marconato, L. ESVONC-O-12: Use of propranolol in combination with chemotherapy in dogs with inoperable and/or metastatic hemangiosarcoma. In Proceedings of the 2025 European Society of Veterinary Oncology (ESVONC) Annual Congress; Oral Presentation: Valencia, Spain, 2025. [Google Scholar]
- Diop-Frimpong, B.; Chauhan, V.P.; Krane, S.; Boucher, Y.; Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 2909–2914. [Google Scholar] [CrossRef]
- O’Rawe, M.; Kilmister, E.J.; Mantamadiotis, T.; Kaye, A.H.; Tan, S.T.; Wickremesekera, A.C. The Renin–Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers 2021, 13, 4004. [Google Scholar] [CrossRef]
- Pinter, M.; Jain, R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med. 2017, 9, eaan5616. [Google Scholar] [CrossRef] [PubMed]
- Regan, D.P.; Chow, L.; Das, S.; Haines, L.; Palmer, E.; Kurihara, J.N.; Coy, J.W.; Mathias, A.; Thamm, D.H.; Gustafson, D.L.; et al. Losartan Blocks Osteosarcoma-Elicited Monocyte Recruitment, and Combined With the Kinase Inhibitor Toceranib, Exerts Significant Clinical Benefit in Canine Metastatic Osteosarcoma. Clin. Cancer Res. 2022, 28, 662–676. [Google Scholar] [CrossRef]
- Ammons, D.T.; Guth, A.; Rozental, A.J.; Kurihara, J.; Marolf, A.J.; Chow, L.; Griffin, J.F., 4th; Makii, R.; MacQuiddy, B.; Boss, M.-K.; et al. Reprogramming the Canine Glioma Microenvironment with Tumor Vaccination plus Oral Losartan and Propranolol Induces Objective Responses. Cancer Res. Commun. 2022, 2, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Topkas, E.; Cai, N.; Cumming, A.; Hazar-Rethinam, M.; Gannon, O.M.; Burgess, M.; Saunders, N.A.; Endo-Munoz, L. Auranofin Is a Potent Suppressor of Osteosarcoma Metastasis. Oncotarget 2016, 7, 831–844. [Google Scholar] [CrossRef]
- Sorenmo, K.; Durham, A.C.; Evans, B.; Scavello, H.; Stefanovski, D. A prospective randomized trial of desmopressin in canine mammary carcinoma. Vet. Comp. Oncol. 2020, 18, 796–803. [Google Scholar] [CrossRef]
- Hermo, G.A.; Turic, E.; Angelico, D.; Scursoni, A.M.; Gomez, D.E.; Gobello, C.; Alonso, D.F. Effect of Adjuvant Perioperative Desmopressin in Locally Advanced Canine Mammary Carcinoma and Its Relation to Histologic Grade. J. Am. Anim. Hosp. Assoc. 2011, 47, 21–27. [Google Scholar] [CrossRef]
- Benavente, M.A.; Bianchi, C.P.; Imperiale, F.; Aba, M.A. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells. Front. Vet. Sci. 2016, 3, 119. [Google Scholar] [CrossRef]
- Wood, C.J.; Chu, M.L.; Selmic, L.E.; Mayhew, P.D.; Holt, D.E.; Martano, M.; Séguin, B.; Singh, A.; Boston, S.E.; Lux, C.; et al. Effect of Perioperative Desmopressin in Cats with Mammary Carcinoma Treated with Bilateral Mastectomy. Vet. Comp. Oncol. 2021, 19, 724–734. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, L.; Luo, J.; Wang, L.; Zhang, Q.; Cao, J.; Jiao, Y. Disulfiram Alone Functions as a Radiosensitizer for Pancreatic Cancer Both In Vitro and In Vivo. Front. Oncol. 2021, 11, 683695. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Huang, T. Overview of Antabuse® (Disulfiram) in Radiation and Cancer Biology. Cancer Manag. Res. 2021, 13, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, Y.; Zhou, C.; Wan, R.; Li, Y. Anticancer effects of disulfiram: A systematic review of in vitro, animal, and human studies. Syst. Rev. 2022, 11, 109. [Google Scholar] [CrossRef]
- Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; et al. Alcohol-Abuse Drug Disulfiram Targets Cancer via p97 Segregase Adaptor NPL4. Nature 2017, 552, 194–199. [Google Scholar] [CrossRef]
- Kannappan, V.; Ali, M.; Small, B.; Rajendran, G.; Elzhenni, S.; Taj, H.; Wang, W.; Dou, Q.P. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front. Mol. Biosci. 2021, 8, 741316. [Google Scholar] [CrossRef]
- Gao, X.; Huang, H.; Pan, C.; Mei, Z.; Yin, S.; Zhou, L.; Zheng, S. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers 2022, 14, 4715. [Google Scholar] [CrossRef]
- Zeng, M.; Wu, B.; Wei, W.; Jiang, Z.; Li, P.; Quan, Y.; Hu, X. Disulfiram: A Novel Repurposed Drug for Cancer Therapy. Chin. Med. J. 2024, 137, 1389–1398. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, Z.; Lin, Z.; Zhou, C.; Liu, G.; Lin, J.; Zhang, D.; Lin, D. Overexpression of Mucin 1 Suppresses the Therapeutical Efficacy of Disulfiram against Canine Mammary Tumor. Animals 2021, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Campian, J.L.; DeWees, T.A.; Skrott, Z.; Mistrik, M.; Johanns, T.M.; Ansstas, G.; Butt, O.; Leuthardt, E.; Dunn, G.P.; et al. A Phase 1/2 Study of Disulfiram and Copper with Concurrent Radiation Therapy and Temozolomide for Patients with Newly Diagnosed Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 738–749. [Google Scholar] [CrossRef]
- Ioakeim-Skoufa, I.; Tobajas-Ramos, N.; Menditto, E.; Aza-Pascual-Salcedo, M.; Gimeno-Miguel, A.; Orlando, V.; González-Rubio, F.; Fanlo-Villacampa, A.; Lasala-Aza, C.; Ostasz, E.; et al. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Van Norman, G.A. Off-Label Use vs Off-Label Marketing of Drugs: Part 1: Off-Label Use—Patient Harms and Prescriber Responsibilities. JACC Basic Transl. Sci. 2023, 8, 224–233. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; European Union: Brussels, Belgium, 2018. [Google Scholar]
- U.S. Government Publishing Office (GPO). Title 21-Food and Drugs Chapter I-Food and Drug Administration, Department of Health and Human Services Subchapter E-Animal Drugs, Feeds, and Related Products; U.S. Government Publishing Office (GPO): Washington, DC, USA, 2025.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccarelli, S.; Perrone, C.; Cavalera, M.A.; Giuliano, A. Drug Repurposing in Veterinary Oncology: Myth or Reality? Vet. Sci. 2025, 12, 1067. https://doi.org/10.3390/vetsci12111067
Ciccarelli S, Perrone C, Cavalera MA, Giuliano A. Drug Repurposing in Veterinary Oncology: Myth or Reality? Veterinary Sciences. 2025; 12(11):1067. https://doi.org/10.3390/vetsci12111067
Chicago/Turabian StyleCiccarelli, Stefano, Chiara Perrone, Maria Alfonsa Cavalera, and Antonio Giuliano. 2025. "Drug Repurposing in Veterinary Oncology: Myth or Reality?" Veterinary Sciences 12, no. 11: 1067. https://doi.org/10.3390/vetsci12111067
APA StyleCiccarelli, S., Perrone, C., Cavalera, M. A., & Giuliano, A. (2025). Drug Repurposing in Veterinary Oncology: Myth or Reality? Veterinary Sciences, 12(11), 1067. https://doi.org/10.3390/vetsci12111067

