Associations Between Milk Composition, Blood Metabolomics, and Systemic Physiological Indices in High- vs. Low-Yielding Guanzhong Dairy Goats During Early Lactation
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Sample Collection and Analysis
2.3. Milk Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Principal Component Analysis (PCA)
3.2. Orthogonal Partial Least Squares Discriminant Analysis
3.3. Metabolite Annotation
3.4. Screening of Differential Metabolites
3.5. Differential Analysis of Milk Components of Dairy Goats at Different Lactation Levels
3.6. Analysis of Differences in Early Lactation Blood Biochemical Indices of Dairy Goats and Their Correlation with Dairy Quality
3.7. Analysis of Blood Antioxidant and Immune Levels in Dairy Goats with Different Lactation Levels
3.8. Correlation Between Blood Biochemical Indexes and Milk Quality of Dairy Goats at the Early Stage of Lactation
3.9. Correlation Between Blood Immuno-Antioxidant Indexes and Milk Quality of Dairy Goats in the Early Lactation Stage
3.10. Correlation Between Key Serum Metabolites and Milk Quality of Dairy Goats in the Early Lactation Period
4. Discussion
4.1. Analysis of Milk Yield and Composition Changes in Dairy Goats During Early Lactation
4.2. Analysis of Differences in Blood Biochemical Indices and Their Correlation with Milk Quality During Early Lactation
4.3. Analysis of Differences in Blood Immune and Antioxidant Indices and Their Correlation with Milk Quality in Dairy Goats with Different Lactation Levels During Early Lactation
4.4. Analysis of Differences in Serum Metabolome and Its Correlation with Milk Quality in Dairy Goats with Different Lactation Levels During Early Lactation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [CrossRef]
- Hoque, M.A.; Suzuki, K.; Kadowaki, H.; Shibata, T.; Oikawa, T. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs. J. Anim. Breed. Genet. 2007, 124, 108–116. [Google Scholar] [CrossRef]
- Popescu, A.; Marcuta, A.; Marcuta, L.; Tindeche, C. Trends in goats’ livestock and goat milk, meat and cheese production in the world in the period 1990-2019- a statistical approach. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2021, 21, 647–654. [Google Scholar]
- Kaskous, S.; Pfaffl, M.W. Importance of goat milk for human health and nutrition. Food Nutr. Chem. 2025, 3, 285. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.P.; Rajkumar, V.; Chatli, M.K.; Kushwah, T.; Nanda, P.K.; Curros, B.; Lorenzo, J.M.; Das, A.K. Goat Milk: A Versatile Dairy Alternative with Unique Health Benefits and Functional Properties. Food Rev. Int. 2025, 1–36. [Google Scholar] [CrossRef]
- Dubeuf, J.-P. Future prospects on the goat activities for the coming decades in the context of a world in transition. In Goat Science—Environment, Health and Economy; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. Genetics of feed efficiency in dairy and beef cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef]
- Pryce, J.E.; Wales, W.J.; de Haas, Y.; Veerkamp, R.F.; Hayes, B.J. Genomic selection for feed efficiency in dairy cattle. Animal 2014, 8, 1–10. [Google Scholar] [CrossRef]
- Stephansen, R.B. Genetic Improvement of Feed Efficiency in Dairy Cattle. Ph.D. Thesis, Aarhus University, Aarhus, Denmark, 2025, unpublished doctoral dissertation. [Google Scholar]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 2001, 79, 2805–2811. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Wang, C.; Liu, J.; Liu, H. Effects of Dietary Rumen-protected Betaine on Lactation Performance and Serum Metabolites of Mid-lactation Holstein Dairy Cows. J. Agric. Food Chem. 2020, 68, 13154–13159. [Google Scholar] [CrossRef]
- Yang, Y.; Sadri, H.; Prehn, C.; Adamski, J.; Rehage, J.; Dänicke, S.; Saremi, B.; Sauerwein, H. Acylcarnitine profiles in serum and muscle of dairy cows receiving conjugated linoleic acids or a control fat supplement during early lactation. J. Dairy Sci. 2019, 102, 754–767. [Google Scholar] [CrossRef]
- Solodneva, E.V.; Smolnikov, R.V.; Bazhenov, S.A.; Vorobyeva, D.A.; Stolpovsky, Y.A. Lactation curves as a tool for monitoring the health and performance of dairy cows—A mini-review. J. Agricult. Biol. 2022, 57, 257–271. [Google Scholar] [CrossRef]
- Heath, T. Review of the Book Dukes’ Physiology of Domestic Animals, 11th ed.; Swenson, M.J., Reece, W.O., Eds.; Cornell University Press: Ithaca, NY, USA, 1993. [Google Scholar]
- Salum, Ç.; Etyemez, M. A physiological perspective on lactation in goats. Bozok Vet. Sci. 2023, 4, 65–72. [Google Scholar] [CrossRef]
- Liseune, A.; Salamone, M.; Van den Poel, D.; van Ranst, B.; Hostens, M. Predicting the milk yield curve of dairy cows in the subsequent lactation period using deep learning. Comput. Electron. Agric. 2021, 180, 105904. [Google Scholar] [CrossRef]
- Bar-Pelled, U.; Maltz, E.; Bruckental, I.; Folman, Y.; Kali, Y.; Gacitua, H.; Lehrer, A.R.; Knight, C.H.; Robinzon, B.; Voet, H.; et al. Relationship Between Frequent Milking or Suckling in Early Lactation and Milk Production of High Producing Dairy Cows. J. Dairy Sci. 1995, 78, 2726–2736. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, O.V.; Galushina, P.S.; Knysh, I.V.; Bobkova, E.Y.; Grigoryants, I.A. Relationship between cow milk yield and milk quality indicators. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 032013. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef]
- Anderson, S.M.; MacLean, P.S.; McManaman, J.L.; Neville, M.C. Lactation and its hormonal control. In Knobil and Neill’s Physiology of Reproduction, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 10031-PLANT–10031-PLANT. [Google Scholar] [CrossRef]
- Flores-Najera, M.J.; Cuevas-Reyes, V.; Vázquez-García, J.M.; Beltrán-López, S.; Meza-Herrera, C.A.; Mellado, M.; Negrete-Sánchez, L.O.; Rivas-Jacobo, M.A.; Rosales-Nieto, C.A. Milk yield and composition of mixed-breed goats on rangeland during the dry season and the effect on the growth of their progeny. Biology 2021, 10, 220. [Google Scholar] [CrossRef]
- Boshoff, M.; Lopez-Villalobos, N.; Andrews, C.; Turner, S.-A. Modeling daily yields of milk, fat, protein, and lactose of New Zealand dairy goats undergoing standard and extended lactations. J. Dairy Sci. 2024, 107, 1500–1509. [Google Scholar] [CrossRef]
- González-Cabrera, M.; Morales-delanuez, A.; Argüello, A.; Castro, N.; Hernández-Castellano, L.E. Review: Mammary gland physiology and modulation during colostrogenesis in dairy goats. Animal, 2025; in press. [Google Scholar] [CrossRef]
- Scholtens, M.R.; Lopez-Villalobos, N.; Garrick, D.; Blair, H.; Lehnert, K.; Snell, R. Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy goats. Anim. Sci. J. 2019, 91, e13310. [Google Scholar] [CrossRef]
- Amer, H.A.; Salem, H.A.H.; Al-Hozab, A.A. Biochemical changes in serum and milk constituents during postpartum period in Saudi Ardy goats. Small Rumin. Res. 1999, 34, 167–173. [Google Scholar] [CrossRef]
- Stanley, C.C.; Williams, C.C.; Jenny, B.F.; Fernandez, J.M.; Bateman II, H.G.; Nipper, W.A.; Lovejoy, J.C.; Gantt, D.T.; Goodier, G.E. Effects of feeding milk replacer once versus twice daily on glucose metabolism in Holstein and Jersey calves. J. Dairy Sci. 2002, 85, 2335–2343. [Google Scholar] [CrossRef]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef]
- Steeneveld, W.; Amuta, P.; van Soest, F.J.S.; Jorritsma, R.; Hogeveen, H. Estimating the combined costs of clinical and subclinical ketosis in dairy cows. PLoS ONE 2020, 15, e0230448. [Google Scholar] [CrossRef]
- Ingvartsen, K.L. Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- White, H.M. ADSA Foundation Scholar Award: Influencing hepatic metabolism: Can nutrient partitioning be modulated to optimize metabolic health in the transition dairy cow? J. Dairy Sci. 2020, 103, 6741–6750. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Contreras, G.A.; Aitken, S.L. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim. Health Res. Rev. 2009, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Sordillo, L.M. Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 2016, 99 (Suppl. 1), 4967–4982. [Google Scholar] [CrossRef]
- Konvičná, J.; Vargová, M.; Paulíková, I.; Kováč, G.; Kostecká, Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno 2015, 84, 133–140. [Google Scholar] [CrossRef]
- Alnakip, M.E.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 659801. [Google Scholar] [CrossRef] [PubMed]
- Bronzo, V.; Loprelato, V.; Riva, F.; Amadori, M.; Curone, G.; Addis, M.F.; Cremonesi, P.; Moroni, P.; Trevisi, E.; Castiglioni, B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals 2020, 10, 1397. [Google Scholar] [CrossRef] [PubMed]
- Albenzio, M.; Santillo, A.; Caroprese, M.; Ciliberti, M.G.; Marino, R.; Sevi, A. Effect of Stage of Lactation on the Immune Competence of Goat Mammary Gland. J. Dairy Sci. 2016, 99, 3889–3895. [Google Scholar] [CrossRef]
- Silvestre, F.T.; Carvalho, T.S.M.; Crawford, P.; Santos, J.; Staples, C.; Jenkins, T.; Thatcher, W. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: II. Neutrophil fatty acids and function, and acute phase proteins. J. Dairy Sci. 2011, 94, 2285–2301. [Google Scholar] [CrossRef]
- Adili, S.; Sadeghi, A.A.; Chamani, M.; Shawrang, P.; Forodi, F. Auto-lysed yeast and yeast extract effects on dry matter intake, blood cells counts, IgG titer and gene expression of IL-2 in lactating dairy cows under heat stress. Acta Sci. Anim. Sci. 2020, 42, e48425. [Google Scholar] [CrossRef]
- Trevisi, E.; Jahan, N.; Bertoni, G.; Ferrari, A.; Minuti, A. Pro-inflammatory cytokine profile in dairy cows: Consequences for new lactation. Ital. J. Anim. Sci. 2015, 14, 3862. [Google Scholar] [CrossRef]
- Huang, B.; Khan, M.Z.; Kou, X.; Chen, Y.; Liang, H.; Ullah, Q.; Khan, N.; Khan, A.; Chai, W.; Wang, C. Enhancing metabolism and milk production performance in periparturient dairy cattle through rumen-protected methionine and choline supplementation. Metabolites 2023, 13, 1080. [Google Scholar] [CrossRef]
- Haxhiaj, K.; Li, Z.; Johnson, M.; Dunn, S.M.; Wishart, D.S.; Ametaj, B.N. Blood Metabolomic Phenotyping of Dry Cows CouldPredict the High Milk Somatic Cells in Early Lactation-Preliminary Results. Dairy 2022, 3, 59–77. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Z.; Zhang, Y.; Cao, J. Research Progress on the Mechanism of Milk Fat Synthesis in Cows and the Effect of Conjugated Linoleic Acid on Milk Fat Metabolism and Its Underlying Mechanism: A Review. Animals 2024, 14, 204. [Google Scholar] [CrossRef]
- Wu, X.; Sun, H.; Xue, M.; Wang, D.; Guan, L.L.; Liu, J. Serum metabolome profiling revealed potential biomarkers for milk protein yield in dairy cows. J. Proteom. 2018, 184, 54–61. [Google Scholar] [CrossRef]
- Xu, W.; Grindler, S.; Dänicke, S.; Frahm, J.; Kenéz, A.; Huber, K. Increased plasma and milk short-chain acylcarnitine concentrations reflect systemic LPS response in mid-lactation dairy cows. Am. J. Physiol. Integr. Comp. Physiol. 2021, 321, R429–R440. [Google Scholar] [CrossRef]
- Li, Y.Q.; Xi, Y.M.; Wang, Z.D.; Zeng, H.F.; Han, Z. Combined signature of rumen microbiome and metabolome in dairy cows with different feed intake levels. J. Anim. Sci. 2020, 98, skaa070. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Jiang, X.; Song, Y.; Wang, D.; Liu, H.; Wu, S.; Yao, J. Multiomics analysis revealed that the metabolite profile of raw milk is associated with the lactation stage of dairy cows and could be affected by variations in the ruminal microbiota. J. Dairy Sci. 2024, 107, 8709–8721. [Google Scholar] [CrossRef]
- Che, L.; Xu, M.; Gao, K.; Wang, L.; Yang, X.; Wen, X.; Xiao, H.; Li, M.; Jiang, Z. Mammary tissue proteomics in a pig model indicates that dietary valine supplementation increases milk fat content via increased de novo synthesis of fatty acid. Food Sci. Nutr. 2021, 9, 6213–6223. [Google Scholar] [CrossRef]
- Bauman, D.E.; Currie, W.B. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef] [PubMed]
Items | Ingredients |
---|---|
Ingredients, % | |
Peanut vine | 7 |
Corn stalk | 15 |
Sunflower seed skin | 10 |
Alfalfa meal | 8 |
Corn grain | 37 |
Soybean meal | 8 |
Germ meal | 3.5 |
Cotton meal | 1 |
DDGS 1 | 4 |
NaCl | 0.6 |
NaHCO3 | 0.3 |
Limestone | 1 |
CaHPO4 | 0.5 |
NH4Cl | 0.1 |
4%Premix 2 | 4 |
Total | 100 |
Nutrients | |
DE 3, MJ/kg | 10.5 |
DM, % | 86.5 |
CP, % | 12 |
NDF, % | 32.68 |
ADF, % | 20.18 |
Ca, % | 0.74 |
P, % | 0.33 |
Items | Groups | SEM | p | |
---|---|---|---|---|
BL | BH | |||
Lactation Yield/kg | 2.54 b | 4.08 a | 0.1489 | 0.0001 |
Milk Fat % | 4.8 | 4.3 | 0.2063 | 0.2962 |
Milk Protein % | 3.43 | 3.29 | 0.0747 | 0.5122 |
Lactose % | 4.44 a | 4.26 b | 0.0407 | 0.0228 |
Non-fat milk solids % | 8.67 | 8.46 | 0.1162 | 0.392 |
Solids % | 13.54 | 12.86 | 0.3162 | 0.3305 |
Items | Groups | SEM | p | |
---|---|---|---|---|
BL | BH | |||
Total Protein (TPII) | 85.68 a | 78.12 b | 1.6697 | 0.0189 |
Albumin (ALB) | 22.87 | 22.45 | 0.4051 | 0.7407 |
Total Cholesterol (CHO) | 2.24 | 2.39 | 0.0747 | 0.1945 |
Triglyceride (TG) | 0.31 | 0.33 | 0.0145 | 0.4477 |
Low Density Lipoprotein (LDL) | 0.69 | 0.64 | 0.0300 | 0.6382 |
High Density Lipoprotein (HDL) | 1.24 | 1.4 | 0.0525 | 0.1093 |
Glucose (GLU) | 2.72 a | 2.33b | 0.0707 | 0.0055 |
Urea (URE) | 9.06 | 9.29 | 0.3266 | 0.6859 |
Creatinine (CRE) | 29.36 x | 26.33 y | 0.8305 | 0.0799 |
Alkaline Phosphatase (ALP) | 87.66 a | 62.72 b | 4.5899 | 0.0025 |
Gamma-Glutamyl Transferase (GGT) | 63.01 a | 51.97 b | 1.9014 | 0.0019 |
Aspartate Aminotransferase (AST) | 84.34 | 88.79 | 3.3935 | 0.6961 |
Alanine Aminotransferase (ALT) | 5.45 | 5.04 | 0.3520 | 0.6813 |
β-HydroxyButyric Acid (BHBA) | 358.76 b | 445.01 a | 22.7755 | 0.0082 |
Free Fatty Acid (FFA) | 809.46 x | 743.22 y | 17.5576 | 0.0809 |
Item | Group | SEM | p | |
---|---|---|---|---|
BL Group | BH Group | |||
Antioxidant | ||||
Total antioxidant capacity T-AOC (U/mL) | 4.65 b | 5.87 a | 0.2435 | 0.0088 |
Catalase CAT (pg/mL) | 312.31 b | 405.39 a | 17.2619 | 0.0042 |
Superoxide dismutase SOD (pg/mL) | 617.37 | 627.29 | 29.9561 | 0.8726 |
Glutathione peroxidase GSH-Px (ng/mL) | 3.03 b | 4.31 a | 0.2231 | 0.0011 |
Malondialdehyde MDA (ng/mL) | 58.51 | 54.49 | 2.4924 | 0.4327 |
Immunization | ||||
IgA (ng/mL) | 4.43 | 4.92 | 0.1504 | 0.1072 |
IgG (μg/mL) | 9.76 y | 11.18 x | 0.5330 | 0.0821 |
IgM (ng/mL) | 7.31 b | 8.96 a | 0.4257 | 0.0334 |
IL-2 (Pg/mL) | 69.07 b | 88.44 a | 4.0040 | 0.0144 |
IL-6 (Pg/mL) | 107.49 a | 93.67 b | 3.3554 | 0.0379 |
IL-10 (Pg/mL) | 79.57 | 73.39 | 2.8014 | 0.3737 |
TNF-α (pg/mL) | 45.9 | 48.4 | 2.3664 | 0.6102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Fang, C.; Zhao, Q.; Yang, L.; Jin, H.; Qi, J.; An, X. Associations Between Milk Composition, Blood Metabolomics, and Systemic Physiological Indices in High- vs. Low-Yielding Guanzhong Dairy Goats During Early Lactation. Vet. Sci. 2025, 12, 990. https://doi.org/10.3390/vetsci12100990
Meng Z, Fang C, Zhao Q, Yang L, Jin H, Qi J, An X. Associations Between Milk Composition, Blood Metabolomics, and Systemic Physiological Indices in High- vs. Low-Yielding Guanzhong Dairy Goats During Early Lactation. Veterinary Sciences. 2025; 12(10):990. https://doi.org/10.3390/vetsci12100990
Chicago/Turabian StyleMeng, Ziqi, Chenxi Fang, Qinan Zhao, Lei Yang, Hai Jin, Jingwei Qi, and Xiaoping An. 2025. "Associations Between Milk Composition, Blood Metabolomics, and Systemic Physiological Indices in High- vs. Low-Yielding Guanzhong Dairy Goats During Early Lactation" Veterinary Sciences 12, no. 10: 990. https://doi.org/10.3390/vetsci12100990
APA StyleMeng, Z., Fang, C., Zhao, Q., Yang, L., Jin, H., Qi, J., & An, X. (2025). Associations Between Milk Composition, Blood Metabolomics, and Systemic Physiological Indices in High- vs. Low-Yielding Guanzhong Dairy Goats During Early Lactation. Veterinary Sciences, 12(10), 990. https://doi.org/10.3390/vetsci12100990