Locomotory Profile, Heart Rate Variability, and Blood Parameters Reveal Adaptive Responses in Endurance Horses Trained on Deep Sand
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Training Session
2.3. Equimetre® Data Analysis
2.4. Blood Parameters
2.5. Statistical Analyses
3. Results
3.1. Horses and Environment
3.2. Locomotor Parameters
3.3. HR and HRV
3.4. Blood Analysis
4. Discussion
4.1. Locomotion
4.2. HRV
4.3. Hematological Adaptation
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagy, A.; Murray, J.K.; Dyson, S.J. Horse-, rider-, venue- and environment-related risk factors for elimination from Fédération Equestre Internationale endurance rides due to lameness and metabolic reasons. Equine Vet. J. 2014, 46, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, K.W.; Kaneps, A.J.; Geo, R.J.; Van Erck-Westergren, E. Equine Sports Medicine and Surgery: Basic and Clinical Sciences of the Equine Athlete, 3rd ed.; Elsevier: St. Louis, MO, USA, 2025. [Google Scholar]
- Robert, C.; Goachet, A.-G.; Fraipont, A.; Votion, D.-M.; Van Erck-Westergren, E.; Leclerc, J.-L. Hydration and electrolyte balance in horses during an endurance season. Equine Vet. J. Suppl. 2010, 42, 98–104. [Google Scholar] [CrossRef]
- Marlin, D.; Nankervis, K.J. Equine Exercise Physiology, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Cottin, F.; Barrey, E.; Lopes, P.; Billat, V. Effect of repeated exercise and recovery on heart rate variability in elite trotting horses during high intensity interval training. Equine Vet. J. Suppl. 2006, 38, 204–209. [Google Scholar] [CrossRef]
- Munsters, C.; Siegers, E.; Sloet van Oldruitenborgh-Oosterbaan, M. Effect of a 14-Day Period of Heat Acclimation on Horses Using Heated Indoor Arenas in Preparation for Tokyo Olympic Games. Animals 2024, 14, 546. [Google Scholar] [CrossRef]
- Paris, A.; Accorroni, L.; Pepe, M.; Cappelli, K.; Chiaradia, E.; Mecocci, S.; Tognoloni, A.; Passamonti, F.; Pilati, N.; Cercone, M.; et al. Retrospective study of standardised field exercise test on injury development, blood lactate and recovery time in endurance horses. Comp. Exerc. Physiol. 2024, 20, 109–120. [Google Scholar] [CrossRef]
- Kapteijn, C.M.; Frippiat, T.; van Beckhoven, C.; van Lith, H.A.; Endenburg, N.; Vermetten, E.; Rodenburg, T.B. Measuring heart rate variability using a heart rate monitor in horses (Equus caballus) during groundwork. Front. Vet. Sci. 2022, 9, 939534. [Google Scholar] [CrossRef]
- ter Woort, F.; Dubois, G.; Didier, M.; Van Erck-Westergren, E. Validation of an equine fitness tracker: Heart rate and heart rate variability. Equine Vet. J. 2021, 17, 189–198. [Google Scholar] [CrossRef]
- Sandercock, G.R.H.; Brodie, D.A. The use of heart rate variability measures to assess autonomic control during exercise. Scand. J. Med. Sci. Sports 2006, 16, 302–313. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef]
- Brenner, I.K.; Thomas, S.; Shephard, R.J. Autonomic regulation of the circulation during exercise and heat exposure. Inferences from heart rate variability. Sports Med. 1998, 26, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Anderson, A.S. The Sympathetic Nervous System and Heart Failure. Cardiol. Clin. 2014, 32, 33–45. [Google Scholar] [CrossRef]
- Younes, M.; Robert, C.; Barrey, E.; Cottin, F. Effects of Age, Exercise Duration, and Test Conditions on Heart Rate Variability in Young Endurance Horses. Front. Physiol. 2016, 7, 155. [Google Scholar] [CrossRef]
- Bitschnau, C.; Wiestner, T.; Trachsel, D.S.; Auer, J.A.; Weishaupt, M.A. Performance parameters and post exercise heart rate recovery in Warmblood sports horses of different performance levels. Equine Vet. J. Suppl. 2010, 42, 17–22. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2015. [Google Scholar]
- Equimetre. Available online: https://training.arioneo.com/en/equimetre-2-0-our-sensors-big-changes/ (accessed on 20 August 2025).
- Calle-González, N.; Lo Feudo, C.M.; Ferrucci, F.; Requena, F.; Stucchi, L.; Muñoz, A. Objective Assessment of Equine Locomotor Symmetry Using an Inertial Sensor System and Artificial Intelligence: A Comparative Study. Animals 2024, 14, 921. [Google Scholar] [CrossRef]
- Savoini, B.; Bertolaccini, J.; Montavon, S.; Deriaz, M. Convolutional neural network for early detection of lameness and irregularity in horses using an IMU sensor. arXiv 2025. [Google Scholar] [CrossRef]
- Parmentier, J.I.M.; Aarts, R.M.; Hernlund, E.; Rhodin, M.; van der Zwaag, B.J. Detecting and measuring respiratory events in horses during exercise with a microphone: Deep learning vs. standard signal processing. arXiv 2025. [Google Scholar] [CrossRef]
- ter Woort, F.; Dubois, G.; Didier, M.; Van Erck-Westergren, E. Validation of an equine fitness tracker: ECG quality and arrhythmia detection. Equine Vet. J. 2022, 55, 336–343. [Google Scholar] [CrossRef]
- Franklin, S.H.; Van Erck-Westergren, E.; Bayly, W.M. Respiratory responses to exercise in the horse. Equine Vet. J. 2012, 44, 726–732. [Google Scholar] [CrossRef] [PubMed]
- van Vollenhoven, E.; Fletcher, L.; Page, P.C.; Ganswindt, A.; Grant, C.C. Heart Rate Variability in Healthy, Adult Pony Mares During Transrectal Palpation of the Reproductive Tract by Veterinary Students. J. Equine Vet. Sci. 2017, 58, 68–77. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- O’Halloran, J.; Hamill, J.; McDermott, W.J.; Remelius, J.G.; Van Emmerik, R.E.A. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency. Eur. J. Appl. Physiol. 2012, 112, 929–940. [Google Scholar] [CrossRef]
- Cottin, F.; Metayer, N.; Goachet, A.G.; Julliand, V.; Slawinski, J.; Billat, V.; Barrey, E. Oxygen consumption and gait variables of Arabian endurance horses measured during a field exercise test. Equine Vet. J. Suppl. 2010, 42, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.J.; Woakes, A.J.; Anderson, L.S.; Roberts, C.A.; Marlin, D.J. Stride length and respiratory tidal volume in exercising thoroughbred horses. Respir. Physiol. 1993, 93, 51–56. [Google Scholar] [CrossRef]
- Binnie, M.J.; Dawson, B.; Pinnington, H.; Landers, G.; Peeling, P. Sand training: A review of current research and practical applications. J. Sports Sci. 2014, 32, 8–15. [Google Scholar] [CrossRef]
- Puccetti, M.; Beccati, F.; Denoix, J.-M. Bone stress injuries and fatigue fractures of the pelvis in endurance horses. Equine Vet. J. 2022, 54, 1064–1075. [Google Scholar] [CrossRef]
- Schrurs, C.; Blott, S.; Dubois, G.; Van Erck-Westergren, E.; Gardner, D.S. Locomotory Profiles in Thoroughbreds: Peak Stride Length and Frequency in Training and Association with Race Outcomes. Animals 2022, 12, 3269. [Google Scholar] [CrossRef]
- Hautala, A.; Tulppo, M.P.; Mäkikallio, T.H.; Laukkanen, R.; Nissilä, S.; Huikuri, H.V. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin. Physiol. 2001, 21, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, J.J.; Challapalli, S.; Tung, R.; Parker, M.A.; Kadish, A.H. Relationship of heart rate variability to parasympathetic effect. Circulation 2001, 103, 1977–1983. [Google Scholar] [CrossRef]
- Mourot, L.; Bouhaddi, M.; Tordi, N.; Rouillon, J.-D.; Regnard, J. Short- and long-term effects of a single bout of exercise on heart rate variability: Comparison between constant and interval training exercises. Eur. J. Appl. Physiol. 2004, 92, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, K.W.; Kaneps, A.J.; Geor, R.J. Equine Exercise Physiology: The Science of Exercise in the Athletic Horse; Elsevier: St. Louis, MO, USA, 2008. [Google Scholar]
- de Siqueira, R.F.; Fernandes, W.R. Dynamic Hematological Responses in Endurance Horses: Unraveling Blood Physiological Markers of Exercise Stress and Recovery. Int. J. Equine Sci. 2024, 3, 74–81. [Google Scholar] [CrossRef]
- Lindblom, H.; Pernett, F.; Schagatay, E.; Holmström, P. Effect of exercise intensity and apnea on splenic contraction and hemoglobin increase in well-trained cross-country skiers. Eur. J. Appl. Physiol. 2024, 124, 2057–2067. [Google Scholar] [CrossRef]
- Hodgson, D.R.; McKeever, K.H.; McGowan, C.M. The Athletic Horse: Principles and Practice of Equine Sports Medicine, 2nd ed.; Saunders Elsevier: St. Louis, MO, USA, 2014. [Google Scholar]
- Vlaeva, R.; Sabev, S.; Ivanova, Z. Hematological parameters in endurance horses pre and post 120 km race. Rev. Ciênc. Agroveterinár. 2023, 22, 72–77. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.; Malin, K.; Dąbrowska, I.; Grzędzicka, J.; Ostaszewski, P.; Carter, C. Immunology of Physical Exercise: Is Equus caballus an Appropriate Animal Model for Human Athletes? Int. J. Mol. Sci. 2024, 25, 5210. [Google Scholar] [CrossRef] [PubMed]
- Zandoná Meleiro, M.C.; de Carvalho, H.J.C.; Ribeiro, R.R.; da Silva, M.D.; Salles Gomes, C.M.; Miglino, M.A.; de Santis Prada, I.L. Immune Functions Alterations Due to Racing Stress in Thoroughbred Horses. Animals 2022, 12, 1203. [Google Scholar] [CrossRef] [PubMed]


| HRV Parameters | HIGH_EXERCISE Mean ± SD | REC_EXERCISE Mean ± SD | ΔHIGH-REC % |
|---|---|---|---|
| MEAN RR ms | 365 ± 21 | 464 ± 29 | 27 ± 11 |
| MEAN HR beats/min | 165 ± 9 | 130 ± 8 | −21 ± 7 |
| HR MIN beats/min | 129 ± 13 | 113 ± 14 | −12 ± 13 |
| HR MAX beats/min | 180 ± 10 | 173 ± 12 | −4 ± 9 |
| SDNN ms | 4 ± 1 | 6 ± 2 | 64 ± 67 |
| RMSSD ms | 4 ± 2 | 4 ± 1 | −10 ± 44 |
| PNS | −4 ± 0.1 | −4 ± 0.2 | −17 ± 6 |
| SNS | 16 ± 2.848 | 12 ± 3 | −25 ± 23 |
| SD1% | 44 ± 7 | 27 ± 8 | −37 ± 22 |
| SD2% | 56 ± 9 | 73 ± 8 | 29 ± 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porzio, E.; Mecocci, S.; Chillemi, G.; Puccetti, M.; Pepe, M.; Cappelli, K.; Beccati, F. Locomotory Profile, Heart Rate Variability, and Blood Parameters Reveal Adaptive Responses in Endurance Horses Trained on Deep Sand. Vet. Sci. 2025, 12, 1028. https://doi.org/10.3390/vetsci12111028
Porzio E, Mecocci S, Chillemi G, Puccetti M, Pepe M, Cappelli K, Beccati F. Locomotory Profile, Heart Rate Variability, and Blood Parameters Reveal Adaptive Responses in Endurance Horses Trained on Deep Sand. Veterinary Sciences. 2025; 12(11):1028. https://doi.org/10.3390/vetsci12111028
Chicago/Turabian StylePorzio, Elisabetta, Samanta Mecocci, Giovanni Chillemi, Massimo Puccetti, Marco Pepe, Katia Cappelli, and Francesca Beccati. 2025. "Locomotory Profile, Heart Rate Variability, and Blood Parameters Reveal Adaptive Responses in Endurance Horses Trained on Deep Sand" Veterinary Sciences 12, no. 11: 1028. https://doi.org/10.3390/vetsci12111028
APA StylePorzio, E., Mecocci, S., Chillemi, G., Puccetti, M., Pepe, M., Cappelli, K., & Beccati, F. (2025). Locomotory Profile, Heart Rate Variability, and Blood Parameters Reveal Adaptive Responses in Endurance Horses Trained on Deep Sand. Veterinary Sciences, 12(11), 1028. https://doi.org/10.3390/vetsci12111028

