Duck Plague Virus Full-Length UL15 Protein Is a Multifunctional Enzyme Which Not Only Possesses Nuclease Activity but Also Exerts ATPase and DNA-Binding Activity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cloning, Mutation, and Protein Purification
2.2. Nuclease Activity Assay
2.3. DNA Binding Assay
2.4. ATPase Activity Assay
2.5. Structure Prediction and Analysis of DPV pUL15
3. Results
3.1. DPV Full-Length pUL15 Exhibits Non-Specific Nuclease Activity, Enhanced by Metal Ions
3.2. DPV pUL15FL Exhibits Non-Specific DNA-Binding Ability
3.3. The N-Terminus of pUL15 Is Responsible for Its Interaction with DNA
3.4. The N-Terminus of DPV pUL15 Not Only Exerted the Ability to Bind DNA, but Also Possessed ATPase Activity
3.5. Structure Prediction and Functional Model of DPV pUL15
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Primers | Primer Sequences (5′ to 3′) |
---|---|
pET28a-UL15N-F/R | F: ATGGGTCGCGGATCCGAATTCATGTTCGGGGCAACTTTC |
R: GGTGGTGGTGGTGGTGCTCGAGTCTTTTCATTACCCGCTATCTCAC | |
pET28a-UL15NM-F/R | F: TCAACAAACGCGCAAGTATTT |
R: AAATACTTGCGCGTTTGTTGA | |
Pac-F/R | F: CCCCCCGCCAAAAAAGCC |
R: CGCCCTTCCATAGCAGTGCAT | |
unPac-F/R | F: TGCAGTGCTGCCATAACCATG |
R: GCTCCGGTTCCCAACGAT |
Substrate | Substrate Sequences (5′ to 3′) |
---|---|
PAC | CCCCCCGCCAAAAAAGCCCCGCCCCCTTTTTTCGATGGCCCGGGAAATGGCAAAGGGGGTCCAACGCCTCTCCCGGCCGCGGCCGCGCAGAAAAAAATTTTTGCCTGACGTGCCTTCAATGCACTGCTATGGAAGGGCG |
UnPac | TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGC |
ssDNA | TCTCATCATTTTGGCAAAGAATTCATGGAGCAGAAGCTGATCTCAGAGGAGGACCTGGAGCAGAAGCTGATCTCAGAGGAGGACCTGGAGCAGAAGCTGATCTCAGAGGAGGACCTGTTCGGGGCAACTTTCGG |
References
- Baines, J.D. Herpes simplex virus capsid assembly and DNA packaging: A present and future antiviral drug target. Trends Microbiol. 2011, 19, 606–613. [Google Scholar] [CrossRef]
- Neuber, S.; Wagner, K.; Messerle, M.; Borst, E.M. The C-terminal part of the human cytomegalovirus terminase subunit pUL51 is central for terminase complex assembly. J. Gen. Virol. 2018, 99, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.H.; Wu, M.C.; Wu, C.C.; Chen, Y.C.; Lin, S.F.; Hsu, J.T.; Yang, C.S.; Tsai, C.H.; Takada, K.; Chen, M.R.; et al. Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J. Virol. 2014, 88, 4962–4975. [Google Scholar] [CrossRef] [PubMed]
- Smits, C.; Chechik, M.; Kovalevskiy, O.V.; Shevtsov, M.B.; Foster, A.W.; Alonso, J.C.; Antson, A.A. Structural basis for the nuclease activity of a bacteriophage large terminase. EMBO Rep. 2009, 10, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Christensen, T.E.; Kamau, Y.N.; Tang, L. Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Proc. Natl. Acad. Sci. USA 2013, 110, 8075–8080. [Google Scholar] [CrossRef]
- McVoy, M.A.; Adler, S.P. Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J. Virol. 1994, 68, 1040–1051. [Google Scholar] [CrossRef]
- Heming, J.D.; Huffman, J.B.; Jones, L.M.; Homa, F.L. Isolation and characterization of the herpes simplex virus 1 terminase complex. J. Virol. 2014, 88, 225–236. [Google Scholar] [CrossRef]
- Beard, P.M.; Duffy, C.; Baines, J.D. Quantification of the DNA cleavage and packaging proteins U(L)15 and U(L)28 in A and B capsids of herpes simplex virus type 1. J. Virol. 2004, 78, 1367–1374. [Google Scholar] [CrossRef]
- Deiss, L.P.; Chou, J.; Frenkel, N. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol. 1986, 59, 605–618. [Google Scholar] [CrossRef]
- Heming, J.D.; Conway, J.F.; Homa, F.L. Herpesvirus Capsid Assembly and DNA Packaging. Adv. Anat. Embryol. Cell Biol. 2017, 223, 119–142. [Google Scholar] [CrossRef]
- Yang, K.; Homa, F.; Baines, J.D. Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J. Virol. 2007, 81, 6419–6433. [Google Scholar] [CrossRef]
- Huet, A.; Huffman, J.B.; Conway, J.F.; Homa, F.L. Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex. J. Virol. 2020, 94, e01534-20. [Google Scholar] [CrossRef]
- Beard, P.M.; Taus, N.S.; Baines, J.D. DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J. Virol. 2002, 76, 4785–4791. [Google Scholar] [CrossRef]
- Neuber, S.; Wagner, K.; Goldner, T.; Lischka, P.; Steinbrueck, L.; Messerle, M.; Borst, E.M. Mutual Interplay between the Human Cytomegalovirus Terminase Subunits pUL51, pUL56, and pUL89 Promotes Terminase Complex Formation. J. Virol. 2017, 91, e2316–e2384. [Google Scholar] [CrossRef]
- Abbotts, A.P.; Preston, V.G.; Hughes, M.; Patel, A.H.; Stow, N.D. Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J. Gen. Virol. 2000, 81, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, P.; Wang, N.; Chen, Z.; Su, D.; Zhou, Z.; Rao, Z.; Wang, X. Architecture of the herpesvirus genomepackaging complex and implications for DNA translocation. Protein Cell 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Mahler, B.P.; Bujalowski, P.J.; Mao, H.; Dill, E.A.; Jardine, P.J.; Choi, K.H.; Morais, M.C. NMR structure of a vestigial nuclease provides insight into the evolution of functional transitions in viral dsDNA packaging motors. Nucleic Acids Res. 2020, 48, 11737–11749. [Google Scholar] [CrossRef]
- Yang, K.; Wills, E.G.; Baines, J.D. A mutation in UL15 of herpes simplex virus 1 that reduces packaging of cleaved genomes. J. Virol. 2011, 85, 11972–11980. [Google Scholar] [CrossRef] [PubMed]
- White, C.A.; Stow, N.D.; Patel, A.H.; Hughes, M.; Preston, V.G. Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J. Virol. 2003, 77, 6351–6358. [Google Scholar] [CrossRef]
- Yang, K.; Wills, E.; Baines, J.D. The putative leucine zipper of the UL6-encoded portal protein of herpes simplex virus 1 is necessary for interaction with pUL15 and pUL28 and their association with capsids. J. Virol. 2009, 83, 4557–4564. [Google Scholar] [CrossRef]
- Trus, B.L.; Cheng, N.; Newcomb, W.W.; Homa, F.L.; Brown, J.C.; Steven, A.C. Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J. Virol. 2004, 78, 12668–12671. [Google Scholar] [CrossRef]
- Hwang, J.S.; Bogner, E. ATPase activity of the terminase subunit pUL56 of human cytomegalovirus. J. Biol. Chem. 2002, 277, 6943–6948. [Google Scholar] [CrossRef] [PubMed]
- Salmon, B.; Cunningham, C.; Davison, A.J.; Harris, W.J.; Baines, J.D. The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J. Virol. 1998, 72, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- McNab, A.R.; Desai, P.; Person, S.; Roof, L.L.; Thomsen, D.R.; Newcomb, W.W.; Brown, J.C.; Homa, F.L. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J. Virol. 1998, 72, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, C.; Weller, S.K. The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J. Virol. 1998, 72, 2463–2473. [Google Scholar] [CrossRef]
- Ogasawara, M.; Suzutani, T.; Yoshida, I.; Azuma, M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: Location of UL25 product in the capsid and demonstration that it binds DNA. J. Virol. 2001, 75, 1427–1436. [Google Scholar] [CrossRef]
- Gates, S.N.; Martin, A. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Sci. 2020, 29, 407–419. [Google Scholar] [CrossRef]
- Puchades, C.; Sandate, C.R.; Lander, G.C. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat. Rev. Mol. Cell Biol. 2020, 21, 43–58. [Google Scholar] [CrossRef]
- Iyer, L.M.; Makarova, K.S.; Koonin, E.V.; Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: Implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 2004, 32, 5260–5279. [Google Scholar] [CrossRef]
- Selvarajan Sigamani, S.; Zhao, H.; Kamau, Y.N.; Baines, J.D.; Tang, L. The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J. Virol. 2013, 87, 7140–7148. [Google Scholar] [CrossRef]
- Scheffczik, H.; Savva, C.G.; Holzenburg, A.; Kolesnikova, L.; Bogner, E. The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res. 2002, 30, 1695–1703. [Google Scholar] [CrossRef]
- Theiß, J.; Sung, M.W.; Holzenburg, A.; Bogner, E. Full-length human cytomegalovirus terminase pUL89 adopts a two-domain structure specific for DNA packaging. PLoS Pathog. 2019, 15, e1008175. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Wang, M.; Wu, Y.; Bin, T.; Ou, X.; Mao, S.; Huang, J.; Sun, D.; Gao, Q.; et al. Duck plague virus pUL15 performs a nonspecial cleavage activity through its C terminal nuclease domain in vitro. Vet. Microbiol. 2023, 279, 109671. [Google Scholar] [CrossRef] [PubMed]
- Adelman, K.; Salmon, B.; Baines, J.D. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc. Natl. Acad. Sci. USA 2001, 98, 3086–3091. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sampson, L.; Parr, R.; Casjens, S. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol. Microbiol. 2002, 45, 1631–1646. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Lurz, R.; Alonso, J.C. The small subunit of the terminase enzyme of Bacillus subtilis bacteriophage SPP1 forms a specialized nucleoprotein complex with the packaging initiation region. J. Mol. Biol. 1995, 252, 386–398. [Google Scholar] [CrossRef]
- Bogner, E.; Radsak, K.; Stinski, M.F. The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J. Virol. 1998, 72, 2259–2264. [Google Scholar] [CrossRef]
- Roy, A.; Bhardwaj, A.; Datta, P.; Lander, G.C.; Cingolani, G. Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 2012, 20, 1403–1413. [Google Scholar] [CrossRef]
- Dhama, K.; Kumar, N.; Saminathan, M.; Tiwari, R.; Karthik, K.; Kumar, M.A.; Palanivelu, M.; Shabbir, M.Z.; Malik, Y.S.; Singh, R.K. Duck virus enteritis (duck plague)—A comprehensive update. Vet. Q. 2017, 37, 57–80. [Google Scholar] [CrossRef]
- Camacho, A.G.; Gual, A.; Lurz, R.; Tavares, P.; Alonso, J.C. Bacillus subtilis bacteriophage SPP1 DNA packaging motor requires terminase and portal proteins. J. Biol. Chem. 2003, 278, 23251–23259. [Google Scholar] [CrossRef]
- Weitao, T.; Grandinetti, G.; Guo, P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. Exploration 2023, 3, 20210056. [Google Scholar] [CrossRef] [PubMed]
- Homa, F.L.; Brown, J.C. Capsid assembly and DNA packaging in herpes simplex virus. Rev. Med. Virol. 1997, 7, 107–122. [Google Scholar] [CrossRef]
- Miller, J.T.; Zhao, H.; Masaoka, T.; Varnado, B.; Cornejo Castro, E.M.; Marshall, V.A.; Kouhestani, K.; Lynn, A.Y.; Aron, K.E.; Xia, A.; et al. Sensitivity of the C-Terminal Nuclease Domain of Kaposi’s Sarcoma-Associated Herpesvirus ORF29 to Two Classes of Active-Site Ligands. Antimicrob. Agents Chemother. 2018, 62, e00233-18. [Google Scholar] [CrossRef] [PubMed]
- Sheaffer, A.K.; Newcomb, W.W.; Gao, M.; Yu, D.; Weller, S.K.; Brown, J.C.; Tenney, D.J. Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J. Virol. 2001, 75, 687–698. [Google Scholar] [CrossRef]
- Hilbert, B.J.; Hayes, J.A.; Stone, N.P.; Duffy, C.M.; Sankaran, B.; Kelch, B.A. Structure and mechanism of the ATPase that powers viral genome packaging. Proc. Natl. Acad. Sci. USA 2015, 112, E3792–E3799. [Google Scholar] [CrossRef]
- Xu, R.G.; Jenkins, H.T.; Chechik, M.; Blagova, E.V.; Lopatina, A.; Klimuk, E.; Minakhin, L.; Severinov, K.; Greive, S.J.; Antson, A.A. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism. Nucleic Acids Res. 2017, 45, 3580–3590. [Google Scholar] [CrossRef]
- Yang, W. Nucleases: Diversity of structure, function and mechanism. Q. Rev. Biophys. 2011, 44, 1–93. [Google Scholar] [CrossRef]
- Alam, T.I.; Draper, B.; Kondabagil, K.; Rentas, F.J.; Ghosh-Kumar, M.; Sun, S.; Rossmann, M.G.; Rao, V.B. The headful packaging nuclease of bacteriophage T4. Mol. Microbiol. 2008, 69, 1180–1190. [Google Scholar] [CrossRef]
- Nadal, M.; Mas, P.J.; Blanco, A.G.; Arnan, C.; Solà, M.; Hart, D.J.; Coll, M. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc. Natl. Acad. Sci. USA 2010, 107, 16078–16083. [Google Scholar] [CrossRef]
- Alam, T.I.; Rao, V.B. The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: Implications to the DNA packaging mechanism. J. Mol. Biol. 2008, 376, 1272–1281. [Google Scholar] [CrossRef]
- Schwartz, C.; De Donatis, G.M.; Fang, H.; Guo, P. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily. Virology 2013, 443, 20–27. [Google Scholar] [CrossRef]
- Hilbert, B.J.; Hayes, J.A.; Stone, N.P.; Xu, R.G.; Kelch, B.A. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res. 2017, 45, 3591–3605. [Google Scholar] [CrossRef] [PubMed]
- Biron, K.K. Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 2006, 71, 154–163. [Google Scholar] [CrossRef]
- Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol. 1993, 1, 2–6. [Google Scholar] [CrossRef]
- Muller, C.; Alain, S.; Hantz, S. Identification of a leucine-zipper motif in pUL51 essential for HCMV replication and potential target for antiviral development. Antiviral Res. 2023, 217, 105673. [Google Scholar] [CrossRef]
- Hakki, M. Moving Past Ganciclovir and Foscarnet: Advances in CMV Therapy. Curr. Hematol. Malig. Rep. 2020, 15, 90–102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhou, G.; Yang, J.; Wang, M.; Wu, Y.; Tian, B.; Cheng, A. Duck Plague Virus Full-Length UL15 Protein Is a Multifunctional Enzyme Which Not Only Possesses Nuclease Activity but Also Exerts ATPase and DNA-Binding Activity. Vet. Sci. 2025, 12, 992. https://doi.org/10.3390/vetsci12100992
Yang Q, Zhou G, Yang J, Wang M, Wu Y, Tian B, Cheng A. Duck Plague Virus Full-Length UL15 Protein Is a Multifunctional Enzyme Which Not Only Possesses Nuclease Activity but Also Exerts ATPase and DNA-Binding Activity. Veterinary Sciences. 2025; 12(10):992. https://doi.org/10.3390/vetsci12100992
Chicago/Turabian StyleYang, Qiao, Guoying Zhou, Jing Yang, Mingshu Wang, Ying Wu, Bin Tian, and Anchun Cheng. 2025. "Duck Plague Virus Full-Length UL15 Protein Is a Multifunctional Enzyme Which Not Only Possesses Nuclease Activity but Also Exerts ATPase and DNA-Binding Activity" Veterinary Sciences 12, no. 10: 992. https://doi.org/10.3390/vetsci12100992
APA StyleYang, Q., Zhou, G., Yang, J., Wang, M., Wu, Y., Tian, B., & Cheng, A. (2025). Duck Plague Virus Full-Length UL15 Protein Is a Multifunctional Enzyme Which Not Only Possesses Nuclease Activity but Also Exerts ATPase and DNA-Binding Activity. Veterinary Sciences, 12(10), 992. https://doi.org/10.3390/vetsci12100992